Luou ZHANG1, Li XU2, Xiaoxu HU2, Ying YANG3
Received:
2024-07-31
Revised:
2024-09-30
Published:
2024-10-09
Contact:
Ying YANG
张璐鸥1, 徐丽2, 胡晓旭2, 杨滢3
通讯作者:
杨滢
作者简介:
基金资助:
CLC Number:
Luou ZHANG, Li XU, Xiaoxu HU, Ying YANG. Synthetic Biology Ushers the Cosmetic Industry into "Bio-cosmetics" Era[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-056.
张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-056
护肤成分 | 核心功效 | 传统使用方式 | 现代生产工艺 | 合成生物学技术的应用优势 |
---|---|---|---|---|
人参皂苷 (Ginsenosides) | 抗氧化、抗炎、 美白 | 人参煮汤、捣碎后 敷脸、内服 | 传统提取、蒸馏 | 实现高效发酵生产,提升纯度,减少污染,功效更强,环保性更好 |
胶原蛋白 (Collagen) | 保湿、抗皱、修复 | 猪皮、动物骨骼提取 | 动物提取, 涉及伦理问题 | 重组人源化胶原蛋白,生物相容性好,无免疫反应,生产稳定且环保 |
透明质酸 (Hyaluronic Acid) | 保湿、增加皮肤 弹性 | 鸡冠、鱼眼提取 | 微生物发酵,降低成本和污染 | 分子量定制化生产,深层保湿与修复功能增强,环保无污染 |
角鲨烷 (Squalane) | 保湿、修复、 抗氧化 | 鲨鱼肝油提取 | 鲨鱼肝油提取, 环保问题 | 酵母发酵生产,避免动物资源消耗,环保且高纯度 |
α-熊果苷 (Alpha-Arbutin) | 美白、抑制黑色素形成 | 熊果叶提取 | 植物提取,成本高 | 发酵生产提升产量与纯度,增强美白功效,生产环保 |
白藜芦醇 (Resveratrol) | 抗氧化、延缓衰老 | 葡萄皮、红酒提取 | 植物提取,效率较低 | 发酵生产提升产量,改善稳定性,减少环境污染 |
Table 1 Comparison of traditional production and synthetic biology methods for functional ingredients in skincare products
护肤成分 | 核心功效 | 传统使用方式 | 现代生产工艺 | 合成生物学技术的应用优势 |
---|---|---|---|---|
人参皂苷 (Ginsenosides) | 抗氧化、抗炎、 美白 | 人参煮汤、捣碎后 敷脸、内服 | 传统提取、蒸馏 | 实现高效发酵生产,提升纯度,减少污染,功效更强,环保性更好 |
胶原蛋白 (Collagen) | 保湿、抗皱、修复 | 猪皮、动物骨骼提取 | 动物提取, 涉及伦理问题 | 重组人源化胶原蛋白,生物相容性好,无免疫反应,生产稳定且环保 |
透明质酸 (Hyaluronic Acid) | 保湿、增加皮肤 弹性 | 鸡冠、鱼眼提取 | 微生物发酵,降低成本和污染 | 分子量定制化生产,深层保湿与修复功能增强,环保无污染 |
角鲨烷 (Squalane) | 保湿、修复、 抗氧化 | 鲨鱼肝油提取 | 鲨鱼肝油提取, 环保问题 | 酵母发酵生产,避免动物资源消耗,环保且高纯度 |
α-熊果苷 (Alpha-Arbutin) | 美白、抑制黑色素形成 | 熊果叶提取 | 植物提取,成本高 | 发酵生产提升产量与纯度,增强美白功效,生产环保 |
白藜芦醇 (Resveratrol) | 抗氧化、延缓衰老 | 葡萄皮、红酒提取 | 植物提取,效率较低 | 发酵生产提升产量,改善稳定性,减少环境污染 |
1 | Ageing and health[EB/OL]. [2024-07-16]. . |
2 | Why Should Cities Become More Age-Friendly? - Age-Friendly World[EB/OL]. [2024-07-16]. . |
3 | GUO J, HUANG X, DOU L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 1-40. |
4 | COLLABORATORS G 2019 A. Global, regional, and national burden of diseases and injuries for adults 70 years and older: systematic analysis for the Global Burden of Disease 2019 Study[J]. BMJ, 2022, 376. |
5 | REYNOLDS C F, JESTE D V, SACHDEV P S, et al. Mental health care for older adults: recent advances and new directions in clinical practice and research[J]. World Psychiatry, 2022, 21(3): 336-363. |
6 | FRANCO A C, AVELEIRA C, CAVADAS C. Skin senescence: mechanisms and impact on whole-body aging[J]. Trends in Molecular Medicine, 2022, 28(2): 97-109. |
7 | KUFFNER K, TRIEBELHORN J, MEINDL K, et al. Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts[J]. Cells, 2020, 9(4): 884. |
8 | ARAVIISKAIA E, BERARDESCA E, BIEBER T, et al. The impact of airborne pollution on skin[J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33(8): 1496-1505. |
9 | WANG Y, O'CONNOR D, SHEN Z, et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors[J]. Journal of Cleaner Production, 2019, 226: 540-549. |
10 | FARIA-SILVA C, ASCENSO A, COSTA A M, et al. Feeding the skin: A new trend in food and cosmetics convergence[J]. Trends in Food Science & Technology, 2020, 95: 21-32. |
11 | LUPO M P. Antioxidants and vitamins in cosmetics[J]. Clinics in Dermatology, 2001, 19(4): 467-473. |
12 | 丁伟新, 倪宝绿. 我国化妆品工业的回顾及展望[J]. 日用化学工业, 1985(3): 48-50. |
13 | 孙健岚, 陈利芳. «黄帝内经»的美容观及其对针灸美容的临床指导[J]. 浙江中医药大学学报, 20210309, 45(2): 185-189. |
14 | 傅美容. 东晋葛洪中药美容方剂用药规律研究[J]. 科技展望, 2016, 26(16): 256. |
15 | DIANA DRAELOS Z. COSMETICS AND SKIN CARE PRODUCTS: A Historical Perspective[J/OL]. Dermatologic Clinics, 2000, 18(4): 557-559. |
16 | SCHMITT W H. Skin-care products[M/OL]//WILLIAMS D F, SCHMITT W H. Chemistry and Technology of the Cosmetics and Toiletries Industry: Second Edition. Dordrecht: Springer Netherlands, 1992: 104-148. |
17 | DRAELOS Z D. 药妆品[M/OL]. 许德田, 译. 人民卫生出版社, 2018. |
18 | 国务院, 化妆品监督管理条例 (国令第727号) [EB/OL]. [2024-07-26]. . |
19 | 渌渌. "药妆"概念的最新定位 活性美妆未来趋势[J]. 中国化妆品, 2019(5): 64-69. |
20 | MARINI A, AUE N, JAENICKE T, et al. Assessment of the protective effect against air pollution‐induced skin pigmentation of an oral nutritional supplement containing antioxidants: A randomized, double‐blinded, placebo‐controlled study[J]. Journal of the European Academy of Dermatology and Venereology, 2023, 37. |
21 | KIM H M, BYUN K A, OH S, et al. A Mixture of Topical Forms of Polydeoxyribonucleotide, Vitamin C, and Niacinamide Attenuated Skin Pigmentation and Increased Skin Elasticity by Modulating Nuclear Factor Erythroid 2-like 2[J]. Molecules, 2022, 27. |
22 | ZHI-JUN L. Effects of Vitamins on Melanin Metabolism[J]. Guide of China Medicine, 2013. |
23 | 刘峻熙, 李慧, 倪贺, 等. 除味啤酒酵母提取物的护肤功效研究[J]. 现代食品科技, 2017, 33(8): 141-145+115. |
24 | 张殿义. 从原始走向"细胞级" 谈谈化妆品的"演变史"[J]. 中国化妆品, 2018(9): 8-21. |
25 | WITTING M, BOREHAM A, BRODWOLF R, et al. Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules.[J]. Molecular pharmaceutics, 2015, 12 5: 1391-1401. |
26 | QIU Y, MA Y, HUANG Y, et al. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights.[J]. Carbohydrate polymers, 2021, 269. |
27 | 郭学平. 微生物发酵法生产透明质酸[J]. 精细与专用化学品, 2002: 21-22+17. |
28 | LIU L, LIU Y, LI J, et al. Microbial production of hyaluronic acid: current state, challenges, and perspectives[J]. Microbial Cell Factories, 2011, 10: 99-99. |
29 | CODERCH L, LÓPEZ O, DE LA MAZA A, et al. Ceramides and Skin Function[J]. American Journal of Clinical Dermatology, 2003, 4(2): 107-129. |
30 | MICHEL C, van ECHTEN-DECKERT G, ROTHER J, et al. Characterization of Ceramide Synthesis[J]. The Journal of Biological Chemistry, 1997, 272: 22432-22437. |
31 | CHOI M, MAIBACH H. Role of Ceramides in Barrier Function of Healthy and Diseased Skin[J]. American Journal of Clinical Dermatology, 2005, 6: 215-223. |
32 | MURAKAMI S, SHIMAMOTO T, NAGANO H, et al. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae[J]. Scientific Reports, 2015, 5(1): 16319. |
33 | KWUN K H, LEE J, RHO K, et al. Production of ceramide with Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology, 2006, 133(3): 203-210. |
34 | MAJCHRZAK W, MOTYL I, SMIGIELSKI K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview[J]. Molecules, 2022, 27]. |
35 | MIZUTANI Y, MITSUTAKE S, TSUJI K, et al. Ceramide biosynthesis in keratinocyte and its role in skin function[J]. Biochimie, 2009, 91(6): 784-790. |
36 | 赵振东, 孙震. 化学及生物学方法合成角鲨烯研究现状[J]. 林产化学与工业, 2003(4): 95-98. |
37 | WANG S, FU C, BILAL M, et al. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis [J]. Microbial Cell Factories, 2018, 17(1): 174. |
38 | SHANG Y, WEI W, ZHANG P, et al. Engineering for Enhanced Production of Arbutin[J]. Journal of Agricultural and Food Chemistry, 2020, 68(5): 1364-1372. |
39 | SHEN X, WANG J, WANG J, et al. High-level De novo biosynthesis of arbutin in engineered Escherichia coli[J]. Metabolic Engineering, 2017, 42: 52-58. |
40 | YANG J L, HU Z F, ZHANG T T, et al. Progress on the Studies of the Key Enzymes of Ginsenoside Biosynthesis[J]. Molecules, 2018, 23(3): 589. |
41 | SHRESTHA A, PANDEY R P, SOHNG J. Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives[J]. Applied Microbiology and Biotechnology, 2019, 103: 2959-2972. |
42 | LIN M H, HUNG C, SUNG H C, et al. The bioactivities of resveratrol and its naturally occurring derivatives on skin[J]. Journal of Food and Drug Analysis, 2021, 29: 15-38. |
43 | FENG C, CHEN J, YE W, et al. Synthetic Biology-Driven Microbial Production of Resveratrol: Advances and Perspectives[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10. |
44 | 李春, 孙文涛. 天然产物:健康与生态的守护神[J]. 合成生物学, 2021, 2(5): 663. |
45 | 冯金, 潘海学, 唐功利. 近十年天然产物药物的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 408. |
46 | "中国学科及前沿领域发展战略研究( 2021-2035)"项目组. 中国合成生物学2035发展战略[M]. 科学出版社, 2024. |
47 | MATINONG A M E, CHISTI Y, PICKERING K L, et al. Collagen Extraction from Animal Skin[J]. Biology, 2022, 11(6): 905. |
48 | SORUSHANOVA A, DELGADO L M, WU Z, et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development[J]. Advanced Materials, 2019, 31(1): 1801651. |
49 | HUA C, ZHU Y, XU W, et al. Characterization by high-resolution crystal structure analysis of a triple-helix region of human collagen type III with potent cell adhesion activity[J]. Biochemical and Biophysical Research Communications, San Diego: Academic Press Inc Elsevier Science, 2019, 508(4): 1018–1023. |
50 | YOU S, LIU S, DONG X, et al. Intravaginal Administration of Human Type III Collagen-Derived Biomaterial with High Cell-Adhesion Activity to Treat Vaginal Atrophy in Rats[J]. ACS Biomaterials Science & Engineering, Washington: Amer Chemical Soc, 2020, 6(4): 1977–1988. |
51 | YANG L, WU H, LU L, et al. A tailored extracellular matrix (ECM)-Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen[J]. Biomaterials, 2021, 276: 121055. |
52 | 刘泽众, 周洁, 朱赟, 等. 基于重组人Ⅲ型胶原蛋白的三聚体抗原疫苗策略在新冠和流感疫苗中的应用[J]. 合成生物学, 2024, 5(2): 385–395. |
53 | 张先恩. 世界生命科学格局中的中国[J]. 中国科学院院刊, 2022, 37(5): 622–635. |
54 | GUO X, MA Y, WANG H, et al. Status and developmental trends in recombinant collagen preparation technology[J]. Regenerative Biomaterials, 2024, 11. |
55 | ZHAO Z, DENG J, FAN D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems[J]. Biomaterials Science, 2023, 11(16): 5439-5461. |
56 | HU M C, MATHEWS J A. China's national innovative capacity[J]. Research Policy, 2008, 37(9): 1465-1479. |
57 | 朱雷, 余丽丽, 张莎, 等. 传统中医药及其原料在美容化妆方面的应用研究[J]. 中国化妆品, 2008(10): 78-85. |
58 | 中国化妆品行业 30 年大事记[J]. 中国化妆品, 2023(6): 14–17. |
59 | VOIGT C A. Synthetic biology 2020–2030: six commercially-available products that are changing our world[J]. Nature Communications, 2020, 11. |
60 | LI C Q, LEI H M, HU Q Y, et al. Recent Advances in the Synthetic Biology of Natural Drugs[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9. |
61 | PATEL S, RAUF A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects[J]. Biomedicine & Pharmacotherapy, 2017, 85: 120-127. |
62 | KIM E, MOORE B S, YOON Y J. Reinvigorating natural product combinatorial biosynthesis with synthetic biology[J]. Nature Chemical Biology, 2015, 11(9): 649-659. |
63 | ZHU X, LIU X, LIU T, et al. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells[J]. Plant Communications, 2021, 2(5). |
64 | WEI Y, HOU B, FANG H, et al. Salting-out extraction of ginsenosides from enzymatic hydrolysate of ginseng using ethanol/sodium carbonate system. Journal of Ginseng Research, 2020, 44(1): 44-49. |
65 | TU Y, LI L, FAN W, et al. Development of Green and Efficient Extraction of Bioactive Ginsenosides from Panax ginseng with Deep Eutectic Solvents[J]. Molecules, 2022, 27(14): 4339. |
66 | SHOUQIN Z, RUIZHAN C, CHANGZHENG W. Experiment study on ultrahigh pressure extraction of Ginsenosides[J]. Journal of Food Engineering, 2007, 79(1): 1-5. |
67 | LI C, YAN X, XU Z, et al. Pathway elucidation of bioactive ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae[J]. Communications Biology, 2022, 5(1): 1-9. |
68 | ZHANG B, GOU K, XU K, et al. De novo biosynthesis of β-arbutin in Corynebacterium pathway engineering and process optimization[J]. Biotechnology for Biofuels and Bioproducts, 2024, 17(1). |
69 | In Search of an Innovative Agent for Skin Care - Putting an Ancient Herbal Cosmetic Formula on Modern Bioactivity Testing Platforms[J]. Journal of Clinical and Investigative Dermatology.. |
70 | HYUN S K, LEE W H, JEONG D M, et al. Inhibitory Effects of Kurarinol and Trifolirhizin from Sophora flavescens on Tyrosinase and Melanin Synthesis[J]. Biological and Pharmaceutical Bulletin, 2008, 31(1): 154-158.. |
71 | DAI L, GU L, MAEDA K. Inhibitory Effect and Mechanism of Scutellarein on Melanogenesis[J]. Cosmetics, 2021, 8(1): 15. |
72 | YE Y, CHU J H, WANG H, et al. Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells[J]. Journal of Ethnopharmacology, 2010, 132(2): 533-535. |
73 | LONG C, LIU Y, HE L, et al. Bacterial lactase genes diversity in intestinal mucosa of dysbacterial diarrhea mice treated with Qiweibaizhu powder[J]. 3 Biotech, 2018, 8(10): 423. |
74 | LI L, TANG Y, LI X, et al. Mechanism of skin whitening through San-Bai decoction-induced tyrosinase inhibition and discovery of natural products targeting tyrosinase[J]. Medicine, 2023, 102(13): e33420. |
75 | LV H, ZHANG Y, SHAO J, et al. Ferulic acid production by metabolically engineered Escherichia coli[J]. Bioresources and Bioprocessing, 2021, 8(1): 70. |
76 | CHAUDHARY A, JASWAL V S, CHOUDHARY S, et al. Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances[J]. |
77 | CAVALCANTI G R, DUARTE F I, CONVERTI A, et al. Ferulic Acid Activity in Topical Formulations: Technological and Scientific Prospecting[J]. |
78 | 王勇. 新本草计划——基于合成生物学的药用植物活性代谢物研究[J]. 生物工程学报, 2017, 33(3): 478–485. |
79 | BILAL M, MEHMOOD S, IQBAL N. The Beast of Beauty: Environmental and Health Concerns of Toxic Components in Cosmetics[J]. Cosmetics, 2020, 7(1): 13. |
80 | PÉREZ-RIVERO C, LÓPEZ-GÓMEZ J P. Unlocking the Potential of Fermentation in Cosmetics: A Review[J]. Fermentation, 2023, 9(5): 463. |
81 | WHITEHEAD H D, VENIER M, WU Y, et al. Fluorinated Compounds in North American Cosmetics[J]. Environmental Science & Technology Letters, 2021, 8(7): 538-544. |
82 | VECINO X, CRUZ J M, MOLDES A B, et al. Biosurfactants in cosmetic formulations: trends and challenges[J]. Critical Reviews in Biotechnology, 2017. |
83 | ELSAYED M A, ABDALLAH O Y, NAGGAR V F, et al. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research[J]. International Journal of Pharmaceutics, 2007, 332(1): 1-16. |
84 | CHENG Y C, LI T S, SU H L, et al. Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care[J]. Molecules, 2020, 25(21): 5051. |
85 | SUTER F, SCHMID D, WANDREY F, et al. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108: 304-309. |
86 | PAVLOU P, SIAMIDI A, VARVARESOU A, et al. Skin Care Formulations and Lipid Carriers as Skin Moisturizing Agents[J]. Cosmetics, 2021, 8(3): 89. |
87 | DOKTOROVOVA S, SOUTO E B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review[J]. Expert Opinion on Drug Delivery, 2009. |
88 | 袁铁彪, 薛军. 化妆品乳剂 理论. 日用化学工业, 1983(6): 38–45. |
89 | 国家食品药品监督管理总局,化妆品安全技术规范(2015年第268号) [EB/OL]. [2024-07-17]. . |
90 | 国家药监局, 化妆品功效宣称评价规范( 2021年 第50号)[EB/OL]. [2024-07-17]. . |
91 | 国家药监局, YY/T 1888-2023 «重组人源化胶原蛋白»医疗器械行业标准(2023年第14号)[EB/OL]. [2024-07-26]. . |
92 | BAI M, KANG N, XU Y, et al. The influence of tag sequence on recombinant humanized collagen (rhCol) and the evaluation of rhCol on Schwann cell behaviors[J]. Regenerative biomaterials, 2023, 10: 089. |
93 | 甄育, 胡晓旭, 张璐鸥, 等. 化妆品皮肤安全检测和功效检测标准方法[J]. 生态毒理学报, 2024, 19(4): 88-99. |
94 | OECD. Test No. 442E: In Vitro Skin Sensitisation: In Vitro Skin Sensitisation assays addressing the Key Event on activation of dendritic cells on the Adverse Outcome Pathway for Skin Sensitisation[M]. Paris: Organisation for Economic Co-operation and Development, 2024. |
95 | KUMAR H, KIM I S, MORE S V, et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases[J]. Natural Product Reports, 2013, 31(1): 109-139. |
96 | SUZUKI T, MOTOHASHI H, YAMAMOTO M. Toward clinical application of the Keap1–Nrf2 pathway[J]. Trends in Pharmacological Sciences, 2013, 34(6): 340-346. |
97 | KRISHNA R, WANG J, AHERN W, et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom[J]. Science, American Association for the Advancement of Science, 2024, 384(6693): 2528. |
98 | ARFATH A S, RIDA S. Artificial Intelligence Techniques in Bioinformatics: Unravelling Complex Biological Systems[J]. International Journal of Advanced Research in Science, Communication and Technology, 2023: 269-275. |
99 | BURLEY S, BHIKADIYA C, BI C, et al. RCSB Protein Data Bank: delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning[J]. Nucleic Acids Research, 2022, 51: 488-508. |
100 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
101 | KUHLMAN B, BRADLEY P. Advances in protein structure prediction and design[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 681-697. |
102 | DEFRESNE M, BARBE S, SCHIEX T. Protein Design with Deep Learning[J]. International Journal of Molecular Sciences, 2021, 22(21): 11741. |
103 | STAPLES M, CHAN L, SI D, et al. Artificial Intelligence for Bioinformatics: Applications in Protein Folding Prediction[C/OL]//2019 IEEE Technology & Engineering Management Conference. 2019: 1-8. |
[1] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[4] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[5] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[6] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[7] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[8] | Zezhong LIU, Jie ZHOU, Yun ZHU, Lu LU, Shibo JIANG. Applications of the recombinant human collagen type Ⅲ-based trimerization motif in the design of vaccines to fight against SARS-CoV-2 and influenza virus [J]. Synthetic Biology Journal, 2024, 5(2): 385-395. |
[9] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[10] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[11] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[12] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[13] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[14] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[15] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||