Jinhang YI1, Yulin TANG1, Chunyu LI1, Heyun WU1,2, Qian MA1,2, Xixian XIE1,2
Received:
2024-08-01
Revised:
2024-10-11
Published:
2024-11-25
Contact:
Qian MA, Xixian XIE
伊进行1, 唐宇琳1, 李春雨1, 吴鹤云1,2, 马倩1,2, 谢希贤1,2
通讯作者:
马倩,谢希贤
作者简介:
基金资助:
CLC Number:
Jinhang YI, Yulin TANG, Chunyu LI, Heyun WU, Qian MA, Xixian XIE. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-060.
伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-060.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-060
Fig. 2 Microbial synthesis pathways of amino acid derivatives as cosmetic raw materials (The biosynthetic pathway of ergothioneine: purple represents the anaerobic bacteria pathway; blue represents actinomycete pathway; green represents the bacterial pathway such as methylobacterium; red represents the fungal pathway)(Cit—Citrate; α-KG—α- Ketoglutarate; Suc—Succinate; Mal-Malate; OAA—Oxaloacetic acid;SAM—S-Adenosylmethionine; dcSAM—Decarboxylated S-adenosylmethionine)
氨基酸及衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
精氨酸 | 钝齿棒杆菌 | 微生物发酵 | argB定向突变,解除精氨酸抑制 | 5 L发酵罐 | 45.6 g/L | 0.475 g/L/h | [ |
谷氨酸棒杆菌 | 微生物发酵 | 解除精氨酸反馈抑制;增加胞内NADPH水平;优化精氨酸代谢通量 | 5 L发酵罐 | 92.5 g/L | 1.29 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 多层次合理代谢工程改造;构建生物传感器辅助的高通量筛选平台BHTS;全基因组测序和逆向工程鉴定和优化有益的突变基因 | 5 L发酵罐 | 132 g/L | 2.75 g/L/h | [ | |
瓜氨酸 | 粪链球菌 | 全细胞催化 | 优化ADI固定化条件和催化反应条件 | 改进型填充床反应器 | — | 95.6 g/L/d | [ |
大肠杆菌 | 全细胞催化 | 大肠杆菌中表达乳酸乳球菌来源的ADI并通过易错PCR对酶进行突变;反应条件优化 | 30 L生物反应器 | 176.9 g/L | 22.1 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 阻断瓜氨酸降解;质粒过表达argJ基因,提高瓜氨酸的代谢通量 | 摇瓶 | 8.51 g/L | 0.12 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 系统代谢工程对合成途径多模块耦合;Esa QS系统动态控制argG基因的表达 | 5 L发酵罐 | 82.1 g/L | 1.71 g/L/h | [ | |
γ-聚谷氨酸 | 地衣芽孢杆菌 | 微生物发酵 | 60Co-γ射线辐照和ARTP诱变协同复合诱变技术;发酵培养基组分及条件优化 | 摇瓶 | 32.53 g/L | 0.45 g/L/h | [ |
地衣芽孢杆菌 | 微生物发酵 | 代谢工程改善ATP供应 | 1 L发酵罐 | 43.81 g/L | 1.37 g/L/h | [ | |
特基拉芽胞杆菌 | 微生物发酵 | 过表达外源ppc、aceE、pyk、icdh、gltA和gdhA基因;对关键酶Ppc、Pyk和AceE进行组装;低成本糖蜜作为发酵碳源 | 5 L发酵罐 | 25.73 g/L | 0.48 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 异源pgsBCA基因表达强度组合;优化发酵溶氧水平 | 5 L发酵罐 | 50.2 g/L | 1.05 g/L/h | [ | |
γ-氨基丁酸 | 大肠杆菌 | 全细胞催化 | 过表达乳球菌来源gadB基因;敲除gabA和gabB基因阻断竞争通路;发酵条件优化 | 200 L生物反应器 | 614.15 g/L | 40.94 g/L/h | [ |
大肠杆菌 | 全细胞催化 | 定向进化和高通量筛选;过表达GadE;建立PLP自供系统 | 5 L生物反应器 | 307.5 g/L | 61.49 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 胞外分泌表达大肠杆菌来源突变体GadBmut;阻断GABA降解 | 3 L发酵罐 | 77.6 g/L | 1.21 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 强化甘油利用途径;敲除GABA降解途径并引入外源GABA合成途径;构建GABS动态调控GABA合成途径的基因表达 | 7.5 L发酵罐 | 45.6 g/L | 0.63 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 敲除ldhA、pqo和ack基因;过表达ppc、gltA、acn、icd、gdh和pdxST基因;PCP_2836odhA | 5 L发酵罐 | 81.31 g/L | 1.36 g/L/h | [ | |
短乳杆菌 | 全细胞催化 | pH自动维持系统 | 10 L发酵罐 | 321.9 g/L | 6.71 g/L/h | [ | |
反式-4-羟基-L-脯氨酸 | 大肠杆菌 | 微生物发酵 | 将地中海交替单胞菌来源PHP引入脯氨酸途径 | 5 L发酵罐 | 45.83 g/L | 1.27 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 建立木糖诱导表达体系;强化脯氨酸合成途径;引入小单孢菌属来源P4H | 5 L发酵罐 | 48.6 g/L | 1.22 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 增加前体物脯氨酸合成;引入指孢囊菌来源P4H;引入NOG途径;发酵工艺优化 | 5 L发酵罐 | 89.4 g/L | 2.03 g/L/h | [ | |
亚精胺 | 解淀粉芽孢杆菌 | 微生物发酵 | 同源重组共表达异源speD和speE基因;发酵介质优化 | 摇瓶 | 227.4 mg/L | 3 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 优化前体物供应;解除反馈抑制;强化转运途径 | 孔板 | 2.3 g/L | 20 mg/L/h | [ | |
大肠杆菌 | 全细胞催化 | 高亚精胺合成酶双重突变 | 摇瓶 | 933.5 mg/L | 155.6 mg/L/h | [ | |
大肠杆菌 | 全细胞催化 | 双酶级联催化系统;优化酶表达条件和反应条件 | 摇瓶 | 3.7 g/L | 463 mg/L/h | [ |
Table 1 Progress in the biosynthesis of glutamate family amino acids and derivatives
氨基酸及衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
精氨酸 | 钝齿棒杆菌 | 微生物发酵 | argB定向突变,解除精氨酸抑制 | 5 L发酵罐 | 45.6 g/L | 0.475 g/L/h | [ |
谷氨酸棒杆菌 | 微生物发酵 | 解除精氨酸反馈抑制;增加胞内NADPH水平;优化精氨酸代谢通量 | 5 L发酵罐 | 92.5 g/L | 1.29 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 多层次合理代谢工程改造;构建生物传感器辅助的高通量筛选平台BHTS;全基因组测序和逆向工程鉴定和优化有益的突变基因 | 5 L发酵罐 | 132 g/L | 2.75 g/L/h | [ | |
瓜氨酸 | 粪链球菌 | 全细胞催化 | 优化ADI固定化条件和催化反应条件 | 改进型填充床反应器 | — | 95.6 g/L/d | [ |
大肠杆菌 | 全细胞催化 | 大肠杆菌中表达乳酸乳球菌来源的ADI并通过易错PCR对酶进行突变;反应条件优化 | 30 L生物反应器 | 176.9 g/L | 22.1 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 阻断瓜氨酸降解;质粒过表达argJ基因,提高瓜氨酸的代谢通量 | 摇瓶 | 8.51 g/L | 0.12 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 系统代谢工程对合成途径多模块耦合;Esa QS系统动态控制argG基因的表达 | 5 L发酵罐 | 82.1 g/L | 1.71 g/L/h | [ | |
γ-聚谷氨酸 | 地衣芽孢杆菌 | 微生物发酵 | 60Co-γ射线辐照和ARTP诱变协同复合诱变技术;发酵培养基组分及条件优化 | 摇瓶 | 32.53 g/L | 0.45 g/L/h | [ |
地衣芽孢杆菌 | 微生物发酵 | 代谢工程改善ATP供应 | 1 L发酵罐 | 43.81 g/L | 1.37 g/L/h | [ | |
特基拉芽胞杆菌 | 微生物发酵 | 过表达外源ppc、aceE、pyk、icdh、gltA和gdhA基因;对关键酶Ppc、Pyk和AceE进行组装;低成本糖蜜作为发酵碳源 | 5 L发酵罐 | 25.73 g/L | 0.48 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 异源pgsBCA基因表达强度组合;优化发酵溶氧水平 | 5 L发酵罐 | 50.2 g/L | 1.05 g/L/h | [ | |
γ-氨基丁酸 | 大肠杆菌 | 全细胞催化 | 过表达乳球菌来源gadB基因;敲除gabA和gabB基因阻断竞争通路;发酵条件优化 | 200 L生物反应器 | 614.15 g/L | 40.94 g/L/h | [ |
大肠杆菌 | 全细胞催化 | 定向进化和高通量筛选;过表达GadE;建立PLP自供系统 | 5 L生物反应器 | 307.5 g/L | 61.49 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 胞外分泌表达大肠杆菌来源突变体GadBmut;阻断GABA降解 | 3 L发酵罐 | 77.6 g/L | 1.21 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 强化甘油利用途径;敲除GABA降解途径并引入外源GABA合成途径;构建GABS动态调控GABA合成途径的基因表达 | 7.5 L发酵罐 | 45.6 g/L | 0.63 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 敲除ldhA、pqo和ack基因;过表达ppc、gltA、acn、icd、gdh和pdxST基因;PCP_2836odhA | 5 L发酵罐 | 81.31 g/L | 1.36 g/L/h | [ | |
短乳杆菌 | 全细胞催化 | pH自动维持系统 | 10 L发酵罐 | 321.9 g/L | 6.71 g/L/h | [ | |
反式-4-羟基-L-脯氨酸 | 大肠杆菌 | 微生物发酵 | 将地中海交替单胞菌来源PHP引入脯氨酸途径 | 5 L发酵罐 | 45.83 g/L | 1.27 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 建立木糖诱导表达体系;强化脯氨酸合成途径;引入小单孢菌属来源P4H | 5 L发酵罐 | 48.6 g/L | 1.22 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 增加前体物脯氨酸合成;引入指孢囊菌来源P4H;引入NOG途径;发酵工艺优化 | 5 L发酵罐 | 89.4 g/L | 2.03 g/L/h | [ | |
亚精胺 | 解淀粉芽孢杆菌 | 微生物发酵 | 同源重组共表达异源speD和speE基因;发酵介质优化 | 摇瓶 | 227.4 mg/L | 3 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 优化前体物供应;解除反馈抑制;强化转运途径 | 孔板 | 2.3 g/L | 20 mg/L/h | [ | |
大肠杆菌 | 全细胞催化 | 高亚精胺合成酶双重突变 | 摇瓶 | 933.5 mg/L | 155.6 mg/L/h | [ | |
大肠杆菌 | 全细胞催化 | 双酶级联催化系统;优化酶表达条件和反应条件 | 摇瓶 | 3.7 g/L | 463 mg/L/h | [ |
Fig. 3 Representative studies on the synthesis of amino acid derivatives((a) Metabolic reprogramming and biosensor-assisted mutagenesis screening for high level production of L-arginine in E coli[80];(b) Enhancing the ability of E. coli to synthesize FA by activating the regeneration of SAM and FADH2[160];(c) Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in E. coli[59];(d) Metabolic engineering of E. coli for ergothioneine production [196];(''Green arrow'' indicates overexpression, ''red cross'' indicates knockout)PTS—Phosphotransferase system; G6P—Glucose-6-phosphate; GA3P—Glyceraldehyde 3-phosphate; L-Glu—L-Glutamate; L-Orn—L-Ornithine;L-Cit—L-Cittrulline;L-Arg—L-Arginine; SAH—S-adenosyl-L-homocysteine; SRH—S-ribosyl-L-homocysteine; Hcys—L-Homocysteine;p-CA—p-Coumaric acid; CA—Caffeic acid; L-Asp—L-Aspartate; ASA—Aspartate-semialdehyde; DABA—Diaminobutyrate;ADABA—N-Acetyl-diaminobutyrate; L-Ser—L-Serine; L-Cys—L-Cysteine; γ-GC—γ-Glutamylcysteine;L-Hos—L-Homoserine; Met—Methionine; bus—Bacillus subtilis)
氨基酸衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
对香豆酸 | 大肠杆菌 | 微生物发酵 | 筛选p-CA合成基因;优化蛋白活性;增加辅因子利用率;优化发酵工艺 | 5 L发酵罐 | 3.09 g/L | 49.05 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 筛选p-CA合成基因;增加前体物供应;阻断竞争途径;平衡PEP与E4P碳通量 | 1 L发酵罐 | 12.50 g/L | 130 mg/L/h | [ | |
解脂耶氏酵母 | 微生物发酵 | 增加TAL基因拷贝数;强化莽草酸途径通量;阻断苯丙氨酸的竞争途径 | 摇瓶 | 1.04 g/L | 8.63 mg/L/h | [ | |
白藜芦醇 | 大肠杆菌 | 微生物发酵 | 引入异源丙二酸同化途径,增加关键前体丙二酰辅酶A的供应;CRISPRi技术下调脂肪酸合成途径基因,阻断丙二酰辅酶A消耗途径;引入并优化异源TAL途径 | 摇瓶 | 304.5 mg/L | 6.344 mg/L/h | [ |
大肠杆菌 | 微生物发酵 | 混菌发酵;优化发酵条件(接种比例、碳源比例) | 摇瓶 | 204.8 mg/L | 2.44 mg/L/h | [ | |
解脂耶氏酵母 | 微生物发酵 | 引入白藜芦醇合成途径相关酶并采用刚性连接肽EAAAK连接;增加前体物供应;优化发酵条件(控制pH以维持酵母正常形态) | 5 L发酵罐 | 22.5 g/L | 0.16 g/L/h | [ | |
— | 酶催化 | 虎杖苷-β-D-葡萄糖苷酶催化虎杖苷酶;反应条件优化 | 摇瓶 | 22.5 g/L | 5.63 g/L/h | [ | |
红景天苷 | 大肠杆菌 | 微生物发酵 | 混菌发酵;优化发酵条件以平衡菌株生长(碳源比例、接种比例) | 5 L发酵罐 | 6.03 g/L | 0.05 g/L/h | [ |
酿酒酵母 | 微生物发酵 | 引入红景天苷合成途径;增加前体物供应;敲除竞争途径 | 5 L发酵罐 | 26.55 g/L | 0.16 g/L/h | [ | |
咖啡酸 | 大肠杆菌 | 微生物发酵 | 引入p-CA合成途径;解除反馈抑制;阻断竞争途径;增加辅因子FAD供应;强化CA转运蛋白表达 | 5 L发酵罐 | 7.92 g/L | 0.12 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 引入p-CA合成途径;阻断竞争途径;增加前体物酪氨酸供应;增加辅因子FADH2供应 | 5 L发酵罐 | 6.17 g/L | 0.07 g/L/h | [ | |
酿酒酵母 | 微生物发酵 | 阻断苯丙氨酸和色氨酸合成,增加前体供应 | 5 L发酵罐 | 9.3 g/L | 0.09 g/L/h | [ | |
阿魏酸 | 大肠杆菌 | 微生物发酵 | 引入FA合成酶增加S-腺苷甲硫氨酸供应;强化合成途径;增加前体物供应;减少PEP向丙酮酸转化;阻断竞争途径;增加辅因子FADH2供应 | 3 L发酵罐 | 5.09 g/L | 0.07 g/L/h | [ |
酿酒酵母 | 微生物发酵 | 引入FA合成途径;增加前体物p-CA供应;增加辅因子FADH2供应;增加辅因子NADPH供应;增加S-腺苷甲硫氨酸供应;回补菌株(HIS3, URA3) | 1.2 L发酵罐 | 3.80 g/L | 0.03 g/L/h | [ | |
没食子酸 | 大肠杆菌 | 微生物发酵 | 引入GA合成所需酶、增加前体物供应 | 摇瓶 | 1266.39 mg/L | 35.18 mg/L/h | [ |
根皮素 | 酿酒酵母 | 微生物发酵 | 引入根皮素合成途径;增加丙二酰辅酶A供应;优化发酵条件 | 5 L发酵罐 | 619.50 mg/L | 7.74 mg/L/h | [ |
大肠杆菌 | 微生物发酵 | 引入根皮素合成基因并对CHS酶进行诱变 | 摇瓶 | 1.85 mg/L | — | [ |
Table 2 Progress in the biosynthesis of aromatic amino acid derivatives
氨基酸衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
对香豆酸 | 大肠杆菌 | 微生物发酵 | 筛选p-CA合成基因;优化蛋白活性;增加辅因子利用率;优化发酵工艺 | 5 L发酵罐 | 3.09 g/L | 49.05 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 筛选p-CA合成基因;增加前体物供应;阻断竞争途径;平衡PEP与E4P碳通量 | 1 L发酵罐 | 12.50 g/L | 130 mg/L/h | [ | |
解脂耶氏酵母 | 微生物发酵 | 增加TAL基因拷贝数;强化莽草酸途径通量;阻断苯丙氨酸的竞争途径 | 摇瓶 | 1.04 g/L | 8.63 mg/L/h | [ | |
白藜芦醇 | 大肠杆菌 | 微生物发酵 | 引入异源丙二酸同化途径,增加关键前体丙二酰辅酶A的供应;CRISPRi技术下调脂肪酸合成途径基因,阻断丙二酰辅酶A消耗途径;引入并优化异源TAL途径 | 摇瓶 | 304.5 mg/L | 6.344 mg/L/h | [ |
大肠杆菌 | 微生物发酵 | 混菌发酵;优化发酵条件(接种比例、碳源比例) | 摇瓶 | 204.8 mg/L | 2.44 mg/L/h | [ | |
解脂耶氏酵母 | 微生物发酵 | 引入白藜芦醇合成途径相关酶并采用刚性连接肽EAAAK连接;增加前体物供应;优化发酵条件(控制pH以维持酵母正常形态) | 5 L发酵罐 | 22.5 g/L | 0.16 g/L/h | [ | |
— | 酶催化 | 虎杖苷-β-D-葡萄糖苷酶催化虎杖苷酶;反应条件优化 | 摇瓶 | 22.5 g/L | 5.63 g/L/h | [ | |
红景天苷 | 大肠杆菌 | 微生物发酵 | 混菌发酵;优化发酵条件以平衡菌株生长(碳源比例、接种比例) | 5 L发酵罐 | 6.03 g/L | 0.05 g/L/h | [ |
酿酒酵母 | 微生物发酵 | 引入红景天苷合成途径;增加前体物供应;敲除竞争途径 | 5 L发酵罐 | 26.55 g/L | 0.16 g/L/h | [ | |
咖啡酸 | 大肠杆菌 | 微生物发酵 | 引入p-CA合成途径;解除反馈抑制;阻断竞争途径;增加辅因子FAD供应;强化CA转运蛋白表达 | 5 L发酵罐 | 7.92 g/L | 0.12 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 引入p-CA合成途径;阻断竞争途径;增加前体物酪氨酸供应;增加辅因子FADH2供应 | 5 L发酵罐 | 6.17 g/L | 0.07 g/L/h | [ | |
酿酒酵母 | 微生物发酵 | 阻断苯丙氨酸和色氨酸合成,增加前体供应 | 5 L发酵罐 | 9.3 g/L | 0.09 g/L/h | [ | |
阿魏酸 | 大肠杆菌 | 微生物发酵 | 引入FA合成酶增加S-腺苷甲硫氨酸供应;强化合成途径;增加前体物供应;减少PEP向丙酮酸转化;阻断竞争途径;增加辅因子FADH2供应 | 3 L发酵罐 | 5.09 g/L | 0.07 g/L/h | [ |
酿酒酵母 | 微生物发酵 | 引入FA合成途径;增加前体物p-CA供应;增加辅因子FADH2供应;增加辅因子NADPH供应;增加S-腺苷甲硫氨酸供应;回补菌株(HIS3, URA3) | 1.2 L发酵罐 | 3.80 g/L | 0.03 g/L/h | [ | |
没食子酸 | 大肠杆菌 | 微生物发酵 | 引入GA合成所需酶、增加前体物供应 | 摇瓶 | 1266.39 mg/L | 35.18 mg/L/h | [ |
根皮素 | 酿酒酵母 | 微生物发酵 | 引入根皮素合成途径;增加丙二酰辅酶A供应;优化发酵条件 | 5 L发酵罐 | 619.50 mg/L | 7.74 mg/L/h | [ |
大肠杆菌 | 微生物发酵 | 引入根皮素合成基因并对CHS酶进行诱变 | 摇瓶 | 1.85 mg/L | — | [ |
氨基酸衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
四氢嘧啶 | 大肠杆菌 | 微生物发酵 | 引入四氢嘧啶合成途径;增加前体物供应;优化补糖速率 | 15 L发酵罐 | 131.80 g/L | 1.37 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 增加前体物供应;优化培养基(碳氮比例) | 2.4 L发酵罐 | 34.27 g/L | 0.57 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 采用转录平衡技术设计启动子表达文库对菌株进行优化 | 1 L发酵罐 | 65 g/L | 1.16 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 引入四氢嘧啶合成途径;避免副产物积累;减少反馈抑制 | 5 L发酵罐 | 115.87 g/L | 1.49 g/L/h | [ | |
羟基四氢嘧啶 | 大肠杆菌 | 微生物发酵 | 引入羟基四氢嘧啶合成途径并进行优化;引入esaI/esaR群体感应系统控制sucA表达 | 摇瓶 | 14.93 g/L | 0.42 g/L/h | [ |
谷氨酸棒杆菌 | 微生物发酵 | 双菌株两步发酵 | 1 L发酵罐 | 74 g/L | 1.37 g/L/h | [ | |
ε-聚赖氨酸 | 小白链霉菌 | 微生物发酵 | 增强ε-PL合成酶基因转录;赖氨酸合成过程中关键酶活性增强;优化发酵工艺(酸性pH冲击工艺) | 5 L发酵罐 | 70.3 g/L | 0.37 g/L/h | [ |
小白链霉菌 | 全细胞催化 | 表达异源lysp基因提升赖氨酸利用能力及底物转化效率;对培养基和培养条件进行优化 | 摇瓶 | 17.21 g/L | 0.18 g/L/h | [ | |
麦角硫因 | 大肠杆菌 | 微生物发酵 | 半理性设计和随机突变EgtD和TNcEgt1;流加前体氨基酸 | 5 L发酵罐 | 5.4 g/L | 56.3 mg/L/h | [ |
大肠杆菌 | 全细胞催化 | 构建EGT菌株高密度发酵方法;发酵工艺优化;流加前体氨基酸 | 2 L发酵罐 | 7 g/L | 90.9 mg/L/h | [ | |
大肠杆菌 | 微生物发酵 | EGT合成模块、前体物组氨酸、半胱氨酸和腺苷蛋氨酸合成模块进行系统的代谢工程改造;发酵工艺优化 | 2 L发酵罐 | 7.2 g/L | 120 mg/L/h | [ | |
裂殖酵母 | 微生物发酵 | 紫外照射和氯化锂突变;流加前体氨基酸 | 5 L发酵罐 | 12.5 g/L | 84.5 mg/L/h | [ | |
肌肽 | — | 酶催化 | 定点饱和突变来改善酯酰基转移酶的底物特异性; | 摇瓶 | 105 mM | — | [ |
— | 酶催化 | 筛选来自粘质沙雷氏菌新型二肽酶SmPepD;反应条件优化;纳滤膜分离 | 5 L超滤膜反应器 | 7.23 g/L | — | [ | |
— | 酶催化 | 酶挖掘方法鉴定出来自巨大芽孢杆菌BmPepD并进行定向饱和诱变;反应条件优化 | 10 mL反应体系 | 31.3 mM | — | [ | |
大肠杆菌 | 全细胞催化 | 在大肠杆菌中表达SmpepD构建细胞工厂;对SmPepD理性设计获得更高活性双突变体Thr168Ser/Gly148Asp;敲除组氨酸输出蛋白yeaS基因 | 5 L生物反应器 | 133.2 mM | — | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 增加前体组氨酸和β-丙氨酸积累;引入来自哺乳动物的CARNS1基因;发酵优化;肌肽活性验证 | 2 L发酵罐 | 323.26 mg/L | 6.73 mg/L/h | [ | |
谷胱甘肽 | 酿酒酵母 | 微生物发酵 | 适应性进化;使用丙烯醛作为选择剂 | 发酵罐(1.2 L工作体积) | 320 mg/L | 8.28 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 基于氧化应激和能量代谢的逐步控制策略 | 10 L发酵罐 | 5.76 g/L | 53 mg/L/h | [ | |
大肠杆菌 | 微生物发酵 | 异源表达来自嗜热链球菌gshF基因;流加前体氨基酸 | 5 L发酵罐 | 15.21 g/L | 0.82 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 代谢工程手段促进GSH生物合成;代谢组学分析 | 5 L发酵罐 | 22 g/L/h | 0.407 g/L/h | [ |
Table 3 Progress in the biosynthesis of aspartate family amino acid derivatives, ergothioneine and peptides
氨基酸衍生物 | 底盘菌株 | 生产方法 | 主要策略 | 发酵规模 | 产量 | 生产强度 | 参考文献 |
---|---|---|---|---|---|---|---|
四氢嘧啶 | 大肠杆菌 | 微生物发酵 | 引入四氢嘧啶合成途径;增加前体物供应;优化补糖速率 | 15 L发酵罐 | 131.80 g/L | 1.37 g/L/h | [ |
大肠杆菌 | 微生物发酵 | 增加前体物供应;优化培养基(碳氮比例) | 2.4 L发酵罐 | 34.27 g/L | 0.57 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 采用转录平衡技术设计启动子表达文库对菌株进行优化 | 1 L发酵罐 | 65 g/L | 1.16 g/L/h | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 引入四氢嘧啶合成途径;避免副产物积累;减少反馈抑制 | 5 L发酵罐 | 115.87 g/L | 1.49 g/L/h | [ | |
羟基四氢嘧啶 | 大肠杆菌 | 微生物发酵 | 引入羟基四氢嘧啶合成途径并进行优化;引入esaI/esaR群体感应系统控制sucA表达 | 摇瓶 | 14.93 g/L | 0.42 g/L/h | [ |
谷氨酸棒杆菌 | 微生物发酵 | 双菌株两步发酵 | 1 L发酵罐 | 74 g/L | 1.37 g/L/h | [ | |
ε-聚赖氨酸 | 小白链霉菌 | 微生物发酵 | 增强ε-PL合成酶基因转录;赖氨酸合成过程中关键酶活性增强;优化发酵工艺(酸性pH冲击工艺) | 5 L发酵罐 | 70.3 g/L | 0.37 g/L/h | [ |
小白链霉菌 | 全细胞催化 | 表达异源lysp基因提升赖氨酸利用能力及底物转化效率;对培养基和培养条件进行优化 | 摇瓶 | 17.21 g/L | 0.18 g/L/h | [ | |
麦角硫因 | 大肠杆菌 | 微生物发酵 | 半理性设计和随机突变EgtD和TNcEgt1;流加前体氨基酸 | 5 L发酵罐 | 5.4 g/L | 56.3 mg/L/h | [ |
大肠杆菌 | 全细胞催化 | 构建EGT菌株高密度发酵方法;发酵工艺优化;流加前体氨基酸 | 2 L发酵罐 | 7 g/L | 90.9 mg/L/h | [ | |
大肠杆菌 | 微生物发酵 | EGT合成模块、前体物组氨酸、半胱氨酸和腺苷蛋氨酸合成模块进行系统的代谢工程改造;发酵工艺优化 | 2 L发酵罐 | 7.2 g/L | 120 mg/L/h | [ | |
裂殖酵母 | 微生物发酵 | 紫外照射和氯化锂突变;流加前体氨基酸 | 5 L发酵罐 | 12.5 g/L | 84.5 mg/L/h | [ | |
肌肽 | — | 酶催化 | 定点饱和突变来改善酯酰基转移酶的底物特异性; | 摇瓶 | 105 mM | — | [ |
— | 酶催化 | 筛选来自粘质沙雷氏菌新型二肽酶SmPepD;反应条件优化;纳滤膜分离 | 5 L超滤膜反应器 | 7.23 g/L | — | [ | |
— | 酶催化 | 酶挖掘方法鉴定出来自巨大芽孢杆菌BmPepD并进行定向饱和诱变;反应条件优化 | 10 mL反应体系 | 31.3 mM | — | [ | |
大肠杆菌 | 全细胞催化 | 在大肠杆菌中表达SmpepD构建细胞工厂;对SmPepD理性设计获得更高活性双突变体Thr168Ser/Gly148Asp;敲除组氨酸输出蛋白yeaS基因 | 5 L生物反应器 | 133.2 mM | — | [ | |
谷氨酸棒杆菌 | 微生物发酵 | 增加前体组氨酸和β-丙氨酸积累;引入来自哺乳动物的CARNS1基因;发酵优化;肌肽活性验证 | 2 L发酵罐 | 323.26 mg/L | 6.73 mg/L/h | [ | |
谷胱甘肽 | 酿酒酵母 | 微生物发酵 | 适应性进化;使用丙烯醛作为选择剂 | 发酵罐(1.2 L工作体积) | 320 mg/L | 8.28 mg/L/h | [ |
酿酒酵母 | 微生物发酵 | 基于氧化应激和能量代谢的逐步控制策略 | 10 L发酵罐 | 5.76 g/L | 53 mg/L/h | [ | |
大肠杆菌 | 微生物发酵 | 异源表达来自嗜热链球菌gshF基因;流加前体氨基酸 | 5 L发酵罐 | 15.21 g/L | 0.82 g/L/h | [ | |
大肠杆菌 | 微生物发酵 | 代谢工程手段促进GSH生物合成;代谢组学分析 | 5 L发酵罐 | 22 g/L/h | 0.407 g/L/h | [ |
1 | BENNER S A, SISMOUR A M. Synthetic biology [J]. Nature Reviews Genetics, 2005, 6(7): 533-543. |
2 | AUSLANDER S, AUSLANDER D, FUSSENEGGER M. Synthetic biology—the synthesis of biology [J]. Angewandte Chemie International Edition, 2017, 56(23): 6396-6419. |
3 | RAMZI A B. Metabolic engineering and synthetic biology [J]. Omics Applications for Systems Biology, 2018: 81-95. |
4 | SAKAMOTO K. Amino acids and derivatives [M]. Cosmeceuticals and Active Cosmetics. CRC Press. 2016: 163-175. |
5 | FARMER W R, LIAO J C. Progress in metabolic engineering [J]. Current Opinion in Biotechnology, 1996, 7(2): 198-204. |
6 | WU G. Amino acids: metabolism, functions, and nutrition [J]. Amino Acids, 2009, 37: 1-17. |
7 | KAMMEYER A, LUITEN R. Oxidation events and skin aging [J]. Ageing Research Reviews, 2015, 21: 16-29. |
8 | GU Y P, HAN J X, JIANG C P, et al. Biomarkers, oxidative stress and autophagy in skin aging [J]. Ageing Research Reviews, 2020, 59: 101036. |
9 | AVILA RODRIGUEZ M I, RODRIGUEZ BARROSO L G, SANCHEZ M L. Collagen: A review on its sources and potential cosmetic applications [J]. Journal of Cosmetic Dermatology, 2018, 17(1): 20-26. |
10 | SHOULDERS M D, RAINES R T. Collagen structure and stability [J]. Annual Review of Biochemistry, 2009, 78(1): 929-958. |
11 | MADEO F, EISENBERG T, PIETROCOLA F, et al. Spermidine in health and disease [J]. Science, 2018, 359(6374): eaan2788. |
12 | VERDIER‐SEVRAIN S, BONTE F. Skin hydration: a review on its molecular mechanisms [J]. Journal of Cosmetic Dermatology, 2007, 6(2): 75-82. |
13 | TFAYLI A, JAMAL D, VYUMVUHORE R, et al. Hydration effects on the barrier function of stratum corneum lipids: Raman analysis of ceramides 2, III and 5 [J]. Analyst, 2013, 138(21): 6582-6588. |
14 | CHOI E, KANG Y-G, S-H HWANG, et al. In vitro effects of dehydrotrametenolic acid on skin barrier function [J]. Molecules, 2019, 24(24): 4583. |
15 | JIA T, QIAO W, YAO Q, et al. Treatment with docosahexaenoic acid improves epidermal keratinocyte differentiation and ameliorates inflammation in human keratinocytes and reconstructed human epidermis models [J]. Molecules, 2019, 24(17): 3156. |
16 | MARINI A, REINELT K, KRUTMANN J, et al. Ectoine-containing cream in the treatment of mild to moderate atopic dermatitis: a randomised, comparator-controlled, intra-individual double-blind, multi-center trial [J]. Skin Pharmacology and Physiology, 2014, 27(2): 57-65. |
17 | KUMTORNRUT C, MANABE S D, NAVAPONGSIRI M, et al. A cleanser formulated with Tris (hydroxymethyl) aminomethane and L-arginine significantly improves facial acne in male Thai subjects [J]. Journal of Cosmetic Dermatology, 2020, 19(4): 901-909. |
18 | OLKOWSKA E, POLKOWSKA Z, NAMIESNIK J. Analytics of surfactants in the environment: problems and challenges [J]. Chemical Reviews, 2011, 111(9): 5667-5700. |
19 | 石莹莹. N-酰基氨基酸表面活性剂的性能及应用研究进展[J]. 河南化工,2016,33(02):16-18+28. |
SHI Y Y. Research progress on properties and application of N-acyl amino acid surfactants[J]. Henan Chemical Industry, 2016, 33(02):16-18+28. | |
20 | 王普兵, 谭晓延, 王雪敏. 化妆品用氨基酸表面活性剂的分类及应用[J]. 广东化工,2019,46(06):125+124. |
WANG P B, TAN X Y, WANG X M. The classification and application of amino acid surfactants for cosmetics[J]. Guangdong Chemical Industry, 2019, 46(06):125+124. | |
21 | 蔡昌武, 柏新喜, 曾银凤. 氨基酸表面活性剂的合成研究进展[J]. 产业创新研究,2022,(24):81-83. |
CAI C W, BAI X X, ZENG Y F. Research progress in synthesis of amino acid surfactants[J]. Industrial Innovation, 2022, (24):81-83. | |
22 | WESCHAWALIT S, THONGTHIP S, PHUTRAKOOL P, et al. Glutathione and its antiaging and antimelanogenic effects [J]. Clinical, Cosmetic and Investigational Dermatology, 2017: 147-153. |
23 | WIRAGUNA A A G P, HARI E D, PRAHARSINI I G A A. Correlation between glutathione plasma with degree severity of melasma in Balinese women [J]. Clinical, Cosmetic and Investigational Dermatology, 2020: 455-459. |
24 | ARJINPATHANA N, ASAWANONDA P. Glutathione as an oral whitening agent: a randomized, double-blind, placebo-controlled study [J]. Journal of Dermatological Treatment, 2012, 23(2): 97-102. |
25 | H-J PARK, CHO J-H, HONG S-H, et al. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells [J]. Journal of Natural Medicines, 2018, 72: 127-135. |
26 | KIM D-S, S-H PARK, S-B KWON, et al. (-)-Epigallocatechin-3-gallate and hinokitiol reduce melanin synthesis via decreased MITF production [J]. Archives of Pharmacal Research, 2004, 27: 334-339. |
27 | FAN M, ZHANG G, HU X, et al. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism [J]. Food Research International, 2017, 100: 226-233. |
28 | SOLANO F, BRIGANTI S, PICARDO M, et al. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects [J]. Pigment Cell Research, 2006, 19(6): 550-571. |
29 | MA Q M, DAVIDSON P M, ZHONG Q X. Properties and potential food applications of lauric arginate as a cationic antimicrobial [J]. International Journal of Food Microbiology, 2020, 315: 108417. |
30 | CHEN S, HUANG S, LI Y, et al. Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications [J]. Frontiers in Chemistry, 2021, 9: 659304. |
31 | WANG Y, WANG L, HU Y, et al. Design and optimization of ε-poly-L-lysine with specific functions for diverse applications [J]. International Journal of Biological Macromolecules, 2024: 129513. |
32 | ATALAH J, CACERES-MORENO P, ESPINA G, et al. Thermophiles and the applications of their enzymes as new biocatalysts [J]. Bioresource Technology, 2019, 280: 478-488. |
33 | YIN D Y, PAN J, ZHU J, et al. A green-by-design bioprocess for L-carnosine production integrating enzymatic synthesis with membrane separation [J]. Catalysis Science & Technology, 2019, 9(21): 5971-5978. |
34 | SHE J J, FU L H, ZHENG X W, et al. Characterization of a new L-carnosine synthase mined from deep-sea sediment metagenome [J]. Microbial Cell Factories, 2022, 21(1): 129. |
35 | GUAN B H, YIN W T, CAO B H, et al. Characterization and mutagenesis of a high-activity and highly substrate-tolerant dipeptidase for L-carnosine biosynthesis via reversed hydrolysis [J]. Molecular Catalysis, 2023, 549: 113500. |
36 | KAPOOR S, RAFIQ A, SHARMA S. Protein engineering and its applications in food industry [J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11): 2321-2329. |
37 | WHITEHURST R J, VAN OORT M. Enzymes in food technology [M]. Wiley Online Library, 2010. |
38 | CHEN K Q, ARNOLD F H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide [J]. Proceedings of the National Academy of Sciences, 1993, 90(12): 5618-5622. |
39 | SONG W, SUN X, CHEN X L, et al. Enzymatic production of L-citrulline by hydrolysis of the guanidinium group of L-arginine with recombinant arginine deiminase [J]. Journal of Biotechnology, 2015, 208: 37-43. |
40 | XIONG D D, LU S K, WU J Y, et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor [J]. Metabolic Engineering, 2017, 40: 115-123. |
41 | PENNACCHIETTI E, LAMMENS T M, CAPITANI G, et al. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH [J]. Journal of Biological Chemistry, 2009, 284(46): 31587-31596. |
42 | HO N A T, HOU C Y, KIM W H, et al. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness [J]. Journal of Bioscience and Bioengineering, 2013, 115(2): 154-158. |
43 | KANG T J, HO N A T, PACK S P. Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli [J]. Enzyme and Microbial Technology, 2013, 53(3): 200-205. |
44 | YU K, LIN L, HU S, et al. C-terminal truncation of glutamate decarboxylase from Lactobacillus brevis CGMCC 1306 extends its activity toward near-neutral pH [J]. Enzyme and Microbial Technology, 2012, 50(4-5): 263-269. |
45 | JUN C, JOO J C, LEE J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain [J]. Journal of Biotechnology, 2014, 174: 22-28. |
46 | 方卉, 吕常江, 花雨娇, 等. 利用脯氨酸效应提高短乳杆菌谷氨酸脱羧酶的热稳定性[J]. 生物工程学报,2019,35(04):636-646. |
FANG H, LV C J, HUA Y J, et al. Increasing the thermostability of glutamate decarboxylase from Lactobacillus brevis by introducing proline[J]. Chinese Journal of Biotechnology, 2019, 35(04):636-646. | |
47 | LIU W J, HU X X, YAN Y, et al. Rational engineering of homospermidine synthase for enhanced catalytic efficiency toward spermidine synthesis [J]. Synthetic and Systems Biotechnology, 2024, 9(3): 549-557. |
48 | LIU Y R, PAN X W, ZHANG H W, et al. Combinatorial protein engineering and transporter engineering for efficient synthesis of L-Carnosine in Escherichia coli [J]. Bioresource Technology, 2023, 387: 129628. |
49 | LU J W, NIE M F, LI Y R, et al. Design of composite nanosupports and applications thereof in enzyme immobilization: A review [J]. Colloids and Surfaces B: Biointerfaces, 2022, 217: 112602. |
50 | ZHANG W, ZHANG Z, JI L R, et al. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects [J]. Bioprocess and Biosystems Engineering, 2023, 46(11): 1513-1531. |
51 | MAGHRABY Y R, EL-SHABASY R M, IBRAHIM A H, et al. Enzyme immobilization technologies and industrial applications [J]. ACS Omega, 2023, 8(6): 5184-5196. |
52 | LI L, LI Z M, WANG C H, et al. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study [J]. Biochemistry, 2008, 47(16): 4721-4732. |
53 | KIM J-E, D-W JEONG, LEE H J. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21 [J]. Protein Expression and Purification, 2007, 53(1): 9-15. |
54 | 赵艳杰, 曾倡, 张淑荣, 等. 固定化粪链球菌酶法连续生产L-瓜氨酸[J]. 北京化工大学学报,2010,37(04):98-102. |
ZHAO Y J, ZENG C, ZHANG S R, et al. Enzymatic and continuous production of L-citrulline by immobilized Streptococcus faecalis cells[J]. Journal of Beijing University of Chemical Technology, 2010, 37(04):98-102. | |
55 | MOHAMMADI N S, KHIABANI M S, GHANBARZADEH B, et al. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel [J]. Journal of Biotechnology, 2020, 323: 189-202. |
56 | SHEN F, ARSHI S, MAGNER E, et al. One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications [J]. Synthetic Metals, 2022, 291: 117205. |
57 | LIAN J Z, MISHRA S, ZHAO H M. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications [J]. Metabolic Engineering, 2018, 50: 85-108. |
58 | GIEßELMANN G, DIETRICH D, JUNGMANN L, et al. Metabolic engineering of Corynebacterium glutamicum for high‐level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway [J]. Biotechnology Journal, 2019, 14(9): 1800417. |
59 | XU S Q, ZHANG B, CHEN W H, et al. Highly efficient production of ectoine via an optimized combination of precursor metabolic modules in Escherichia coli BL21 [J]. Bioresource Technology, 2023, 390: 129803. |
60 | ZHOU D D, LUO M, HUANG S Y, et al. Effects and mechanisms of resveratrol on aging and age‐related diseases [J]. Oxidative Medicine and Cellular Longevity, 2021, 2021(1): 9932218. |
61 | LIU M S, WANG C, REN X F, et al. Remodelling metabolism for high-level resveratrol production in Yarrowia lipolytica [J]. Bioresource Technology, 2022, 365: 128178. |
62 | 马倩, 夏利, 谭淼, 等. 氨基酸生产的代谢工程研究进展与发展趋势[J]. 生物工程学报,2021,37(05):1677-1696. |
MA Q, XIA L, TAN M, et al. Advances and prospects in metabolic engineering for the production of amino acids[J]. Chinese Journal of Biotechnology, 2021, 37(05):1677-1696. | |
63 | 叶健文, 陈江楠, 张旭, 等. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报,2020,36(06):1-12. |
YE J W, CHEN J N, ZHANG X, et al. Dynamic control : an efficient strategy for metabolically engineering microbial cell factories[J]. Biotechnology Bulletin, 2020, 36(06):1-12. | |
64 | QIAN S, CIRINO P C. Using metabolite-responsive gene regulators to improve microbial biosynthesis [J]. Current Opinion in Chemical Engineering, 2016, 14: 93-102. |
65 | JIANG S, WANG D H, WANG R R, et al. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline [J]. Metabolic Engineering, 2021, 68: 220-231. |
66 | HU L X, ZHAO M, HU W S, et al. Poly-γ-glutamic acid production by engineering a DegU quorum-sensing circuit in Bacillus subtilis [J]. ACS Synthetic Biology, 2022, 11(12): 4156-4170. |
67 | 李强, 韩亚昆, 蒋帅, 等. 代谢工程改造大肠杆菌合成反式-4-羟基-L-脯氨酸[J]. 食品科学,2020,41(02):202-207. |
LI Q, HAN Y K, JIANG S, et al. Metabolic engineering of Escherichia coli for production of trans-4-hydroxy-L-proline[J]. Food Science, 2020, 41(02):202-207. | |
68 | XU M J, RAO Z M, DOU W F, et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production [J]. Amino Acids, 2012, 43: 255-266. |
69 | IKEDA M, MITSUHASHI S, TANAKA K, et al. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer [J]. Applied and Environmental Microbiology, 2009, 75(6): 1635-1641. |
70 | PARK S H, KIM H U, KIM T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production [J]. Nature Communications, 2014, 5(1): 4618. |
71 | LIU H Y, TIAN Y J, ZHOU Y, et al. Multi‐modular engineering of Saccharomyces cerevisiae for high‐titre production of tyrosol and salidroside [J]. Microbial Biotechnology, 2021, 14(6): 2605-2616. |
72 | WANG L, LI N, YU S Q, et al. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter [J]. Bioresource Technology, 2023, 368: 128320. |
73 | GONG Y, WANG R Q, MA L, et al. Optimization of trans-4-hydroxyproline synthesis pathway by rearrangement center carbon metabolism in Escherichia coli [J]. Microbial Cell Factories, 2023, 22(1): 240. |
74 | QIU C, WANG X G, ZUO J J, et al. Systems engineering Escherichia coli for efficient production p‐coumaric acid from glucose [J]. Biotechnology and Bioengineering, 2024, 121(7): 2147-2162. |
75 | CHEN R B, GAO J Q, YU W, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast [J]. Nature Chemical Biology, 2022, 18(5): 520-529. |
76 | ZHANG X, ZHANG X F, LI H P, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool [J]. Applied Microbiology and Biotechnology, 2014, 98: 5387-5396. |
77 | OTTENHEIM C, NAWRATH M, WU J C. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development [J]. Bioresources and Bioprocessing, 2018, 5(1): 1-14. |
78 | LV Q L, HU M K, TIAN L Z, et al. Enhancing l-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy [J]. Bioresource Technology, 2021, 341: 125799. |
79 | ZHAO Z Q, CAI M M, LIU Y R, et al. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for L-arginine production [J]. Bioresource Technology, 2022, 364: 128054. |
80 | JIANG S, WANG R R, WANG D H, et al. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli [J]. Metabolic Engineering, 2023, 76: 146-157. |
81 | 罗丽娟, 王刚, 万玉军, 等. γ-聚谷氨酸高产菌株选育及发酵条件优化[J]. 食品与发酵科技,2021,57(06):35-42. |
LUO L J, WANG G, WAN Y J, et al. Breeding of high-yield γ-polyglutamic acid strains and optimization of fermentation conditions[J]. Food and Fermentation Science & Technology, 2021, 57(06):35-42. | |
82 | 柳天一, 张越, 王靓, 等. 基于低pH适应性进化策略提高小白链霉菌ε-聚赖氨酸合成能力[J]. 食品与发酵工业,2024,50(01):14-21. |
LIU T Y, ZHANG Y, WANG L, et al. Improvement of ε-poly-L-lysine production by Streptomyces albulus based on low-pH adaptive evolution strategy[J]. Food and Fermentation Industries, 2024, 50(01):14-21. | |
83 | MAVROMMATI M, DASKALAKI A, PAPANIKOLAOU S, et al. Adaptive laboratory evolution principles and applications in industrial biotechnology [J]. Biotechnology Advances, 2022, 54: 107795. |
84 | MUNDHADA H, SEOANE J M, SCHNEIDER K, et al. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution [J]. Metabolic Engineering, 2017, 39: 141-150. |
85 | CIOBANU C P, BLAGA A C, FROIDEVAUX R, et al. Enhanced growth and β-galactosidase production on Escherichia coli using oxygen vectors [J]. 3 Biotech, 2020, 10: 1-10. |
86 | ZHANG R Z, YANG T W, RAO Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum [J]. Green Chemistry, 2014, 16(9): 4190-4197. |
87 | WEN J B, SUN W L, LENG G H, et al. Enhanced fermentative γ-aminobutyric acid production by a metabolic engineered Corynebacterium glutamicum [J]. Biotechnology and Bioprocess Engineering, 2024, 29(1): 129-140. |
88 | MORI H, MATSUI M, BAMBA T, et al. Engineering Escherichia coli for efficient glutathione production [J]. Metabolic Engineering, 2024, 84: 180-190. |
89 | GINESY M, BELOTSERKOVSKY J, ENMAN J, et al. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis [J]. Microbial Cell Factories, 2015, 14: 1-11. |
90 | JENSEN J V, EBERHARDT D, WENDISCH V F. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine [J]. Journal of Biotechnology, 2015, 214: 85-94. |
91 | WANG H D, XU J Z, ZHANG W G. Metabolic engineering of Escherichia coli for efficient production of L-arginine [J]. Applied Microbiology and Biotechnology, 2022, 106(17): 5603-5613. |
92 | HAO N, MU J R, HU N, et al. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase [J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(2): 307-313. |
93 | NGUYEN A Q, SCHNEIDER J, REDDY G K, et al. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum [J]. Metabolites, 2015, 5(2): 211-231. |
94 | SCHRAMM T, LEMPP M, BEUTER D, et al. High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli [J]. Metabolic Engineering, 2020, 60: 14-24. |
95 | 胥琳峰, 于文文, 朱学文, 等. 代谢工程改造大肠杆菌高效合成L-瓜氨酸[J/OL]. 生物工程学报. . |
FENG X L, WEN Y W, WEN Z X, et al. Metabolic engineering of Escherichia coli for efficient biosynthesis of L-citrulline[J]. Chinese Journal of Biotechnology. . | |
96 | XU G Q, WANG J Y, SHEN J C, et al. Enhanced poly-γ-glutamic acid synthesis in Corynebacterium glutamicum by reconstituting PgsBCA complex and fermentation optimization [J]. Metabolic Engineering, 2024, 81: 238-248. |
97 | CANDELA T, FOUET A. Poly‐gamma‐glutamate in bacteria [J]. Molecular Microbiology, 2006, 60(5): 1091-1098. |
98 | DAHIYA D, CHETTRI R, NIGAM P S. Biosynthesis of polyglutamic acid (γ-PGA), a biodegradable and economical polyamide biopolymer for industrial applications [J]. Microbial and Natural Macromolecules, 2021: 681-688. |
99 | LUO Z T, GUO Y, LIU J D, et al. Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives [J]. Biotechnology for Biofuels, 2016, 9: 1-12. |
100 | OHSAWA T, TSUKAHARA K, OGURA M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis [J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(9): 2096-2102. |
101 | 周梦洁, 胡汶松, 胡刘秀, 等. 枯草芽孢杆菌聚谷氨酸合成途径相关基因功能研究[J]. 微生物学报,2023,63(01):387-402. |
ZHOU M J, HU S W, HU L X, et al. Functions of genes involved in polyglutamic acid synthesis in Bacillus subtilis [J]. Acta Microbiologica Sinica, 2023, 63(01):387-402. | |
102 | CAI D B, CHEN Y Z, HE P H, et al. Enhanced production of poly‐γ‐glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis [J]. Biotechnology and Bioengineering, 2018, 115(10): 2541-2553. |
103 | KE C R, YANG X W, RAO H X, et al. Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli [J]. Springerplus, 2016, 5: 1-8. |
104 | YANG X W, HUO X J, TANG Y Q, et al. Integrating enzyme evolution and metabolic engineering to improve the productivity of γ-aminobutyric acid by whole-cell biosynthesis in Escherichia Coli [J]. Journal of Agricultural and Food Chemistry, 2023, 71(11): 4656-4664. |
105 | GONG L C, REN C, XU Y. GlnR negatively regulates glutamate-dependent acid resistance in Lactobacillus brevis [J]. Applied and Environmental Microbiology, 2020, 86(7): e02615-02619. |
106 | SHI X F, CHANG C Y, MA S X, et al. Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(4-5): 697-704. |
107 | JIA M Y, ZHU Y S, WANG L Q, et al. pH auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817 [J]. Fermentation, 2022, 8(5): 208. |
108 | S-H PARK, SOHN Y J, PARK S J, et al. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions [J]. Microbial Cell Factories, 2020, 19: 1-12. |
109 | SOMA Y, FUJIWARA Y, NAKAGAWA T, et al. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose [J]. Metabolic Engineering, 2017, 43: 54-63. |
110 | WEN J B, BAO J. Improved fermentative γ-aminobutyric acid production by secretory expression of glutamate decarboxylase by Corynebacterium glutamicum [J]. Journal of Biotechnology, 2021, 331: 19-25. |
111 | WEI L, ZHAO J H, GAO J S, et al. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control [J]. Metabolic Engineering, 2022, 69: 134-146. |
112 | SHIBASAKI T, MORI H, CHIBA S, et al. Microbial proline 4-hydroxylase screening and gene cloning [J]. Applied and Environmental Microbiology, 1999, 65(9): 4028-4031. |
113 | BALDWIN J E, FIELD R A, LAWRENCE C C, et al. Substrate specificity of proline-4-hydroxylase: Chemical and enzymatic synthesis of 2S, 3R, 4S-epoxyproline [J]. Tetrahedron Letters, 1994, 35(26): 4649-4652. |
114 | WANG X C, LIU J, ZHAO J, et al. Efficient production of trans-4-hydroxy-L-proline from glucose using a new trans-proline 4-hydroxylase in Escherichia coli [J]. Journal of Bioscience and Bioengineering, 2018, 126(4): 470-477. |
115 | ZOU D, LI L, MIN Y, et al. Biosynthesis of a novel bioactive metabolite of spermidine from Bacillus amyloliquefaciens: gene mining, sequence analysis, and combined expression [J]. Journal of Agricultural and Food Chemistry, 2020, 69(1): 267-274. |
116 | QIN J F, KRIVORUCHKO A, JI B Y, et al. Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues [J]. Nature Catalysis, 2021, 4(6): 498-509. |
117 | LIU Y, GUO X, WANG X, et al. A two-enzyme cascade system for the bio-production of spermidine from putrescine [J]. Molecular Catalysis, 2021, 504: 111439. |
118 | WANG D X, FU X P, GAO J Q, et al. Enhancing poly-γ-glutamic acid production in Bacillus tequilensis BL01 through a multienzyme assembly strategy and expression features of glutamate synthesis from Corynebacterium glutamicum [J]. Journal of Agricultural and Food Chemistry, 2024, 72(15): 8674-8683. |
119 | BOO Y C. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects [J]. Antioxidants, 2019, 8(8): 275. |
120 | JANG S, C-W HA, KIM S-H, et al. Dual suppressive effect of p-coumaric acid on pigmentation in B16F10 cells [J]. Molecular & Cellular Toxicology, 2024: 1-13. |
121 | ZHANG J Q, TANG H Z, YU X, et al. Co-production of ferulic acid and p-coumaric acid from distiller grain by a putative feruloyl esterase discovered in metagenome assembled genomes [J]. Journal of Cleaner Production, 2024, 439: 140814. |
122 | RODRIGUEZ A, KILDEGAARD K R, LI M, et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis [J]. Metabolic Engineering, 2015, 31: 181-188. |
123 | LIU Q L, YU T, LI X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals [J]. Nature Communications, 2019, 10(1): 4976. |
124 | ZHU J R, YANG S, CAO Q, et al. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose [J]. Journal of Agricultural and Food Chemistry, 2024, 72(11): 5867-5877. |
125 | FAISAL Z, MAZHAR A, BATOOL S A, et al. Exploring the multimodal health‐promoting properties of resveratrol: A comprehensive review [J]. Food Science & Nutrition, 2024, 12(4): 2240-2258. |
126 | BEJENARU L E, BIŢĂ A, BELU I, et al. Resveratrol: A Review on the Biological Activity and Applications [J]. Applied Sciences, 2024, 14(11): 4534. |
127 | MENG T T, XIAO D F, MUHAMMED A, et al. Anti-inflammatory action and mechanisms of resveratrol [J]. Molecules, 2021, 26(1): 229. |
128 | BEEKWILDER J, WOLSWINKEL R, JONKER H, et al. Production of resveratrol in recombinant microorganisms [J]. Applied and Environmental Microbiology, 2006, 72(8): 5670-5672. |
129 | WATTS K T, LEE P C, SCHMIDT DANNERT C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli [J]. BMC Biotechnology, 2006, 6: 1-12. |
130 | AFONSO M S, FERREIRA S, DOMINGUES F C, et al. Resveratrol production in bioreactor: Assessment of cell physiological states and plasmid segregational stability [J]. Biotechnology Reports, 2015, 5: 7-13. |
131 | LIM C G, FOWLER Z L, HUELLER T, et al. High-yield resveratrol production in engineered Escherichia coli [J]. Applied and Environmental Microbiology, 2011, 77(10): 3451-3460. |
132 | KATSUYAMA Y, FUNA N, MIYAHISA I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli [J]. Chemistry & Biology, 2007, 14(6): 613-621. |
133 | KATSUYAMA Y, FUNA N, HORINOUCHI S. Precursor‐directed biosynthesis of stilbene methyl ethers in Escherichia coli [J]. Biotechnology Journal: Healthcare Nutrition Technology, 2007, 2(10): 1286-1293. |
134 | WU J J, LIU P R, FAN Y M, et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine [J]. Journal of Biotechnology, 2013, 167(4): 404-411. |
135 | IBRAHIM G G, PERERA M, ABDULMALEK S A, et al. De novo synthesis of resveratrol from sucrose by metabolically engineered Yarrowia lipolytica [J]. Biomolecules, 2024, 14(6): 712. |
136 | YANG Y P, LIN Y H, LI L Y, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products [J]. Metabolic Engineering, 2015, 29: 217-226. |
137 | WU J J, ZHOU P, ZHANG X, et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli [J]. Journal of Industrial Microbiology and Biotechnology, 2017, 44(7): 1083-1095. |
138 | YUAN S F, YI X N, JOHNSTON T G, et al. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture [J]. Microbial Cell Factories, 2020, 19: 1-12. |
139 | HONG J, IM D K, OH M K. Investigating E. coli coculture for resveratrol production with 13C metabolic flux analysis [J]. Journal of Agricultural and Food Chemistry, 2020, 68(11): 3466-3473. |
140 | LI J, QIU Z T, ZHAO G R. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture [J]. Synthetic and Systems Biotechnology, 2022, 7(2): 718-729. |
141 | LA TORRE G L, LAGANA G, BELLOCCO E, et al. Improvement on enzymatic hydrolysis of resveratrol glucosides in wine [J]. Food Chemistry, 2004, 85(2): 259-266. |
142 | ZHANG C Z, LI D, YU H S, et al. Purification and characterization of piceid-β-D-glucosidase from Aspergillus oryzae [J]. Process Biochemistry, 2007, 42(1): 83-88. |
143 | CHEN M, LI D, GAO Z Q, et al. Enzymatic transformation of polydatin to resveratrol by piceid-β-d-glucosidase from Aspergillus oryzae [J]. Bioprocess and Biosystems Engineering, 2014, 37: 1411-1416. |
144 | LI F L, TANG H, XIAO F R, et al. Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice [J]. Molecules, 2011, 16(12): 9912-9924. |
145 | HAZELWOOD L A, DARAN J M, VAN MARIS A J, et al. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism [J]. Applied and Environmental Microbiology, 2008, 74(8): 2259-2266. |
146 | CHUNG D, KIM S Y, J-H AHN. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli [J]. Scientific Reports, 2017, 7(1): 2578. |
147 | GUO W, HUANG Q L, FENG Y H, et al. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2020, 117(8): 2410-2419. |
148 | LIU X, LI X B, JIANG J L, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides [J]. Metabolic Engineering, 2018, 47: 243-253. |
149 | ROSLER J, KREKEL F, AMRHEIN N, et al. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity [J]. Plant Physiology, 1997, 113(1): 175-179. |
150 | FURUYA T, ARAI Y, KINO K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2 [J]. Applied and Environmental Microbiology, 2012, 78(17): 6087-6094. |
151 | CHOI O, WU C Z, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli [J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(10): 1657-1665. |
152 | BERNER M, KRUG D, BIHLMAIER C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis [J]. Journal of Bacteriology, 2006, 188(7): 2666-2673. |
153 | LIN Y H, YAN Y J. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex [J]. Microbial Cell Factories, 2012, 11: 1-9. |
154 | ZHOU P P, YUE C L, SHEN B, et al. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid [J]. Applied Microbiology and Biotechnology, 2021, 105(14): 5809-5819. |
155 | LIU L Q, LIU H, ZHANG W, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations [J]. Engineering, 2019, 5(2): 287-295. |
156 | HUANG Q, LIN Y H, YAN Y J. Caffeic acid production enhancement by engineering a phenylalanine over‐producing Escherichia coli strain [J]. Biotechnology and Bioengineering, 2013, 110(12): 3188-3196. |
157 | SAKAE K, NONAKA D, KISHIDA M, et al. Caffeic acid production from glucose using metabolically engineered Escherichia coli [J]. Enzyme and Microbial Technology, 2023, 164: 110193. |
158 | RODRIGUES J, ARAúJO R, PRATHER K, et al. Heterologous production of caffeic acid from tyrosine in Escherichia coli [J]. Enzyme and Microbial Technology, 2015, 71: 36-44. |
159 | 袁豆豆, 周秀琪, 庞雪晴, 等. 代谢工程改造酿酒酵母发酵生产咖啡酸[J/OL]. 食品与发酵工业. . |
YUAN D D, ZHOU X Q, PANG X Q, et al. Metabolic engineering of Saccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries. . | |
160 | ZHOU Z, ZHANG X Y, WU J, et al. Targeting cofactors regeneration in methylation and hydroxylation for high level production of ferulic acid [J]. Metabolic Engineering, 2022, 73: 247-255. |
161 | BROOKS S M, MARSAN C, REED K B, et al. A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids [J]. Nature Communications, 2023, 14(1): 4448. |
162 | HUANG K Y, LI M, LIU Y J, et al. Functional analysis of 3-dehydroquinate dehydratase/shikimate dehydrogenases involved in shikimate pathway in Camellia sinensis [J]. Frontiers in Plant Science, 2019, 10: 1268. |
163 | BONTPART T, MARLIN T, VIALET S, et al. Two shikimate dehydrogenases, VvSDH3 and VvSDH4, are involved in gallic acid biosynthesis in grapevine [J]. Journal of Experimental Botany, 2016, 67(11): 3537-3550. |
164 | KAMBOURAKIS S, DRATHS K, FROST J. Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis [J]. Journal of the American Chemical Society, 2000, 122(37): 9042-9043. |
165 | CHEN Z Y, SHEN X L, WANG J, et al. Rational engineering of p‐hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway [J]. Biotechnology and bioengineering, 2017, 114(11): 2571-2580. |
166 | PAN J, WANG N N, YIN X J, et al. Characterization of a robust and pH-stable tannase from mangrove-derived yeast Rhodosporidium diobovatum Q95 [J]. Marine Drugs, 2020, 18(11): 546. |
167 | ZHANG K Q, LIN L L, XU H J. Research on antioxidant performance of diglucosyl gallic acid and its application in emulsion cosmetics [J]. International Journal of Cosmetic Science, 2022, 44(2): 177-188. |
168 | KHMALADZE I, OSTERLUND C, SMILJANIC S, et al. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes [J]. Journal of Cosmetic Dermatology, 2020, 19(6): 1415-1425. |
169 | 崔树梅, 曹孟岑, 杨雪晨, 等. 根皮素在化妆品中的应用[J]. 日用化学工业,2018,48(02):113-118. |
CUI S M, CAO M C, YANG X C, et al. Applications of phloretin in cosmetics[J]. China Surfactant Detergent & Cosmetics, 2018, 48(02):113-118. | |
170 | LIN Y P, HSU F L, CHEN C S, et al. Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes [J]. Phytochemistry, 2007, 68(8): 1189-1199. |
171 | 夏琛, 刘建华, 崔心禹, 等. 根皮素的生理功能及增溶方法研究进展[J]. 食品科学,2022,43(09):383-390. |
XIA C, LIU J H, CUI X Y, et al. Recent progress in physiological functions and solubilization methods of phloretin[J]. Food Science, 2022, 43(09):383-390. | |
172 | JIANG C M, LIU X N, CHEN X Q, et al. Raising the production of phloretin by alleviation of by-product of chalcone synthase in the engineered yeast [J]. Science China Life Sciences, 2020, 63: 1734-1743. |
173 | LIU X, LIU J C, LEI D W, et al. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli [J]. Chemical Engineering Science, 2022, 247: 116931. |
174 | BOTTA C, DI GIORGIO C, A-S SABATIER, et al. Genotoxicity of visible light (400–800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens [J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 91(1): 24-34. |
175 | 董怡麟, 张浩, 陈金龙. 化妆品级聚天冬氨酸钠的制备[J]. 应用化学,2020,37(08):883-888. |
DONG Y L, ZHANG H, CHEN J L. Preparation of cosmetic-grade sodium polyaspartate[J]. Chinese Journal of Applied Chemistry, 2020, 37(08):883-888. | |
176 | 沈翠云, 梁超群, 喻丹丹, 等. 聚天冬氨酸钠在护肤品中的应用[J]. 日用化学工业,2017,47(02):82-86. |
SHEN C Y, LIANG C Q, YU D D, et al. Application of sodium polyaspartate in skin care products[J]. China Surfactant Detergent & Cosmetics, 2017, 47(02):82-86. | |
177 | KUHLMANN A U, BREMER E. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp [J]. Applied and Environmental Microbiology, 2002, 68(2): 772-783. |
178 | GALINSKI E A, PFEIFFER H P, TRüPER H G. 1, 4, 5, 6‐Tetrahydro‐2‐methyl‐4‐pyrimidinecarboxylic acid: A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira [J]. European Journal of Biochemistry, 1985, 149(1): 135-139. |
179 | INBAR L, LAPIDOT A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C-and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy [J]. Journal of Biological Chemistry, 1988, 263(31): 16014-16022. |
180 | H-J KUNTE, LENTZEN G, GALINSKI E. Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products [J]. Current Biotechnology, 2014, 3(1): 10-25. |
181 | RESHETNIKOV A S, ROZOVA O N, TROTSENKO Y A, et al. Ectoine degradation pathway in halotolerant methylotrophs [J]. PLoS One, 2020, 15(4): e0232244. |
182 | MA Z, CHANG R J, ZHU L J, et al. Metabolic Engineering of Corynebacterium glutamicum for Highly Efficient Production of Ectoine [J]. ACS Synthetic Biology, 2024. |
183 | PASTOR J M, SALVADOR M, ARGANDOñA M, et al. Ectoines in cell stress protection: uses and biotechnological production [J]. Biotechnology Advances, 2010, 28(6): 782-801. |
184 | STOVEKEN N, PITTELKOW M, SINNER T, et al. A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501 [J]. Journal of Bacteriology, 2011, 193(17): 4456-4468. |
185 | JUNGMANN L, HOFFMANN S L, LANG C, et al. High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum [J]. Microbial Cell Factories, 2022, 21(1): 274. |
186 | MA Q, XIA L, WU H Y, et al. Metabolic engineering of Escherichia coli for efficient osmotic stress‐free production of compatible solute hydroxyectoine [J]. Biotechnology and Bioengineering, 2022, 119(1): 89-101. |
187 | HILLIER H T, ALTERMARK B, LEIROS I. The crystal structure of the tetrameric DABA‐aminotransferase EctB, a rate‐limiting enzyme in the ectoine biosynthesis pathway [J]. The FEBS Journal, 2020, 287(21): 4641-4658. |
188 | RICHTER A A, KOBUS S, CZECH L, et al. The architecture of the diaminobutyrate acetyltransferase active site provides mechanistic insight into the biosynthesis of the chemical chaperone ectoine [J]. Journal of Biological Chemistry, 2020, 295(9): 2822-2838. |
189 | 李莉, 左甜甜, 董亚蕾, 等. 化妆品中替代性防腐成分使用情况分析[J]. 香料香精化妆品,2023,(01):92-98. |
LI L, ZUO T T, DONG Y L, et al. Use status of alternative preservatives in cosmetics[J]. Flavour Fragrance Cosmetics, 2023, (01):92-98. | |
190 | 郑中博, 丛远华, 冯春波. 聚赖氨酸在化妆品中的防腐效能研究[J]. 广东化工,2021,48(01):25-26+13. |
ZHENG Z B, CONG Y H, FENG C B. Study on a naturally derived preservative:ε-polylysine[J]. Guangdong Chemical Industry, 2021, 48(01):25-26+13. | |
191 | WANG L, LI S, ZHAO J J, et al. Efficiently activated ε‐poly‐L‐lysine production by multiple antibiotic‐resistance mutations and acidic pH shock optimization in Streptomyces albulus [J]. MicrobiologyOpen, 2019, 8(5): e00728. |
192 | 朱道君, 刁文娇, 张佳微, 等. 小白链霉菌全细胞转化L-赖氨酸合成ε-聚赖氨酸的体系构建与优化[J]. 食品与发酵工业,2024,50(01):29-36. |
ZHU D J, DIAO W J, ZHANG J W, et al. Construction and optimization of whole-cell transformation method for ε-poly-L-lysine production from L-lysine by Streptomyces albulus [J]. Food and Fermentation Industries, 2024, 50(01):29-36. | |
193 | LI Y, ZHANG S Y, LI H D, et al. Metabolic engineering for improving ectoine production in Escherichia coli [J]. Systems Microbiology and Biomanufacturing, 2024, 4(1): 337-347. |
194 | ZHANG L, TANG J, FENG M, et al. Engineering methyltransferase and sulfoxide synthase for high-yield production of ergothioneine [J]. Journal of Agricultural and Food Chemistry, 2022, 71(1): 671-679. |
195 | 张山, 丁利平, 焦银山. 一种麦角硫因生产工艺及其应用: CN114854659B [P]. 2024-03-26. |
ZHANG S, DING L P, JIAO Y S. A ergothionein production process and its application: CN114854659B [P]. 2024-03-26. | |
196 | 吴鹤云, 刘万才, 谢希贤, 等. 一种生产麦角硫因的基因工程菌及其构建方法与应用: CN116121161A [P]. 2023-05-16. |
WU H Y, LIU W C, XIE X, et al. A genetic engineering bacteria producing ergothioneine and its construction method and application: CN116121161A [P]. 2023-05-16. | |
197 | ZHOU L Q, XIANG T, YANG M X, et al. Yeast strain and use thereof and preparation method of ergothioneine: US20230220428 [P]. 2023-07-13. |
198 | XING B, LI Z, CHANG J, et al. Molecular modification based on site-directed mutagenesis improves the substrate specificity of β-ester acyltransferase for L-carnosine synthesis [J]. Process Biochemistry, 2024, 137: 1-9. |
199 | KIM M, KO Y J, JEONG D W, et al. Ecofriendly synthesis of L-carnosine in metabolically engineered Corynebacterium glutamicum by reinforcing precursor accumulation [J]. ACS Synthetic Biology, 2021, 10(6): 1553-1562. |
200 | PATZSCHKE A, STEIGER M G, HOLZ C, et al. Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains [J]. Biotechnology Journal, 2015, 10(11): 1719-1726. |
201 | CHEN H L, CAO X T, ZHU N Q, et al. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism [J]. World Journal of Microbiology and Biotechnology, 2020, 36: 1-10. |
202 | WANG C, ZHANG J, WU H, et al. Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production [J]. Journal of Biotechnology, 2015, 214: 63-68. |
203 | CHEAH I K, HALLIWELL B. Ergothioneine; antioxidant potential, physiological function and role in disease [J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2012, 1822(5): 784-793. |
204 | KITSANAYANYONG L, OHSHIMA T. Ergothioneine: a potential antioxidative and antimelanosis agent for food quality preservation [J]. FEBS letters, 2022, 596(10): 1330-1347. |
205 | LIU H-M, TANG W, WANG X-Y, et al. Safe and effective antioxidant: the biological mechanism and potential pathways of ergothioneine in the skin [J]. Molecules, 2023, 28(4): 1648. |
206 | GRUNDEMANN D, HARLFINGER S, GOLZ S, et al. Discovery of the ergothioneine transporter [J]. Proceedings of the National Academy of Sciences, 2005, 102(14): 5256-5261. |
207 | LIAO W C, WU W H, P-C TSAI, et al. Kinetics of ergothioneine inhibition of mushroom tyrosinase [J]. Applied Biochemistry and Biotechnology, 2012, 166: 259-267. |
208 | OBAYASHI K, KURIHARA K, OKANO Y, et al. L‐Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF‐α and MMP‐1 expression in UV‐irradiated human dermal fibroblasts [J]. International Journal of Cosmetic Science, 2005, 27(3): 191-191. |
209 | STAMPFLI A R, SEEBECK F P. The catalytic mechanism of sulfoxide synthases [J]. Current Opinion in Chemical Biology, 2020, 59: 111-118. |
210 | JONES G W, DOYLE S, FITZPATRICK D A. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine [J]. Gene, 2014, 549(1): 161-170. |
211 | CHEN Z, HE Y, WU X, et al. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway [J]. Microbial Cell Factories, 2022, 21(1): 76. |
212 | 王丽, 王阳, 李江华, 等. 产麦角硫因大肠杆菌工程菌株的构建与优化[J]. 生物工程学报,2022,38(02):796-806. |
WANG L, WANG Y, LI J H, et al. Construction and optimization of ergothioneine-producing Escherichia coli [J]. Chinese Journal of Biotechnology, 2022, 38(02):796-806. | |
213 | 陈佳敏, 王阳, 堵国成, 等. 优化前体供给与细胞膜通透性强化大肠杆菌合成麦角硫因[J]. 食品与生物技术学报,2022,41(08):43-52. |
CHEN J M, WANG Y, DU G C, et al. Enhancement of ergothioneine synthesis in Escherichia coli via optimization of precursor supply and cell membrane permeability[J]. Journal of Food Science and Biotechnology, 2022, 41(08):43-52. | |
214 | 马倩, 田道光, 谢希贤, 等. 一种生产麦角硫因的基因工程菌株及其应用: CN112251392B [P]. 2022-09-09. |
MA Q, TIAN D G, XIE X X, et al. Genetically engineered strain for producing ergothioneine and application: CN112251392B [P]. 2022-09-09. | |
215 | PLUSKAL T, UENO M, YANAGIDA M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system [J]. PloS one, 2014, 9(5): e97774. |
216 | QIU Y B, CHEN Z L, SU E Z, et al. Recent strategies for the biosynthesis of ergothioneine [J]. Journal of Agricultural and Food Chemistry, 2021, 69(46): 13682-13690. |
217 | HUSEIN EL HADMED H, CASTILLO R F. Cosmeceuticals: peptides, proteins, and growth factors [J]. Journal of Cosmetic Dermatology, 2016, 15(4): 514-519. |
218 | HECK T, KOHLER H P E, LIMBACH M, et al. Enzyme‐catalyzed formation of β‐peptides: β‐peptidyl aminopeptidases BapA and DmpA acting as β‐peptide‐synthesizing enzymes [J]. Chemistry & Biodiversity, 2007, 4(9): 2016-2030. |
219 | HEYLAND J, ANTWEILER N, LUTZ J, et al. Simple enzymatic procedure for L‐carnosine synthesis: whole‐cell biocatalysis and efficient biocatalyst recycling [J]. Microbial Biotechnology, 2010, 3(1): 74-83. |
220 | HECK T, MAKAM V S, LUTZ J, et al. Kinetic Analysis of L‐Carnosine Formation by β‐Aminopeptidases [J]. Advanced Synthesis & Catalysis, 2010, 352(2‐3): 407-415. |
221 | TEUFEL M, SAUDEK V, J-P LEDIG, et al. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase [J]. Journal of Biological Chemistry, 2003, 278(8): 6521-6531. |
222 | INABA C, HIGUCHI S, MORISAKA H, et al. Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells [J]. Applied Microbiology and Biotechnology, 2010, 86: 1895-1902. |
223 | BAHUT F, ROMANET R, SIECZKOWSKI N, et al. Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine [J]. Food Chemistry, 2020, 325: 126941. |
224 | MALAIRUANG K, KRAJANG M, SUKNA J, et al. High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC) [J]. Processes, 2020, 8(10): 1321. |
225 | ZHU Y, SUN J, ZHU Y, et al. Endogenic oxidative stress response contributes to glutathione over-accumulation in mutant Saccharomyces cerevisiae Y518 [J]. Applied Microbiology and Biotechnology, 2015, 99: 7069-7078. |
226 | WEN S H, ZHANG T, TAN T W. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae [J]. Enzyme and Microbial Technology, 2004, 35(6-7): 501-507. |
227 | KOBAYASHI J, SASAKI D, HARA K Y, et al. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2022, 21(1): 153. |
228 | LORENZ E, SCHMACHT M, STAHL U, et al. Enhanced incorporation yield of cysteine for glutathione overproduction by fed-batch fermentation of Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2015, 216: 131-139. |
229 | HU X Y, SHEN X L, ZHU S, et al. Optimization of glutathione production in Saccharomyces cerevisiae HBSD-W08 using Plackett–Burman and central composite rotatable designs [J]. BMC Microbiology, 2023, 23(1): 11. |
230 | ZHANG J, QUAN C, WANG C, et al. Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production [J]. Microbial Cell Factories, 2016, 15: 1-12. |
231 | CUI X W, WAN J X, ZHANG X, et al. Efficient glutathione production in metabolically engineered Escherichia coli strains using constitutive promoters [J]. Journal of Biotechnology, 2019, 289: 39-45. |
[1] | Yu CHEN, Kang ZHANG, Yijing QIU, Caiyun CHENG, Jingjing YIN, Tianshun SONG, Jingjing XIE. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[2] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[3] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[4] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[5] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[6] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[7] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[8] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[9] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[10] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[11] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[12] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[13] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[14] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[15] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||