Yiqing ZHANG1,2, Gaowen LIU1
Received:
2024-11-11
Revised:
2025-02-20
Published:
2025-02-20
Contact:
Gaowen LIU
章益蜻1,2, 刘高雯1
通讯作者:
刘高雯
作者简介:
基金资助:
CLC Number:
Yiqing ZHANG, Gaowen LIU. Gene function exploration and engineering strain library construction from a synthetic biology perspective[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-079.
章益蜻, 刘高雯. 合成生物学视角下的基因功能探索与酵母工程菌株文库构建[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-079.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-079
1 | PRZYBYLA L, GILBERT L A. A new era in functional genomics screens[J]. Nat Rev Genet, 2022, 23: 89-103. |
2 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349: 1095-1100. |
3 | RUNGUPHAN W, KEASLING J D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals[J]. Metab Eng, 2014, 21: 103-113. |
4 | SHENG J, FENG X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: Bottlenecks and solutions[J]. Front Microbiol, 2015, 6: 554. |
5 | SAMAL S K, PREETAM S. Synthetic biology: Refining human health[M]//SUAR M, MISRA N, DASH C. Singapore: Springer Nature Singapore, 2022: 57-70. |
6 | TSAI C S, KWAK S, TURNER T L, et al. Yeast synthetic biology toolbox and applications for biofuel production[J]. FEMS Yeast Res, 2015, 15: 1-15. |
7 | GOFFEAU A, BARRELL B G, BUSSEY H, et al. Life with 6000 genes[J]. Science, 1996, 274: 546, 563-547. |
8 | ARITA Y, KIM G, LI Z, et al. A genome-scale yeast library with inducible expression of individual genes[J]. Mol Syst Biol, 2021, 17: e10207. |
9 | WOOD V, GWILLIAM R, RAJANDREAM M A, et al. The genome sequence of Schizosaccharomyces pombe [J]. Nature, 2002, 415: 871-880. |
10 | GREWAL S I, JIA S. Heterochromatin revisited[J]. Nat Rev Genet, 2007, 8: 35-46. |
11 | ROGUEV A, RYAN C J, HARTSUIKER E, et al. High-throughput quantitative genetic interaction mapping in the fission yeast Schizosaccharomyces pombe [J]. Cold Spring Harb Protoc, 2018, 2018. |
12 | ZHANG W, GENG A. Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method[J]. Biotechnol Biofuels, 2012, 5: 46. |
13 | BOTSTEIN D, FINK G R. Yeast: An experimental organism for 21st century biology[J]. Genetics, 2011, 189: 695-704. |
14 | RODRIGUEZ A, STRUCKO T, STAHLHUT S G, et al. Metabolic engineering of yeast for fermentative production of flavonoids[J]. Bioresour Technol, 2017, 245: 1645-1654. |
15 | MYBURGH M W, FAVARO L, VAN ZYL W H, et al. Engineered yeast for the efficient hydrolysis of polylactic acid[J]. Bioresour Technol, 2023, 378: 129008. |
16 | CHEN J S, BECKLEY J R, MCDONALD N A, et al. Identification of new players in cell division, DNA damage response, and morphogenesis through construction of Schizosaccharomyces pombe deletion strains[J]. G3 (Bethesda), 2014, 5: 361-370. |
17 | TURCO G, CHANG C, WANG R Y, et al. Global analysis of the yeast knockout phenome[J]. Sci Adv, 2023, 9: eadg5702. |
18 | KIM D U, HAYLES J, KIM D, et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe [J]. Nat Biotechnol, 2010, 28: 617-623. |
19 | SCHERENS B, GOFFEAU A. The uses of genome-wide yeast mutant collections[J]. Genome Biol, 2004, 5: 229. |
20 | GIAEVER G, NISLOW C. The yeast deletion collection: A decade of functional genomics[J]. Genetics, 2014, 197: 451-465. |
21 | SOPKO R, HUANG D, PRESTON N, et al. Mapping pathways and phenotypes by systematic gene overexpression[J]. Mol Cell, 2006, 21: 319-330. |
22 | MATSUYAMA A, ARAI R, YASHIRODA Y, et al. Orfeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe [J]. Nat Biotechnol, 2006, 24: 841-847. |
23 | TONG A H, EVANGELISTA M, PARSONS A B, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants[J]. Science, 2001, 294: 2364-2368. |
24 | ROGUEV A, WIREN M, WEISSMAN J S, et al. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe [J]. Nat Methods, 2007, 4: 861-866. |
25 | GIAEVER G, CHU A M, NI L, et al. Functional profiling of the Saccharomyces cerevisiae genome[J]. Nature, 2002, 418: 387-391. |
26 | HWANG Y C, LIN C C, CHANG J Y, et al. Predicting essential genes based on network and sequence analysis[J]. Mol Biosyst, 2009, 5: 1672-1678. |
27 | JEONG H, MASON S P, BARABáSI A L, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411: 41-42. |
28 | LI Z, VIZEACOUMAR F J, BAHR S, et al. Systematic exploration of essential yeast gene function with temperature-sensitive mutants[J]. Nat Biotechnol, 2011, 29: 361-367. |
29 | SHORTLE D, NOVICK P, BOTSTEIN D. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene[J]. Proc Natl Acad Sci U S A, 1984, 81: 4889-4893. |
30 | BEN-AROYA S, COOMBES C, KWOK T, et al. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae [J]. Mol Cell, 2008, 30: 248-258. |
31 | POULTNEY C S, BUTTERFOSS G L, GUTWEIN M R, et al. Rational design of temperature-sensitive alleles using computational structure prediction[J]. PLoS One, 2011, 6: e23947. |
32 | CHAKSHUSMATHI G, MONDAL K, LAKSHMI G S, et al. Design of temperature-sensitive mutants solely from amino acid sequence[J]. Proc Natl Acad Sci U S A, 2004, 101: 7925-7930. |
33 | TAN G, CHEN M, FOOTE C, et al. Temperature-sensitive mutations made easy: Generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges[J]. Genetics, 2009, 183: 13-22. |
34 | WIDLUND P O, DAVIS T N. A high-efficiency method to replace essential genes with mutant alleles in yeast[J]. Yeast, 2005, 22: 769-774. |
35 | KOFOED M, MILBURY K L, CHIANG J H, et al. An updated collection of sequence barcoded temperature-sensitive alleles of yeast essential genes[J]. G3 (Bethesda), 2015, 5: 1879-1887. |
36 | MNAIMNEH S, DAVIERWALA A P, HAYNES J, et al. Exploration of essential gene functions via titratable promoter alleles[J]. Cell, 2004, 118: 31-44. |
37 | BRESLOW D K, CAMERON D M, COLLINS S R, et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome[J]. Nat Methods, 2008, 5: 711-718. |
38 | SCHULDINER M, COLLINS S R, THOMPSON N J, et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile[J]. Cell, 2005, 123: 507-519. |
39 | LIU G, YONG M Y, YURIEVA M, et al. Gene essentiality is a quantitative property linked to cellular evolvability[J]. Cell, 2015, 163: 1388-1399. |
40 | GUO Y, PARK J M, CUI B, et al. Integration profiling of gene function with dense maps of transposon integration[J]. Genetics, 2013, 195: 599-609. |
41 | EVERTTS A G, PLYMIRE C, CRAIG N L, et al. The Hermes transposon of Musca domestica is an efficient tool for the mutagenesis of Schizosaccharomyces pombe [J]. Genetics, 2007, 177: 2519-2523. |
42 | PARK J M, EVERTTS A G, LEVIN H L. The Hermes transposon of Musca domestica and its use as a mutagen of Schizosaccharomyces pombe [J]. Methods, 2009, 49: 243-247. |
43 | GANGADHARAN S, MULARONI L, FAIN-THORNTON J, et al. DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo [J]. Proc Natl Acad Sci U S A, 2010, 107: 21966-21972. |
44 | CAIN A K, BARQUIST L, GOODMAN A L, et al. A decade of advances in transposon-insertion sequencing[J]. Nat Rev Genet, 2020, 21: 526-540. |
45 | MICHEL A H, HATAKEYAMA R, KIMMIG P, et al. Functional mapping of yeast genomes by saturated transposition[J]. Elife, 2017, 6: e23570. |
46 | BILLMYRE R B, EICKBUSH M T, CRAIG C J, et al. Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast[J]. PLoS Genet, 2022, 18: e1010462. |
47 | ADAMES N R, GALLEGOS J E, PECCOUD J. Yeast genetic interaction screens in the age of CRISPR/Cas[J]. Curr Genet, 2019, 65: 307-327. |
48 | LI L, LIU X, WEI K, et al. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems[J]. Biotechnol Adv, 2019, 37: 730-745. |
49 | GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109: E2579-2586. |
50 | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2021, 184: 844. |
51 | LIAN J, HAMEDIRAD M, HU S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nat Commun, 2017, 8: 1688. |
52 | GUO X, CHAVEZ A, TUNG A, et al. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast[J]. Nat Biotechnol, 2018, 36: 540-546. |
53 | SI T, CHAO R, MIN Y, et al. Automated multiplex genome-scale engineering in yeast[J]. Nat Commun, 2017, 8: 15187. |
54 | SAKAI A, SHIMIZU Y, HISHINUMA F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty[J]. Appl Microbiol Biotechnol, 1990, 33: 302-306. |
55 | DICARLO J E, CONLEY A J, PENTTILA M, et al. Yeast oligo-mediated genome engineering (YOGE)[J]. ACS Synth Biol, 2013, 2: 741-749. |
56 | BARBIERI E M, MUIR P, AKHUETIE-ONI B O, et al. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes[J]. Cell, 2017, 171: 1453-1467 e1413. |
57 | JAKOCIUNAS T, RAJKUMAR A S, ZHANG J, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae [J]. ACS Synth Biol, 2015, 4: 1226-1234. |
58 | LIU R, LIANG L, CHOUDHURY A, et al. Multiplex navigation of global regulatory networks (MINR) in yeast for improved ethanol tolerance and production[J]. Metab Eng, 2019, 51: 50-58. |
59 | KUZMIN E, VANDERSLUIS B, NGUYEN BA A N, et al. Exploring whole-genome duplicate gene retention with complex genetic interaction analysis[J]. Science, 2020, 368: eaaz5667. |
60 | PENG J. Gene redundancy and gene compensation: An updated view[J]. J Genet Genomics, 2019, 46: 329-333. |
61 | MERZ S, WESTERMANN B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae [J]. Genome Biol, 2009, 10: R95. |
62 | LOUCA S, POLZ M F, MAZEL F, et al. Function and functional redundancy in microbial systems[J]. Nat Ecol Evol, 2018, 2: 936-943. |
63 | BIDLINGMAIER S, LIU B. Construction of yeast surface-displayed cDNA libraries[J]. Methods Mol Biol, 2011, 729: 199-210. |
64 | LIU Z, TYO K E, MARTINEZ J L, et al. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae [J]. Biotechnol Bioeng, 2012, 109: 1259-1268. |
65 | SMITH V, BOTSTEIN D, BROWN P O. Genetic footprinting: A genomic strategy for determining a gene's function given its sequence[J]. Proc Natl Acad Sci U S A, 1995, 92: 6479-6483. |
66 | SMITH V, CHOU K N, LASHKARI D, et al. Functional analysis of the genes of yeast chromosome V by genetic footprinting[J]. Science, 1996, 274: 2069-2074. |
67 | HAN T X, XU X Y, ZHANG M J, et al. Global fitness profiling of fission yeast deletion strains by barcode sequencing[J]. Genome Biol, 2010, 11: R60. |
68 | STEINMETZ L M, SCHARFE C, DEUTSCHBAUER A M, et al. Systematic screen for human disease genes in yeast[J]. Nat Genet, 2002, 31: 400-404. |
69 | WARRINGER J, ERICSON E, FERNANDEZ L, et al. High-resolution yeast phenomics resolves different physiological features in the saline response[J]. Proc Natl Acad Sci U S A, 2003, 100: 15724-15729. |
70 | BIRRELL G W, BROWN J A, WU H I, et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents[J]. Proc Natl Acad Sci U S A, 2002, 99: 8778-8783. |
71 | CHANG M, BELLAOUI M, BOONE C, et al. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for s phase progression in the presence of DNA damage[J]. Proc Natl Acad Sci U S A, 2002, 99: 16934-16939. |
72 | PARSONS A B, BROST R L, DING H, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways[J]. Nat Biotechnol, 2004, 22: 62-69. |
73 | PARSONS A B, LOPEZ A, GIVONI I E, et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast[J]. Cell, 2006, 126: 611-625. |
74 | ENYENIHI A H, SAUNDERS W S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae [J]. Genetics, 2003, 163: 47-54. |
75 | MATECIC M, SMITH D L, PAN X, et al. A microarray-based genetic screen for yeast chronological aging factors[J]. PLoS Genet, 2010, 6: e1000921. |
76 | ROMILA C A, TOWNSEND S, MALECKI M, et al. Barcode sequencing and a high-throughput assay for chronological lifespan uncover ageing-associated genes in fission yeast[J]. Microb Cell, 2021, 8: 146-160. |
77 | FERRARI S, BERETTA S, JACOB A, et al. Bar-seq clonal tracking of gene-edited cells[J]. Nat Protoc, 2021, 16: 2991-3025. |
78 | RALLIS C, LóPEZ-MAURY L, GEORGESCU T, et al. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth[J]. Biol Open, 2014, 3: 161-171. |
79 | KENNEDY P J, VASHISHT A A, HOE K L, et al. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe [J]. Toxicol Sci, 2008, 106: 124-139. |
80 | RODRíGUEZ-LóPEZ M, BORDIN N, LEES J, et al. Broad functional profiling of fission yeast proteins using phenomics and machine learning[J]. Elife, 2023, 12. |
81 | NI L, SNYDER M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae [J]. Mol Biol Cell, 2001, 12: 2147-2170. |
82 | KELLY F D, NURSE P. Spatial control of Cdc42 activation determines cell width in fission yeast[J]. Mol Biol Cell, 2011, 22: 3801-3811. |
83 | NAVARRO F J, NURSE P. A systematic screen reveals new elements acting at the G2/M cell cycle control[J]. Genome Biol, 2012, 13: R36. |
84 | BLYTH J, MAKRANTONI V, BARTON R E, et al. Genes important for Schizosaccharomyces pombe meiosis identified through a functional genomics screen[J]. Genetics, 2018, 208: 589-603. |
85 | DESHPANDE G P, HAYLES J, HOE K L, et al. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance[J]. DNA Repair (Amst), 2009, 8: 672-679. |
86 | PAN X, LEI B, ZHOU N, et al. Identification of novel genes involved in DNA damage response by screening a genome-wide Schizosaccharomyces pombe deletion library[J]. BMC Genomics, 2012, 13: 662. |
87 | COSTANZO M, VANDERSLUIS B, KOCH E N, et al. A global genetic interaction network maps a wiring diagram of cellular function[J]. Science, 2016, 353. |
88 | ROSS-MACDONALD P, COELHO P S, ROEMER T, et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption[J]. Nature, 1999, 402: 413-418. |
89 | WHITE W H, JOHNSON D I. Characterization of synthetic-lethal mutants reveals a role for the Saccharomyces cerevisiae guanine-nucleotide exchange factor Cdc24p in vacuole function and Na+ tolerance[J]. Genetics, 1997, 147: 43-55. |
90 | HUH W K, FALVO J V, GERKE L C, et al. Global analysis of protein localization in budding yeast[J]. Nature, 2003, 425: 686-691. |
91 | RAZDAIBIEDINA A, BRECHALOV A, FRIESEN H, et al. PIFIA: Self-supervised approach for protein functional annotation from single-cell imaging data[J]. Mol Syst Biol, 2024, 20: 521-548. |
92 | CHONG Y T, KOH J L, FRIESEN H, et al. Yeast proteome dynamics from single cell imaging and automated analysis[J]. Cell, 2015, 161: 1413-1424. |
93 | HAYASHI A, DING D Q, TSUTSUMI C, et al. Localization of gene products using a chromosomally tagged GFP-fusion library in the fission yeast Schizosaccharomyces pombe [J]. Genes Cells, 2009, 14: 217-225. |
94 | JIA B, WU Y, LI B Z, et al. Precise control of scramble in synthetic haploid and diploid yeast[J]. Nat Commun, 2018, 9: 1933. |
95 | SI T, LUO Y, BAO Z, et al. RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering[J]. ACS Synth Biol, 2015, 4: 283-291. |
96 | ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends Biotechnol, 2020, 38: 888-906. |
97 | RUGBJERG P, SOMMER M O A. Overcoming genetic heterogeneity in industrial fermentations[J]. Nat Biotechnol, 2019, 37: 869-876. |
98 | WEHRS M, TANJORE D, ENG T, et al. Engineering robust production microbes for large-scale cultivation[J]. Trends Microbiol, 2019, 27: 524-537. |
99 | JAKOCIUNAS T, BONDE I, HERRGARD M, et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metab Eng, 2015, 28: 213-222. |
100 | LI Y, MOLYNEAUX N, ZHANG H, et al. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: Construction of a Schizosaccharomyces pombe transposon insertion library[J]. Nucleic Acids Res, 2022, 50: e102. |
101 | COOPE R J N, MATIC N, PANDOH P K, et al. Automated library construction and analysis for high-throughput nanopore sequencing of SARS-COV-2[J]. J Appl Lab Med, 2022, 7: 1025-1036. |
102 | SANTACRUZ D, ENANE F O, FUNDEL-CLEMENS K, et al. Automation of high-throughput mRNA-seq library preparation: A robust, hands-free and time efficient methodology[J]. SLAS Discov, 2022, 27: 140-147. |
103 | VAN DEVENTER J A, WITTRUP K D. Yeast surface display for antibody isolation: Library construction, library screening, and affinity maturation[J]. Methods Mol Biol, 2014, 1131: 151-181. |
104 | YOFE I, WEILL U, MEURER M, et al. One library to make them all: Streamlining the creation of yeast libraries via a SWAp-Tag strategy[J]. Nat Methods, 2016, 13: 371-378. |
105 | COSTANZO M, HOU J, MESSIER V, et al. Environmental robustness of the global yeast genetic interaction network[J]. Science, 2021, 372. |
106 | KUZMIN E, VANDERSLUIS B, WANG W, et al. Systematic analysis of complex genetic interactions[J]. Science, 2018, 360. |
107 | PENNISI E. Building the ultimate yeast genome[J]. Science, 2014, 343: 1426-1429. |
108 | ZHAO Y, COELHO C, HUGHES A L, et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions[J]. Cell, 2023, 186: 5220-5236 e5216. |
109 | SCHINDLER D, WALKER R S K, JIANG S, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast[J]. Cell, 2023, 186: 5237-5253 e5222. |
110 | ZHANG W, LAZAR-STEFANITA L, YAMASHITA H, et al. Manipulating the 3D organization of the largest synthetic yeast chromosome[J]. Mol Cell, 2023, 83: 4424-4437 e4425. |
111 | DAI J, BOEKE J D, LUO Z, et al. Sc3.0: Revamping and minimizing the yeast genome[J]. Genome Biol, 2020, 21: 205. |
112 | SHAO Y, LU N, WU Z, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560: 331-335. |
113 | WANG P, LIN Y, ZOU C, et al. Construction and screening of a glycosylphosphatidylinositol protein deletion library in Pichia pastoris [J]. BMC Microbiol, 2020, 20: 262. |
[1] | Ting SHI, Zhan SONG, Shiyi SONG, Yi-Heng P. Job ZHANG. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[2] | Meng CHAI, Fengqing WANG, Dongzhi WEI. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[3] | Mingwei SHAO, Simian SUN, Shimao YANG, Guoqiang CHEN. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[4] | Yu FU, Fangrui ZHONG. Recent advances in chemically driven enantioselective photobiocatalysis [J]. Synthetic Biology Journal, 2024, 5(5): 1021-1049. |
[5] | Yu CHEN, Kang ZHANG, Yijing QIU, Caiyun CHENG, Jingjing YIN, Tianshun SONG, Jingjing XIE. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[6] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[7] | Zijian LIU, Baiyang MU, Zhiqiang DUAN, Xuan WANG, Xiaojie LU. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[8] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[9] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[10] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[11] | Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. |
[12] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[13] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[14] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[15] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||