Yongzhu LI1,2, Yu CHEN1
Received:
2024-12-02
Revised:
2025-02-20
Published:
2025-02-20
Contact:
Yu CHEN
李永珠1,2, 陈禹1
通讯作者:
陈禹
作者简介:
基金资助:
CLC Number:
Yongzhu LI, Yu CHEN. Advances and Prospects in Genome-Scale Models of Yeast[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-084.
李永珠, 陈禹. 酵母基因组规模模型进展及发展趋势[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-084.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-084
Fig. 1 Development of yeast GEMsThe figure shows the development of GEMs from 2003 to 2024 for S. cerevisiae (black) and other yeasts (colored). The arrows and lines indicate the relationships between different GEMs, where solid lines indicate direct inheritance, and dashed lines signify omissions of intermediate models between connections
模型 版本 | 反应数 | 代谢 物数 | 基因数 | 主要优化点 | 存在的问题 | 年份 | 参考文献 |
---|---|---|---|---|---|---|---|
Yeast1 | 1857 | 1168 | 832 | 第一代共识模型,统一代谢物注释 | 网络缺乏完整性、连通性,代谢反应覆盖率低 | 2008 | [ |
Yeast4 | 2030 | 1481 | 924 | 增加脂质代谢反应,提高网络连通性 | 代谢反应覆盖率低 | 2010 | [ |
Yeast5 | 2110 | 1655 | 918 | 增加鞘脂代谢反应,更新GPR关系 | 存在一定“阻塞反应”,引入假反应连通网络,不符合实际 | 2012 | [ |
Yeast6 | 1888 | 1458 | 900 | 移除无明确功能或无参考来源的代谢物 | 模拟无氧生长存在问题,仍有一定“阻塞反应” | 2013 | [ |
Yeast7 | 3493 | 2218 | 916 | 修正脂肪酸、甘油脂和甘油磷脂代谢,显著减少“阻塞反应”占比 | 基因数过少,无法充分整合多组学数据 | 2013 | [ |
Yeast8 | 3949 | 2680 | 1133 | 对基因和反应进行大规模扩展,可引入蛋白质结构数据 | 反应质量和电荷不平衡,同工酶注释冗余,缺乏热力学约束 | 2019 | [ |
Yeast9 | 4130 | 2805 | 1162 | 新增标准吉布斯自由能数据,提升反应准确性 | 无法精确表现细胞器代谢活动,多组学综合分析准确率较低 | 2024 | [ |
Table 1 Summary of consensus S. cerevisiae models
模型 版本 | 反应数 | 代谢 物数 | 基因数 | 主要优化点 | 存在的问题 | 年份 | 参考文献 |
---|---|---|---|---|---|---|---|
Yeast1 | 1857 | 1168 | 832 | 第一代共识模型,统一代谢物注释 | 网络缺乏完整性、连通性,代谢反应覆盖率低 | 2008 | [ |
Yeast4 | 2030 | 1481 | 924 | 增加脂质代谢反应,提高网络连通性 | 代谢反应覆盖率低 | 2010 | [ |
Yeast5 | 2110 | 1655 | 918 | 增加鞘脂代谢反应,更新GPR关系 | 存在一定“阻塞反应”,引入假反应连通网络,不符合实际 | 2012 | [ |
Yeast6 | 1888 | 1458 | 900 | 移除无明确功能或无参考来源的代谢物 | 模拟无氧生长存在问题,仍有一定“阻塞反应” | 2013 | [ |
Yeast7 | 3493 | 2218 | 916 | 修正脂肪酸、甘油脂和甘油磷脂代谢,显著减少“阻塞反应”占比 | 基因数过少,无法充分整合多组学数据 | 2013 | [ |
Yeast8 | 3949 | 2680 | 1133 | 对基因和反应进行大规模扩展,可引入蛋白质结构数据 | 反应质量和电荷不平衡,同工酶注释冗余,缺乏热力学约束 | 2019 | [ |
Yeast9 | 4130 | 2805 | 1162 | 新增标准吉布斯自由能数据,提升反应准确性 | 无法精确表现细胞器代谢活动,多组学综合分析准确率较低 | 2024 | [ |
Fig. 2 Applications of genome-scale modelsThe figure shows the applications of genome-scale models in guiding cell factory design to enhance the yield of target products, assisting in the exploration of cellular physiological traits under different environments, optimizing cell culture conditions such as medium composition and temperature, and simulating metabolic exchanges and interactions within co-cultured microbial communities.
1 | GOFFEAU A, BARRELL B G, BUSSEY H, et al. Life with 6000 Genes[J]. Science, 1996, 274(5287): 546-567. |
2 | BERNARD A, ROSSIGNOL T, PARK Y K. Biotechnological approaches for producing natural pigments in yeasts[J]. Trends in Biotechnology, 2024, 42(12): 1644-1662. |
3 | LIAN J, MISHRA S, ZHAO H. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications[J]. Metabolic Engineering, 2018, 50: 85-108. |
4 | ZHANG Y W, YANG J J, QIAN F H, et al. Engineering a xylose fermenting yeast for lignocellulosic ethanol production[J]. Nature Chemical Biology, 2024: 1-8. |
5 | IGUCHI H, YURIMOTO H, SAKAI Y. Interactions of methylotrophs with plants and other heterotrophic bacteria[J]. Microorganisms, 2015, 3(2): 137-151. |
6 | HENRIQUES D, MINEBOIS R, DOS SANTOS D, et al. A Dynamic genome-scale model identifies metabolic pathways associated with cold tolerance in Saccharomyces kudriavzevii [J]. Microbiology Spectrum, 11(3): e03519-22. |
7 | HASSAN Y, CHEW S Y, THAN L T L. Candida glabrata: pathogenicity and resistance mechanisms for adaptation and survival[J]. Journal of Fungi, 2021, 7(8): 667. |
8 | BERNAUER L, RADKOHL A, LEHMAYER L G K, et al. Komagataella phaffii as emerging model organism in fundamental research[J]. Frontiers in Microbiology, 2021, 11: 607028. |
9 | CAVALLO E, CHARREAU H, CERRUTTI P, et al. Yarrowia lipolytica: a model yeast for citric acid production[J]. FEMS Yeast Research, 2017, 17(8): fox084. |
10 | MISHRA P, LEE N R, LAKSHMANAN M, et al. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica [J]. BMC Systems Biology, 2018, 12(): 12. |
11 | EDWARDS J S, PALSSON B O. Systems Properties of the Haemophilus influenzae Rd Metabolic Genotype [J]. Journal of Biological Chemistry, 1999, 274(25): 17410-17416. |
12 | KANEHISA M, GOTO S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30. |
13 | KARP P D, RILEY M, SAIER M, et al. The EcoCyc and MetaCyc databases[J]. Nucleic Acids Research, 2000, 28(1): 56-59. |
14 | SCHAEFER C F, ANTHONY K, KRUPA S, et al. PID: the pathway interaction database[J]. Nucleic Acids Research, 2009, 37(Database issue): D674-679. |
15 | HEIRENDT L, ARRECKX S, PFAU T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0[J]. Nature Protocols, 2019, 14(3): 639-702. |
16 | EBRAHIM A, LERMAN J A, PALSSON B O, et al. COBRApy: constraints-based reconstruction and analysis for python[J]. BMC Systems Biology, 2013, 7(1): 1-6. |
17 | WANG H, MARCIŠAUSKAS S, SÁNCHEZ B J, et al. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor [J]. PLoS computational biology, 2018, 14(10): e1006541. |
18 | BÜCHEL F, RODRIGUEZ N, SWAINSTON N, et al. Path2Models: large-scale generation of computational models from biochemical pathway maps[J]. BMC Systems Biology, 2013, 7(1): 116. |
19 | MACHADO D, ANDREJEV S, TRAMONTANO M, et al. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities[J]. Nucleic Acids Research, 2018, 46(15): 7542-7553. |
20 | HENRY C S, DEJONGH M, BEST A A, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models[J]. Nature Biotechnology, 2010, 28(9): 977-982. |
21 | ARKIN A P, COTTINGHAM R W, HENRY C S, et al. KBase: The United States department of energy systems biology knowledgebase[J]. Nature Biotechnology, 2018, 36(7): 566-569. |
22 | KUEPFER L, SAUER U, BLANK L M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae [J]. Genome Research, 2005, 15(10): 1421-1430. |
23 | MACKIE A, KESELER I M, NOLAN L, et al. Dead End Metabolites - defining the known unknowns of the E. coli metabolic network[J]. PLoS ONE, 2013, 8(9): e75210. |
24 | ORTH J D, CONRAD T M, NA J, et al. A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011[J]. Molecular Systems Biology, 2011, 7(1): 535. |
25 | KING Z A, LU J, DRÄGER A, et al. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models[J]. Nucleic Acids Research, 2016, 44(D1): D515-522. |
26 | CHELLIAH V, LAIBE C, NOVÈRE N L. BioModels Database: a repository of mathematical models of biological processes[M]//DUBITZKY W, WOLKENHAUER O, CHO K H, et al. Encyclopedia of Systems Biology. New York, NY: Springer, 2013: 134-138. |
27 | ORTH J D, THIELE I, PALSSON B Ø. What is flux balance analysis?[J]. Nature Biotechnology, 2010, 28(3): 245-248. |
28 | MACGILLIVRAY M, KO A, GRUBER E, et al. Robust analysis of fluxes in genome-scale metabolic pathways[J]. Scientific Reports, 2017, 7(1): 268. |
29 | O'BRIEN E J, MONK J M, PALSSON B O. Using genome-scale models to predict biological capabilities[J]. Cell, 2015, 161(5): 971-987. |
30 | COVERT M W, XIAO N, CHEN T J, et al. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli [J]. Bioinformatics, 2008, 24(18): 2044-2050. |
31 | SÁNCHEZ B J, ZHANG C, NILSSON A, et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints[J]. Molecular Systems Biology, 2017, 13(8): 935. |
32 | THIELE I, JAMSHIDI N, FLEMING R M T, et al. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization[J]. PLoS Computational Biology, 2009, 5(3): e1000312. |
33 | PATIL K R, NIELSEN J. Uncovering transcriptional regulation of metabolism by using metabolic network topology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(8): 2685-2689. |
34 | LU H, LI F, SÁNCHEZ B J, et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism[J]. Nature Communications, 2019, 10(1): 3586. |
35 | CHEN Y, GUSTAFSSON J, TAFUR RANGEL A, et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0[J]. Nature Protocols, 2024, 19(3): 629-667. |
36 | ADADI R, VOLKMER B, MILO R, et al. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters[J]. PLoS Computational Biology, 2012, 8(7): e1002575. |
37 | MAO Z, ZHAO X, YANG X, et al. ECMpy, a simplified workflow for constructing enzymatic constrained metabolic network model[J]. Biomolecules, 2022, 12(1): 65. |
38 | YANG X, MAO Z, ZHAO X, et al. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models[J]. Metabolic Engineering, 2021, 67: 133-144. |
39 | BI X, CHENG Y, XU X, et al. etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis[J]. Biotechnology and Bioengineering, 2023, 120(6): 1623-1639. |
40 | LLOYD C J, EBRAHIM A, YANG L, et al. COBRAme: A computational framework for genome-scale models of metabolism and gene expression[J]. PLoS Computational Biology, 2018, 14(7): e1006302. |
41 | BULOVIĆ A, FISCHER S, DINH M, et al. Automated generation of bacterial resource allocation models[J]. Metabolic Engineering, 2019, 55: 12-22. |
42 | OFTADEH O, SALVY P, MASID M, et al. A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics[J]. Nature Communications, 2021, 12(1): 4790. |
43 | JESKE L, PLACZEK S, SCHOMBURG I, et al. BRENDA in 2019: a European ELIXIR core data resource[J]. Nucleic Acids Research, 2019, 47(D1): D542-D549. |
44 | LI F, YUAN L, LU H, et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction[J]. Nature Catalysis, 2022, 5(8): 662-672. |
45 | O'BRIEN E J, LERMAN J A, CHANG R L, et al. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction[J]. Molecular Systems Biology, 2013, 9(1): 693. |
46 | FANG X, LLOYD C J, PALSSON B O. Reconstructing organisms in silico: genome-scale models and their emerging applications[J]. Nature Reviews Microbiology, 2020, 18(12): 731-743. |
47 | MAN O, PILPEL Y. Differential translation efficiency of orthologous genes is involved in phenotypic divergence of yeast species[J]. Nature Genetics, 2007, 39(3): 415-421. |
48 | DUARTE N C, BECKER S A, JAMSHIDI N, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data[J]. Proceedings of the National Academy of Sciences, 2007, 104(6): 1777-1782. |
49 | VANDERWAEREN L, DOK R, VOORDECKERS K, et al. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response[J]. International Journal of Molecular Sciences, 2022, 23(19): 11665. |
50 | FÖRSTER J, FAMILI I, FU P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network[J]. Genome Research, 2003, 13(2): 244-253. |
51 | DUARTE N C, HERRGÅRD M J, PALSSON B Ø. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model[J]. Genome Research, 2004, 14(7): 1298-1309. |
52 | NOOKAEW I, JEWETT M C, MEECHAI A, et al. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism[J]. BMC Systems Biology, 2008, 2: 71. |
53 | HERRGÅRD M J, SWAINSTON N, DOBSON P, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology[J]. Nature Biotechnology, 2008, 26(10): 1155-1160. |
54 | ZOMORRODI A R, MARANAS C D. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data[J]. BMC Systems Biology, 2010, 4(1): 178. |
55 | HEAVNER B D, SMALLBONE K, BARKER B, et al. Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network[J]. BMC Systems Biology, 2012, 6: 55. |
56 | ÖSTERLUND T, NOOKAEW I, BORDEL S, et al. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling[J]. BMC Systems Biology, 2013, 7: 36. |
57 | ZHANG C, SÁNCHEZ B J, LI F, et al. Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community[J]. Molecular Systems Biology, 2024, 20(10): 1134-1150. |
58 | DOBSON P D, SMALLBONE K, JAMESON D, et al. Further developments towards a genome-scale metabolic model of yeast[J]. BMC Systems Biology, 2010, 4: 145. |
59 | HEAVNER B D, SMALLBONE K, PRICE N D, et al. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance[J]. Database, 2013, 2013: bat059. |
60 | AUNG H W, HENRY S A, WALKER L P. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism[J]. Industrial Biotechnology, 2013, 9(4): 215-228. |
61 | HAN S, WU K, WANG Y, et al. Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast[J]. Synthetic and Systems Biotechnology, 2024, 9(4): 861-870. |
62 | MO M L, PALSSON B Ø, HERRGÅRD M J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast[J]. BMC Systems Biology, 2009, 3: 37. |
63 | TSOUKA S, HATZIMANIKATIS V. redLips: a comprehensive mechanistic model of the lipid metabolic network of yeast[J]. FEMS Yeast Research, 2020, 20(2): foaa006. |
64 | SCOTT W T, SMID E J, NOTEBAART R A, et al. Curation and analysis of a saccharomyces cerevisiae genome-scale metabolic model for predicting production of sensory impact molecules under enological conditions[J]. Processes, 2020, 8(9): 1195. |
65 | CHOWDHURY R, CHOWDHURY A, MARANAS C D. Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models[J]. Metabolites, 2015, 5(4): 536-570. |
66 | ATA Ö, ERGÜN B G, FICKERS P, et al. What makes Komagataella phaffii non-conventional?[J]. FEMS Yeast Research, 2021, 21(8): foab059. |
67 | SOHN S B, GRAF A B, KIM T Y, et al. Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production[J]. Biotechnology Journal, 2010, 5(7): 705-715. |
68 | CHUNG B K, SELVARASU S, CAMATTARI A, et al. Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement[J]. Microbial Cell Factories, 2010, 9(1): 50. |
69 | CASPETA L, SHOAIE S, AGREN R, et al. Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials[J]. BMC Systems Biology, 2012, 6(1): 24. |
70 | TOMÀS-GAMISANS M, FERRER P, ALBIOL J. Integration and validation of the genome-scale metabolic models of Pichia pastoris: a comprehensive update of protein glycosylation pathways, lipid and energy metabolism[J]. PLOS ONE, 2016, 11(1): e0148031. |
71 | TOMÀS-GAMISANS M, FERRER P, ALBIOL J. Fine-tuning the P. pastoris iMT1026 genome-scale metabolic model for improved prediction of growth on methanol or glycerol as sole carbon sources[J]. Microbial Biotechnology, 2018, 11(1): 224-237. |
72 | LOIRA N, DULERMO T, NICAUD J M, et al. A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica [J]. BMC Systems Biology, 2012, 6: 35. |
73 | KERKHOVEN E J, POMRANING K R, BAKER S E, et al. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica [J]. NPJ systems biology and applications, 2016, 2: 16005. |
74 | GUO Y, SU L, LIU Q, et al. Dissecting carbon metabolism of Yarrowia lipolytica type strain W29 using genome-scale metabolic modelling[J]. Computational and Structural Biotechnology Journal, 2022, 20: 2503-2511. |
75 | ZHU Z, ZHANG S, LIU H, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides [J]. Nature Communications, 2012, 3(1): 1112. |
76 | TIUKOVA I A, PRIGENT S, NIELSEN J, et al. Genome-scale model of Rhodotorula toruloides metabolism[J]. Biotechnology and Bioengineering, 2019, 116(12): 3396-3408. |
77 | LIEBAL U W, FABRY B A, RAVIKRISHNAN A, et al. Genome-scale model reconstruction of the methylotrophic yeast Ogataea polymorpha [J]. BMC Biotechnology, 2021, 21(1): 23. |
78 | MISHRA P, PARK G Y, LAKSHMANAN M, et al. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production[J]. Biotechnology and Bioengineering, 2016, 113(9): 1993-2004. |
79 | XU N, LIU L, ZOU W, et al. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata[J]. Molecular BioSystems, 2013, 9(2): 205-216. |
80 | VYAS A, FREITAS A V, RALSTON Z A, et al. Fission yeast Schizosaccharomyces pombe: a unicellular "micromammal" model organism[J]. Current protocols, 2021, 1(6): e151. |
81 | SOHN S B, KIM T Y, LEE J H, et al. Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth[J]. BMC Systems Biology, 2012, 6(1): 49. |
82 | GRIGAITIS P, GRUNDEL D A J, PELT-KLEINJAN E van, et al. A computational toolbox to investigate the metabolic potential and resource allocation in fission yeast[J]. mSystems, 2022, 7(4): e00423. |
83 | SPOHNER S C, SCHAUM V, QUITMANN H, et al. Kluyveromyces lactis: An emerging tool in biotechnology[J]. Journal of Biotechnology, 2016, 222: 104-116. |
84 | DIAS O, PEREIRA R, GOMBERT A K, et al. iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis [J]. Biotechnology Journal, 2014, 9(6): 776-790. |
85 | MARCIŠAUSKAS S, JI B, NIELSEN J. Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model[J]. BMC Bioinformatics, 2019, 20(1): 551. |
86 | PAPINI M, NOOKAEW I, UHLÉN M, et al. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(1): 136. |
87 | BALAGURUNATHAN B, JONNALAGADDA S, TAN L, et al. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis [J]. Microbial Cell Factories, 2012, 11: 27. |
88 | HILLIARD M, DAMIANI A, HE Q P, et al. Elucidating redox balance shift in Scheffersomyces stipitis' fermentative metabolism using a modified genome-scale metabolic model[J]. Microbial Cell Factories, 2018, 17: 140. |
89 | LI G, HU Y, Zrimec Jan, et al. Bayesian genome scale modelling identifies thermal determinants of yeast metabolism[J]. Nature Communications, 2021, 12(1): 190. |
90 | CHEN Y, LI F, MAO J, et al. Yeast optimizes metal utilization based on metabolic network and enzyme kinetics[J]. Proceedings of the National Academy of Sciences, 2021, 118(12): e2020154118. |
91 | ELSEMMAN I E, RODRIGUEZ PRADO A, GRIGAITIS P, et al. Whole-cell modeling in yeast predicts compartment-specific proteome constraints that drive metabolic strategies[J]. Nature Communications, 2022, 13(1): 801. |
92 | LI F, CHEN Y, QI Q, et al. Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints[J]. Nature Communications, 2022, 13(1): 2969. |
93 | DOMENZAIN I, SÁNCHEZ B, ANTON M, et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0[J]. Nature Communications, 2022, 13(1): 3766. |
94 | Reķēna A, PINHEIRO M J, BONTURI N, et al. Genome-scale metabolic modeling reveals metabolic trade-offs associated with lipid production in Rhodotorula toruloides [J]. PLOS Computational Biology, 2023, 19(4): e1011009. |
95 | BATTJES J, GRIGAITIS P, HOVING M, et al. Mitochondrial efficiency determines Crabtree effect across yeasts[A]. bioRxiv, 2024: 2024.11.01.621473. |
96 | GRIGAITIS P, VAN DEN BOGAARD S L, TEUSINK B. Elevated energy costs of biomass production in mitochondrial respiration-deficient Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2023, 23: foad008. |
97 | CHOI B, TAFUR RANGEL A, KERKHOVEN E J, et al. Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass[J]. Metabolic Engineering, 2024, 84: 23-33. |
98 | QIN N, LI L, WAN X, et al. Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast[J]. Nature Communications, 2024, 15(1): 1591. |
99 | ISHCHUK O P, DOMENZAIN I, SÁNCHEZ B J, et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences, 2022, 119(30): e2108245119. |
100 | BERNAT-CAMPS N, EBNER K, SCHUSTERBAUER V, et al. Enabling growth-decoupled Komagataella phaffii recombinant protein production based on the methanol-free PDH promoter[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1130583. |
101 | WEFELMEIER K, SCHMITZ S, KÖSTERS B J, et al. Methanol bioconversion into C3, C4, and C5 platform chemicals by the yeast Ogataea polymorpha[J]. Microbial Cell Factories, 2024, 23(1): 8. |
102 | VEIGA MOREIRA J DA, JOLICOEUR M, SCHWARTZ L, et al. Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction[J]. Scientific Reports, 2021, 11(1): 878. |
103 | SCOTT W T, SMID E J, BLOCK D E, et al. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts[J]. Microbial Cell Factories, 2021, 20: 204. |
104 | MESQUITA T J B, SARGO C R, FUZER J R, et al. Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations[J]. Microbial Cell Factories, 2019, 18(1): 150. |
105 | BOOJARI M A, RAJABI GHALEDARI F, MOTAMEDIAN E, et al. Developing a metabolic model-based fed-batch feeding strategy for Pichia pastoris fermentation through fine-tuning of the methanol utilization pathway[J]. Microbial Biotechnology, 2023, 16(6): 1344-1359. |
106 | TAMIRES MOREIRA MELO N, PONTES G C, PROCÓPIO D P, et al. Evaluation of Product Distribution in Chemostat and Batch Fermentation in Lactic Acid-Producing Komagataella phaffii Strains Utilizing Glycerol as Substrate[J]. Microorganisms, 2020, 8(5): 781. |
107 | FERNÁNDEZ-NIÑO M, RODRÍGUEZ-CUBILLOS M J, HERRERA-ROCHA F, et al. Dissecting industrial fermentations of fine flavour cocoa through metagenomic analysis[J]. Scientific Reports, 2021, 11(1): 8638. |
108 | PONOMAROVA O, GABRIELLI N, SÉVIN D C, et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow[J]. Cell Systems, 2017, 5(4): 345-357.e6. |
109 | ÖSTERLUND T, NOOKAEW I, NIELSEN J. Fifteen years of large scale metabolic modeling of yeast: Developments and impacts[J]. Biotechnology Advances, 2012, 30(5): 979-988. |
110 | GU C, KIM G B, KIM W J, et al. Current status and applications of genome-scale metabolic models[J]. Genome Biology, 2019, 20(1): 121. |
111 | DOMENZAIN I, LI F, KERKHOVEN E J, et al. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species[J]. FEMS Yeast Research, 2021, 21(1): foab002. |
112 | MAHADEVAN R, LOVLEY D R. The degree of redundancy in metabolic genes is linked to mode of metabolism[J]. Biophysical Journal, 2008, 94(4): 1216-1220. |
113 | DEUTSCHER D, MEILIJSON I, KUPIEC M, et al. Multiple knockout analysis of genetic robustness in the yeast metabolic network[J]. Nature Genetics, 2006, 38(9): 993-998. |
114 | CHEN L, VITKUP D. Predicting genes for orphan metabolic activities using phylogenetic profiles[J]. Genome Biology, 2006, 7(2): R17. |
115 | RAZAGHI-MOGHADAM Z, BABADI F S, NIKOLOSKI Z. Harnessing the optimization of enzyme catalytic rates in engineering of metabolic phenotypes[A]. Research Square, 2024. |
116 | SÁNCHEZ B J, LI F, KERKHOVEN E J, et al. SLIMEr: probing flexibility of lipid metabolism in yeast with an improved constraint-based modeling framework[J]. BMC Systems Biology, 2019, 13(1): 4. |
117 | MOURA FERREIRA M A de, WENDERING P, AREND M, et al. Accurate prediction of in vivo protein abundances by coupling constraint-based modelling and machine learning[J]. Metabolic Engineering, 2023, 80: 184-192. |
118 | BURGARD A P, NIKOLAEV E V, SCHILLING C H, et al. Flux coupling analysis of genome-scale metabolic network reconstructions[J]. Genome Research, 2004, 14(2): 301-312. |
119 | SMALLBONE K, SIMEONIDIS E, SWAINSTON N, et al. Towards a genome-scale kinetic model of cellular metabolism[J]. BMC Systems Biology, 2010, 4(1): 1-9. |
120 | MOHAMMADIPEYHANI H, HAFNER J, SVESHNIKOVA A, et al. Expanding biochemical knowledge and illuminating metabolic dark matter with ATLASx[J]. Nature Communications, 2022, 13(1): 1560. |
121 | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197. |
122 | CROWE S A, LIU Y, ZHAO X, et al. Advances in engineering nucleotide sugar metabolism for natural product glycosylation in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2024, 13(6): 1589-1599. |
123 | LERMA-ORTIZ C, JEFFRYES J G, COOPER A J L, et al. "Nothing of chemistry disappears in biology": the Top 30 damage-prone endogenous metabolites[J]. Biochemical Society Transactions, 2016, 44(3): 961-971. |
124 | WU K, LIU H, SUN M, et al. Yeast-MetaTwin for systematically exploring yeast metabolism through retrobiosynthesis and deep learning[A]. bioRxiv, 2024: 2024.09.02.610684. |
125 | NIELSEN J C, NIELSEN J. Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism[J]. Synthetic and Systems Biotechnology, 2017, 2(1): 5-12. |
126 | LU H, KERKHOVEN E J, NIELSEN J. Multiscale models quantifying yeast physiology: towards a whole-cell model[J]. Trends in Biotechnology, 2022, 40(3): 291-305. |
127 | SEN P, OREŠIČ M. Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine[J]. Metabolites, 2023, 13(7): 855. |
128 | GUO J, IBANEZ-LOPEZ A S, GAO H, et al. Automated Chemical Reaction Extraction from Scientific Literature[J]. Journal of Chemical Information and Modeling, 2022, 62(9): 2035-2045. |
129 | BESSELL B, LOECKER J, ZHAO Z, et al. COMO: a pipeline for multi-omics data integration in metabolic modeling and drug discovery[J]. Briefings in Bioinformatics, 2023, 24(6): bbad387. |
130 | THIELE I, PALSSON B Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction[J]. Nature Protocols, 2010, 5(1): 93-121. |
[1] | Mingwei SHAO, Simian SUN, Shimao YANG, Guoqiang CHEN. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[2] | Liang ZHAO, Zhenshuai LI, Liping FU, Ming LYU, Shi’an WANG, Quan ZHANG, Licheng LIU, Fuli LI, Ziyong LIU. Progress in biomanufacturing of lipids and single cell protein from one-carbon compounds [J]. Synthetic Biology Journal, 2024, 5(6): 1300-1318. |
[3] | Fanghuan ZHU, Xuecong CEN, Zhen CHEN. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
[4] | Wei YU, Jiaoqi GAO, Yongjin ZHOU. Bioconversion of one carbon feedstocks for producing organic acids [J]. Synthetic Biology Journal, 2024, 5(5): 1169-1188. |
[5] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[6] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[7] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[8] | Qingxiang ZHENG. Metabolic flux analysis of Shewanella sp. MR-4 with different terminal electron receptors [J]. Synthetic Biology Journal, 2023, 4(6): 1300-1320. |
[9] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[10] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[11] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[12] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[13] | Jiayu LIU, Zhihan YANG, Lei YANG, Liying ZHU, Zhengming ZHU, Ling JIANG. Advances in the development of Clostridium tyrobutyricum cell factories driven by synthetic biotechnology [J]. Synthetic Biology Journal, 2022, 3(6): 1174-1200. |
[14] | Qi LIU, Zhilan QIAN, Lili SONG, Chaoying YAO, Mingqiang XU, Yanna REN, Menghao CAI. Rewiring and application of Pichia pastoris chassis cell [J]. Synthetic Biology Journal, 2022, 3(6): 1150-1173. |
[15] | Shuyuan GUO, Lianghuan WU, Xiangjian LIU, Bo WANG, Tao YU. Developing C1-based metabolic network in methylotrophy for biotransformation [J]. Synthetic Biology Journal, 2022, 3(1): 116-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||