Fanghuan ZHU1, Xuecong CEN1, Zhen CHEN1,2
Received:
2024-02-04
Revised:
2024-05-08
Published:
2024-05-28
Contact:
Zhen CHEN
竺方欢1, 岑雪聪1, 陈振1,2
通讯作者:
陈振
作者简介:
基金资助:
CLC Number:
Fanghuan ZHU, Xuecong CEN, Zhen CHEN. Research progress of diols production by microbes[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-014.
竺方欢, 岑雪聪, 陈振. 微生物合成二元醇研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-014.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-014
Fig. 1 Biosynthetic pathways of EG(The enzymes encoded by the genes: serA, phosphoglycerate dehydrogenase; serC, phosphoserine aminotransferase; serB, phosphoserine phosphatase; sdC, L-serine decarboxylase; ao, amine oxidase; agt, serine-glyoxylate aminotransferase; mdlC, benzoylformate decarboxylase; fucO/yqhD, alcohol dehydrogenase; xdh, D-xylose dehydrogenase; xylB, xylulokinase; xylC, xylonolactonase; yjhG/yagF, D-xylonate dehydrogenase; yjhH/yagE, 2-keto-3-deoxy-D-pentose aldolase; xylA, D-xylose isomerase; khk-C, D-xylulose kinase; aldoB, D-xylulose-1-phosphate aldolase; dte, D-tagatose epimerase; fucK, fuculokinase; fucA/rhaD, D-ribulose 1-phosphate aldolase)
产物 | 合成路径 | 菌株 | 底物 | 基因改造策略 | 产量 (g/L) | 得率 (g/g) | 生产 效率 (g/L/h) | 理论 转化率(g/g) | 文献 |
---|---|---|---|---|---|---|---|---|---|
乙二醇 (EG) | Dahms路径 | Escherichia coli | D-木糖 | (1)下调xylB表达 (2)过表达yqhD | 108.2 | 0.36 | 2.25 | 0.41 | [ |
Dahms路径 | Escherichia coli | D-木糖 | (1)敲除arcA和aldA; (2)过表达yjhH, xdh, xylC, fucO和yjhG | 72.0 | 0.40 | 1.38 | [ | ||
R1P路径 | Escherichia coli | D-木糖 | (1)过表达fucK, fucO和fucA (2)敲除ald和xylB | 40 | 0.35 | 0.58 | 0.41 | [ | |
X1P路径 | Escherichia coli | D-木糖 | (1)过表达khk-C, aldoB和fucO (2)敲除xylB和ald | 20 | 0.38 | 0.37 | 0.41 | [ | |
X1P路径 | Saccharomyces cerevisiae F251 | D-木糖 | (1)过表达pfk1和pfk2; (2)敲除xks1 | 4.05 | 0.120 | 0.06 | [ | ||
丝氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达aao, sdc, serABC和fucO (2)敲除aldA | 4.1 | 0.14 | - | 0.7 | [ | |
丝氨酸路径 | Corynebacterium glutamicum | 葡萄糖 | (1)过表达sgt, mdlC, sdc, AO和yqhD (2)插入serACB; (3)敲除pabABC和sdaA | 3.5 | 0.09 | - | [ | ||
1,2-丙二醇 (1,2-PDO) | 丙酮醛途径 | K. pneumoniae | 甘油 | (1)过表达mgsA和yqhD (2)敲除tpiA | 9.3 | 0.2 | 0.06 | 0.56 | [ |
丙酮醛途径 | Escherichia coli | 葡萄糖 | (1)过表达mgsA, gldA, fdh1和fucO (2)敲除zwf, tpiA, adhE, gloA和ldhA | 5.13 | 0.48 | - | [ | ||
乳酸途径 | Escherichia coli | 葡萄糖 | (1)敲除adhE, dld, lldD, frdA, pflB, mgsA, aldA和arcA | 17.3 | 0.18 | 0.72 | 0.56 | [ | |
1,3-丙二醇 (1,3-PDO) | 甘油途径 | Escherichia coli | 葡萄糖 | - | 135 | 3.5 | - | 0.59 | [ |
甘油途径 | Corynebacterium glutamicum | 葡萄糖 | (1)敲除ald, pyk, adh, poxB, ldhA,ppc和zwf (2)过表达hdpA-gldA, gpd1, gpp2, yqhD, 和pduCEDGH (3)下调表达gapA | 110.4 | 0.42 | 2.3 | 0.59 | [ | |
甘油途径 | Vibrio natriegens | 甘油 | (1)敲除pta-ackA, arcA, adhE, aldB, ldh, pfl, sthA, glpR, aldA和frdABCD (2)过表达pntAB和phaP | 69.5 | 0.51 | 2.9 | 0.67 | [ | |
高丝氨酸途径 | Escherichia coli | 葡萄糖 | (1)敲除thrB (2)过表达yqhD, lysC, serCR42W/R77W, metL和pdc | 3.03 | - | 0.05 | 0.55 | [ | |
丙二酰辅酶A途径 | Escherichia coli | 葡萄糖 | (1)过表达mcrC, pduP, mcrN, yqhD和prpE | 7.98 | 0.15 | 0.22 | 0.54 | [ | |
β-丙氨酸途径 | Escherichia coli | 葡萄糖 | (1)敲除lysC (2)过表达ppc (3)下调表达gltA | 11.21 | - | 0.10 | 0.61 | [ | |
1,3-丁二醇 (1,3-BDO) | 3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB和bld | 15.75 | 0.18 | 0.16 | 0.53 | [ |
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达 bldL273T, yqhD, phaAB和 pntAB (2)敲除ldh, pta, ackA, adhE | 13.40 | 0.30 | 0.42 | [ | ||
3-羟基丁酸还原路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, yqhD, pntAB, car和sfp (2)敲除ldh, pta, ackA, adhE | 0.40 | 0.02 | - | [ | ||
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达 pk, glpX, thl, hbd, tesB和car (2)敲除 zwf, edd, pfkA和pfkB | 22.66 | 0.40 | 0.32 | 0.56 | [ | |
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, bld和yqhD (2)敲除adhE, poxB, ldhA, pta-ackA, atoB, tesB和yciA | 23.10 | 0.26 | 0.64 | [ | ||
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, bld, yjgB和zwf (2)敲除adhE, poxB, ldhA, yciA, pdhR, pgi和gntR | 71.10 | 0.34 | 1.55 | [ | ||
DERA-AKR路径 | Escherichia coli | 葡萄糖 | (1)过表达 AKR, DERA和 PDC (2)敲除pta, yjgB, adhE, ldhA, pflB, adhP, yqhD, eutG, ilvB, and poxB; | 2.40 | 0.06 | - | 0.55 | [ | |
1,4-丁二醇 (1,4-BDO) | 琥珀酰辅酶A路径 | Escherichia coli | 葡萄糖 | - | >125 | 0.40 | >0.35 | 0.5 | [ |
谷氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达gadB, gabT, yqhD, car, ppc, gltAR163L | 1.41 | 0.07 | 0.03 | 0.58 | [ | |
非磷酸化路径 | Escherichia coli | 葡萄糖、木糖 | (1)敲除yagE, xylA和yjhH (2)过表达KvidV461I, xylBCDX和yqhD | 12 | 0.26 (木糖) | 0.40 | 0.41 | [ | |
1,2-丁二醇 (1,2-BDO) | 苏氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达pyc, thrABC, ilvA, L-ldh, car, yqhD (2)敲除lldd, dld | 0.15 | - | - | 0.48 | [ |
2,3- 丁二醇 (2,3-BDO) | 丙酮酸路径 | Saccharomyces cerevisiae | 葡萄糖 | (1)过表达BDH1 (2)下调PDC1, PDC6, 和AHD1 | 178 | 0.34 | 2.64 | 0.5 | [ |
Corynebacterium glutamicum | 葡萄糖 | (1)过表达budABC和acs (2)敲除ldhA, adhE, frdA和pta | 144.9 | 0.43 | 1.10 | [ | |||
1,5- 戊二醇 (1,5-PDO) | 赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysCQ298G, asd,ddh, dapA,patA, patD, cadA, gabT, yahk, car, sfp, yqhD (2)敲除gabD, gdhA | 9.25 | 0.16 | 0.05 | 0.40 | [ |
赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysC, dapA, davB, davA, gabT, yqhD, car和sfp (2)敲除iclR | 0.97 | 0.05 | - | 0.38 | [ | |
赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysCQ298G, asd,ddh, dapA, davB, davA, gabT, yqhD, abfT, bldL273T 和pntAB | 0.12 | 0.006 | - | 0.3 | [ |
Table 1 Typical pathways and metabolic engineering modification strategies for biosynthesis of diols
产物 | 合成路径 | 菌株 | 底物 | 基因改造策略 | 产量 (g/L) | 得率 (g/g) | 生产 效率 (g/L/h) | 理论 转化率(g/g) | 文献 |
---|---|---|---|---|---|---|---|---|---|
乙二醇 (EG) | Dahms路径 | Escherichia coli | D-木糖 | (1)下调xylB表达 (2)过表达yqhD | 108.2 | 0.36 | 2.25 | 0.41 | [ |
Dahms路径 | Escherichia coli | D-木糖 | (1)敲除arcA和aldA; (2)过表达yjhH, xdh, xylC, fucO和yjhG | 72.0 | 0.40 | 1.38 | [ | ||
R1P路径 | Escherichia coli | D-木糖 | (1)过表达fucK, fucO和fucA (2)敲除ald和xylB | 40 | 0.35 | 0.58 | 0.41 | [ | |
X1P路径 | Escherichia coli | D-木糖 | (1)过表达khk-C, aldoB和fucO (2)敲除xylB和ald | 20 | 0.38 | 0.37 | 0.41 | [ | |
X1P路径 | Saccharomyces cerevisiae F251 | D-木糖 | (1)过表达pfk1和pfk2; (2)敲除xks1 | 4.05 | 0.120 | 0.06 | [ | ||
丝氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达aao, sdc, serABC和fucO (2)敲除aldA | 4.1 | 0.14 | - | 0.7 | [ | |
丝氨酸路径 | Corynebacterium glutamicum | 葡萄糖 | (1)过表达sgt, mdlC, sdc, AO和yqhD (2)插入serACB; (3)敲除pabABC和sdaA | 3.5 | 0.09 | - | [ | ||
1,2-丙二醇 (1,2-PDO) | 丙酮醛途径 | K. pneumoniae | 甘油 | (1)过表达mgsA和yqhD (2)敲除tpiA | 9.3 | 0.2 | 0.06 | 0.56 | [ |
丙酮醛途径 | Escherichia coli | 葡萄糖 | (1)过表达mgsA, gldA, fdh1和fucO (2)敲除zwf, tpiA, adhE, gloA和ldhA | 5.13 | 0.48 | - | [ | ||
乳酸途径 | Escherichia coli | 葡萄糖 | (1)敲除adhE, dld, lldD, frdA, pflB, mgsA, aldA和arcA | 17.3 | 0.18 | 0.72 | 0.56 | [ | |
1,3-丙二醇 (1,3-PDO) | 甘油途径 | Escherichia coli | 葡萄糖 | - | 135 | 3.5 | - | 0.59 | [ |
甘油途径 | Corynebacterium glutamicum | 葡萄糖 | (1)敲除ald, pyk, adh, poxB, ldhA,ppc和zwf (2)过表达hdpA-gldA, gpd1, gpp2, yqhD, 和pduCEDGH (3)下调表达gapA | 110.4 | 0.42 | 2.3 | 0.59 | [ | |
甘油途径 | Vibrio natriegens | 甘油 | (1)敲除pta-ackA, arcA, adhE, aldB, ldh, pfl, sthA, glpR, aldA和frdABCD (2)过表达pntAB和phaP | 69.5 | 0.51 | 2.9 | 0.67 | [ | |
高丝氨酸途径 | Escherichia coli | 葡萄糖 | (1)敲除thrB (2)过表达yqhD, lysC, serCR42W/R77W, metL和pdc | 3.03 | - | 0.05 | 0.55 | [ | |
丙二酰辅酶A途径 | Escherichia coli | 葡萄糖 | (1)过表达mcrC, pduP, mcrN, yqhD和prpE | 7.98 | 0.15 | 0.22 | 0.54 | [ | |
β-丙氨酸途径 | Escherichia coli | 葡萄糖 | (1)敲除lysC (2)过表达ppc (3)下调表达gltA | 11.21 | - | 0.10 | 0.61 | [ | |
1,3-丁二醇 (1,3-BDO) | 3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB和bld | 15.75 | 0.18 | 0.16 | 0.53 | [ |
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达 bldL273T, yqhD, phaAB和 pntAB (2)敲除ldh, pta, ackA, adhE | 13.40 | 0.30 | 0.42 | [ | ||
3-羟基丁酸还原路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, yqhD, pntAB, car和sfp (2)敲除ldh, pta, ackA, adhE | 0.40 | 0.02 | - | [ | ||
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达 pk, glpX, thl, hbd, tesB和car (2)敲除 zwf, edd, pfkA和pfkB | 22.66 | 0.40 | 0.32 | 0.56 | [ | |
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, bld和yqhD (2)敲除adhE, poxB, ldhA, pta-ackA, atoB, tesB和yciA | 23.10 | 0.26 | 0.64 | [ | ||
3-羟基丁酰辅酶A路径 | Escherichia coli | 葡萄糖 | (1)过表达phaAB, bld, yjgB和zwf (2)敲除adhE, poxB, ldhA, yciA, pdhR, pgi和gntR | 71.10 | 0.34 | 1.55 | [ | ||
DERA-AKR路径 | Escherichia coli | 葡萄糖 | (1)过表达 AKR, DERA和 PDC (2)敲除pta, yjgB, adhE, ldhA, pflB, adhP, yqhD, eutG, ilvB, and poxB; | 2.40 | 0.06 | - | 0.55 | [ | |
1,4-丁二醇 (1,4-BDO) | 琥珀酰辅酶A路径 | Escherichia coli | 葡萄糖 | - | >125 | 0.40 | >0.35 | 0.5 | [ |
谷氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达gadB, gabT, yqhD, car, ppc, gltAR163L | 1.41 | 0.07 | 0.03 | 0.58 | [ | |
非磷酸化路径 | Escherichia coli | 葡萄糖、木糖 | (1)敲除yagE, xylA和yjhH (2)过表达KvidV461I, xylBCDX和yqhD | 12 | 0.26 (木糖) | 0.40 | 0.41 | [ | |
1,2-丁二醇 (1,2-BDO) | 苏氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达pyc, thrABC, ilvA, L-ldh, car, yqhD (2)敲除lldd, dld | 0.15 | - | - | 0.48 | [ |
2,3- 丁二醇 (2,3-BDO) | 丙酮酸路径 | Saccharomyces cerevisiae | 葡萄糖 | (1)过表达BDH1 (2)下调PDC1, PDC6, 和AHD1 | 178 | 0.34 | 2.64 | 0.5 | [ |
Corynebacterium glutamicum | 葡萄糖 | (1)过表达budABC和acs (2)敲除ldhA, adhE, frdA和pta | 144.9 | 0.43 | 1.10 | [ | |||
1,5- 戊二醇 (1,5-PDO) | 赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysCQ298G, asd,ddh, dapA,patA, patD, cadA, gabT, yahk, car, sfp, yqhD (2)敲除gabD, gdhA | 9.25 | 0.16 | 0.05 | 0.40 | [ |
赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysC, dapA, davB, davA, gabT, yqhD, car和sfp (2)敲除iclR | 0.97 | 0.05 | - | 0.38 | [ | |
赖氨酸路径 | Escherichia coli | 葡萄糖 | (1)过表达 lysCQ298G, asd,ddh, dapA, davB, davA, gabT, yqhD, abfT, bldL273T 和pntAB | 0.12 | 0.006 | - | 0.3 | [ |
Fig. 2 Biosynthetic pathways of 1,2-PDO(The enzymes encoded by the genes: gldA/dhaD, glycerol dehydrogenase; dhaK, PEP-dependent dihydroxyacetone kinase; mgsA, methylglyoxal synthase; yqhD, alcohol dehydrogenase; yahK, alcohol dehydrogenase; fucO, alcohol dehydrogenase; ldhA/lldH, lactate dehydrogenase; pct, propionate CoA-transferase; pduP, aldehyde dehydrogenase.)
Fig. 3 Biosynthetic pathways of 1,3-PDO(The enzymes encoded by the genes: gpd, glycerol-3-phosphate dehydrogenase; gpp2, glycerol-3-phosphate phosphatase; dhaBCE, vitamin B12-dependent glycerol dehydratase; dhaT/yqhD, alcohol dehydrogenase; acc, acetyl-CoA carboxylase; mcr, malonyl-CoA reductase; prpE, 3-hydroxypropionyl-CoA synthetase; pduP, aldehyde dehydrogenase; car, carboxylic acid reductase; mdh, methanol dehydrogenase; adh, alcohol dehydrogenase; DERA, deoxyribose-5-phosphate aldolase; aspC, aspartate transaminase; panD, aspartate decarboxylase; bauA, β-alanine-pyruvate aminotransferase; ydfG, 3-hydroxy acid dehydrogenase; M_1456, 3-hydroxypropionyl-Coenzyme A synthetase; lysC, malate kinase; asd, malate semialdehyde dehydrogenase; ssr, malate semialdehyde reductase; lldD, lactate dehydrogenase; kdc, ketoacid decarboxylase; pdc, pyruvate decarboxylase; gdhA, glutamate dehydrogenase; serC, phosphoserine aminotransferase.)
Fig. 4 Biosynthetic pathways of 1,3-BDO(The enzymes encoded by the genes: adhE, alcohol dehydrogenase; DERA, deoxyribose-5-phosphate aldolase; yqhD, alcohol dehydrogenase; phaA, acetyl-CoA acetyltransferase; phaB, acetoacetyl-CoA reductase; bld, 3-hydroxybutyryl-CoA dehydrogenase; car, carboxylic acid reductase.)
Fig. 5 Biosynthetic pathways of 1,4-BDO(The enzymes encoded by the genes: gdhA, glutamate dehydrogenase; gadB, glutamate decarboxylase; gabT, aminotransferase; sucD, succinate semialdehyde dehydrogenase; yqhD/4hbd/adh, alcohol dehydrogenase; cat2, 4-hydroxybutyrate-CoA transferase; ald, aldehyde dehydrogenase; car, carboxylic acid reductase; xylBC, D-xylose dehydrogenase; xylD/yjhG/yagF, D-xylonate dehydratase; xylX/hvo/kdxD, 2-keto-3-deoxy-D-xylonate dehydratase; sadh, alcohol dehydrogenase; kivD/mdlC, decarboxylase.)
Fig. 6 Biosynthetic pathways of 2,3-BDO(The enzymes encoded by the genes: budB, acetolactate synthase; budA, acetolactate decarboxylase; budC, 2,3-butanediol dehydrogenase.)
Fig. 7 Biosynthetic pathway of 1,2-BDO(The enzymes encoded by the genes: pyc, pyruvate carboxylase; aspC, aspartate transaminase; thrA, homoserine dehydrogenase; asd, aspartate semialdehyde dehydrogenase; thrB, homoserine kinase; thrC, threonine synthase; ilvA, L-threonine dehydratase; L-ldh, L-lactate dehydrogenase; car, carboxylic acid reductase; yqhD, alcohol dehydrogenase.)
Fig. 8 Biosynthetic pathways of 1,5-PDO(The enzymes encoded by the genes: davB, lysine monooxygenase; davA, 5-aminovaleramidase; gabT, 4-aminobutyrate aminotransferase; yqhD/yahK, alcohol dehydrogenase; car, carboxylic acid reductase; abfT, 5-hydroxyvalerate-CoA transferase; bld, aldehyde dehydrogenase; cadA, lysine decarboxylase; patA, putrescine aminotransferase; patD, alcohol dehydrogenase.)
1 | CHOI S, SONG C W, SHIN J H, et al. Biorefineries for the production of top building block chemicals and their derivatives[J]. Metabolic Engineering, 2015, 28: 223-239. |
2 | LIU Y F, WANG W, ZENG A P. Biosynthesizing structurally diverse diols via a general route combining oxidative and reductive formations of OH-groups[J]. Nature Communications, 2022, 13(1): 1595. |
3 | LIU Y, CEN X C, LIU D H, et al. Metabolic engineering of Escherichia coli for high-yield production of (R)-1,3-butanediol[J]. ACS Synthetic Biology, 2021, 10(8): 1946-1955. |
4 | ZHANG Y, LIU D H, CHEN Z. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies[J]. Biotechnology for Biofuels, 2017, 10: 299. |
5 | CEN X C, LIU Y J, ZHU F H, et al. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway[J]. Metabolic Engineering, 2022, 74: 168-177. |
6 | CEN X C, DONG Y, LIU D H, et al. New pathways and metabolic engineering strategies for microbial synthesis of diols[J]. Current Opinion in Biotechnology, 2022, 78: 102845. |
7 | VIVEK N, HAZEENA S H, ALPHY M P, et al. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches[J]. Bioresource Technology, 2021, 322: 124527. |
8 | WU T, LIU Y M, LIU J S, et al. Metabolic engineering and regulation of diol biosynthesis from renewable biomass in Escherichia coli [J]. Biomolecules, 2022, 12(5): 715. |
9 | 陈勇,李凤梅,韩荣伟, 等. 酵母不对称催化制备R-1,2丙二醇[J].生物加工过程,2009,7(04):61-64. |
CHEN Y, LI F M, HAN R W, et al. Preparation of (R)-1,2-propanediol through asymmetric reduction with bakers yeast[J]. Chinese Journal of Bioprocess Engineering,2009,7(04):61-64. | |
10 | MATSUYAMA A, YAMAMOTO H, KAWADA N, et al. Industrial production of (R)-1,3-butanediol by new biocatalysts[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4-6): 513-521. |
11 | ZHU F H, LIU D H, CHEN Z. Recent advances in biological production of 1,3-propanediol: new routes and engineering strategies[J]. Green Chemistry, 2022, 24(4): 1390-1403. |
12 | BURGARD A, BURK M J, OSTERHOUT R, et al. Development of a commercial scale process for production of 1,4-butanediol from sugar[J]. Current Opinion in Biotechnology, 2016, 42: 118-125. |
13 | SALUSJÄRVI L, HAVUKAINEN S, KOIVISTOINEN O, et al. Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2019, 103(6): 2525-2535. |
14 | YUE H R, ZHAO Y J, MA X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218-4244. |
15 | CHAE T U, CHOI S Y, RYU J Y, et al. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli [J]. AIChE Journal, 2018, 64(12): 4193-4200. |
16 | WANG Y H, XIAN M, FENG X J, et al. Biosynthesis of ethylene glycol from D-xylose in recombinant Escherichia coli [J]. Bioengineered, 2018, 9(1): 233-241. |
17 | PEREIRA B, LI Z J, DE MEY M, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate[J]. Metabolic Engineering, 2016, 34: 80-87. |
18 | URANUKUL B, WOOLSTON B M, FINK G R, et al. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes[J]. Metabolic Engineering, 2019, 51: 20-31. |
19 | ALKIM C, CAM Y, TRICHEZ D, et al. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli [J]. Microbial Cell Factories, 2015, 14: 127. |
20 | PEREIRA B, ZHANG H R, DE MEY M, et al. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol[J]. Biotechnology and Bioengineering, 2016, 113(2): 376-383. |
21 | CHEN Z, HUANG J H, WU Y, et al. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose[J]. Metabolic Engineering, 2016, 33: 12-18. |
22 | SUN S Q, SHU L, LU X Y, et al. 1,2-Propanediol production from glycerol via an endogenous pathway of Klebsiella pneumoniae [J]. Applied Microbiology and Biotechnology, 2021, 105(23): 9003-9016. |
23 | JAIN R, SUN X X, YUAN Q P, et al. Systematically engineering Escherichia coli for enhanced production of 1,2-propanediol and 1-propanol[J]. ACS Synthetic Biology, 2015, 4(6): 746-756. |
24 | NIU W, KRAMER L, MUELLER J, et al. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid[J]. Metabolic Engineering Communications, 2019, 8: e00082. |
25 | KURIAN J V. A new polymer platform for the future—sorona® from corn derived 1,3-propanediol[J]. Journal of Polymers and the Environment, 2005, 13(2): 159-167. |
26 | LI Z H, DONG Y F, LIU Y, et al. Systems metabolic engineering of Corynebacterium glutamicum for high-level production of 1,3-propanediol from glucose and xylose[J]. Metabolic Engineering, 2022, 70: 79-88. |
27 | ZHANG Y, SUN Q, LIU Y, et al. Development of a plasmid stabilization system in Vibrio natriegens for the high production of 1,3-propanediol and 3-hydroxypropionate[J]. Bioresources and Bioprocessing, 2021, 8(1): 125. |
28 | ZHANG Y J, MA C W, DISCHERT W, et al. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose[J]. Biotechnology Journal, 2019, 14(9): e1900003. |
29 | LI Z H, WU Z Y, CEN X C, et al. Efficient production of 1,3-propanediol from diverse carbohydrates via a non-natural pathway using 3-hydroxypropionic acid as an intermediate[J]. ACS Synthetic Biology, 2021, 10(3): 478-486. |
30 | LI M D, ZHANG Y, LI J C, et al. Biosynthesis of 1,3-propanediol via a new pathway from glucose in Escherichia coli [J]. ACS Synthetic Biology, 2023, 12(7): 2083-2093. |
31 | KATAOKA N, VANGNAI A S, UEDA H, et al. Enhancement of (R)-1,3-butanediol production by engineered Escherichia coli using a bioreactor system with strict regulation of overall oxygen transfer coefficient and pH[J]. Bioscience, Biotechnology, and Biochemistry, 2014, 78(4): 695-700. |
32 | WANG J, ZHANG R H, ZHANG J L, et al. Tunable hybrid carbon metabolism coordination for the carbon-efficient biosynthesis of 1,3-butanediol in Escherichia coli [J]. Green Chemistry, 2021, 23(21): 8694-8706. |
33 | ISLAM T, NGUYEN-VO T P, GAUR V K, et al. Metabolic engineering of Escherichia coli for biological production of 1,3-Butanediol[J]. Bioresource Technology, 2023, 376: 128911. |
34 | ISLAM T, NGUYEN-VO T P, CHO S, et al. Metabolic engineering of Escherichia coli for enhanced production of 1, 3-butanediol from glucose[J]. Bioresource Technology, 2023, 389: 129814. |
35 | KIM T, FLICK R, BRUNZELLE J, et al. Novel Aldo-Keto reductases for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol: structural and biochemical studies[J]. Applied and Environmental Microbiology, 2017, 83(7): e03172-16. |
36 | WANG J, LI C Y, ZOU Y S, et al. Bacterial synthesis of C3-C5 diols via extending amino acid catabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(32): 19159-19167. |
37 | TAI Y S, XIONG M Y, JAMBUNATHAN P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products[J]. Nature Chemical Biology, 2016, 12(4): 247-253. |
38 | QIN N, ZHU F H, LIU Y Y, et al. Metabolic engineering of Escherichia coli for de novo production of 1,2-butanediol[J]. ACS Synthetic Biology, 2024, 13(1): 351-357. |
39 | LEE Y G, SEO J H. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2019, 12: 204. |
40 | KOU M Y, CUI Z Z, FU J, et al. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol[J]. Microbial Cell Factories, 2022, 21(1): 150. |
41 | CEN X C, LIU Y, CHEN B, et al. Metabolic engineering of Escherichia coli for de novo production of 1,5-pentanediol from glucose[J]. ACS Synthetic Biology, 2021, 10(1): 192-203. |
42 | TAO Y M, BU C Y, ZOU L H, et al. A comprehensive review on microbial production of 1,2-propanediol: micro-organisms, metabolic pathways, and metabolic engineering[J]. Biotechnology for Biofuels, 2021, 14(1): 216. |
43 | MARINAS A, BRUIJNINCX P, FTOUNI J, et al. Sustainability metrics for a fossil- and renewable-based route for 1,2-propanediol production: a comparison[J]. Catalysis Today, 2015, 239: 31-37. |
44 | INGVADOTTIR E M, SCULLY S M, ORLYGSSON J. Production of (S)-1,2-propanediol from L-rhamnose using the moderately thermophilic Clostridium strain AK1[J]. Anaerobe, 2018, 54: 26-30. |
45 | BADÍA J, ROS J, AGUILAR J. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae [J]. Journal of Bacteriology, 1985, 161(1): 435-437. |
46 | JUN S A, MOON C, KANG C H, et al. Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae [J]. Applied Biochemistry and Biotechnology, 2010, 161(1-8): 491-501. |
47 | LIU H J, XU Y Z, ZHENG Z M, et al. 1, 3-Propanediol and its copolymers: research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1137-1148. |
48 | YANG M M, YUN J H, ZHANG H H, et al. Genetically engineered strains: application and advances for 1,3-propanediol production from glycerol[J]. Food Technology and Biotechnology, 2018, 56(1): 3-15. |
49 | OH B R, LEE S M, HEO S Y, et al. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae [J]. Microbial Cell Factories, 2018, 17(1): 92. |
50 | ZHOU S, HUANG Y H, MAO X L, et al. Impact of acetolactate synthase inactivation on 1,3-propanediol fermentation by Klebsiella pneumoniae [J]. PLoS One, 2019, 14(4): e0200978. |
51 | CHEN Z, GENG F, ZENG A P. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose[J]. Biotechnology Journal, 2015, 10(2): 284-289. |
52 | ZHONG W Q, ZHANG Y, WU W J, et al. Metabolic engineering of a homoserine-derived non-natural pathway for the de novo production of 1,3-propanediol from glucose[J]. ACS Synthetic Biology, 2019, 8(3): 587-595. |
53 | WALTHER T, TOPHAM C M, IRAGUE R, et al. Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid[J]. Nature Communications, 2017, 8: 15828. |
54 | FRAZÃO C J R, TRICHEZ D, SERRANO-BATAILLE H, et al. Construction of a synthetic pathway for the production of 1,3-propanediol from glucose[J]. Scientific Reports, 2019, 9(1): 11576. |
55 | ZHANG C J, SHARMA S, MA C W, et al. Strain evolution and novel downstream processing with integrated catalysis enable highly efficient coproduction of 1,3-propanediol and organic acid esters from crude glycerol[J]. Biotechnology and Bioengineering, 2022, 119(6): 1450-1466. |
56 | MENG H, WANG C, YUAN Q P, et al. An aldolase-based new pathway for bioconversion of formaldehyde and ethanol into 1,3-propanediol in Escherichia coli [J]. ACS Synthetic Biology, 2021, 10(4): 799-809. |
57 | TROTTER C L, BABU G S, WALLACE S. Engineering biology for sustainable 1,4-butanediol synthesis[J]. Trends in Biotechnology, 2023, 41(3): 286-288. |
58 | ZHU Y, YANG J M, MEI F, et al. Bio-based 1,4-butanediol and tetrahydrofuran synthesis: perspective[J]. Green Chemistry, 2022, 24(17): 6450-6466. |
59 | YIM H, HASELBECK R, NIU W, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol[J]. Nature Chemical Biology, 2011, 7(7): 445-452. |
60 | BARTON N R, BURGARD A P, BURK M J, et al. An integrated biotechnology platform for developing sustainable chemical processes[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(3): 349-360. |
61 | LIU H W, LU T. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli [J]. Metabolic Engineering, 2015, 29: 135-141. |
62 | WANG J, JAIN R, SHEN X L, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose[J]. Metabolic Engineering, 2017, 40: 148-156. |
63 | LIU X, FABOS V, TAYLOR S, et al. One-step production of 1,3-butadiene from 2,3-butanediol dehydration[J]. Chemistry, 2016, 22(35): 12290-12294. |
64 | BAEK H S, WOO B Y, YOO S J, et al. Composition containing meso-2,3-butanediol: US 10525017[P/OL]. 2020-01-07[2024-01-01]. . |
65 | OTAGIRI M, UI S, TAKUSAGAWA Y, et al. Structural basis for chiral substrate recognition by two 2,3-butanediol dehydrogenases[J]. FEBS Letters, 2010, 584(1): 219-223. |
66 | YU B, SUN J B, BOMMAREDDY R R, et al. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321[J]. Applied and Environmental Microbiology, 2011, 77(12): 4230-4233. |
67 | LEE J W, LEE Y G, JIN Y S, et al. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production[J]. Applied Microbiology and Biotechnology, 2021, 105(14-15): 5751-5767. |
68 | MIZOBATA A, MITSUI R, YAMADA R, et al. Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy[J]. Journal of Bioscience and Bioengineering, 2021, 131(3): 283-289. |
69 | NOVAK K, KUTSCHA R, PFLÜGL S. Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W[J]. Biotechnology for Biofuels, 2020, 13: 177. |
70 | REHMAN S, LENG L, ZHUANG H C, et al. Genomic insights to facilitate the construction of a high-xylose-utilization Enterococcus faecalis OPS2 for 2,3-BDO production[J]. Chemical Engineering Journal, 2022, 448: 137617. |
71 | LIN H, XU J Y, SUN W L, et al. Efficient 1-hydroxy-2-butanone production from 1,2-butanediol by whole cells of engineered E. coli [J]. Catalysts, 2021, 11(10): 1184. |
72 | LU H Y, DIAZ D J, CZARNECKI N J, et al. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667. |
73 | JIANG S, WANG R R, WANG D H, et al. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli [J]. Metabolic Engineering, 2023, 76: 146-157. |
74 | LIN J L, WAGNER J M, ALPER H S. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications[J]. Biotechnology Advances, 2017, 35(8): 950-970. |
75 | CHAE T U, CHOI S Y, KIM J W, et al. Recent advances in systems metabolic engineering tools and strategies[J]. Current Opinion in Biotechnology, 2017, 47: 67-82. |
76 | ZHANG Y W, YANG J W, YANG S Q, et al. Programming cells by multicopy chromosomal integration using CRISPR-associated transposases[J]. The CRISPR Journal, 2021, 4(3): 350-359. |
77 | DONG Y F, ZHANG Y, LIU D H, et al. Strain and process engineering toward continuous industrial fermentation[J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1336-1353. |
78 | JIANG L L, LIU H F, MU Y, et al. High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge[J]. Engineering in Life Sciences, 2017, 17(6): 635-644. |
79 | LEE S Y, KIM H U, CHAE T U, et al. A comprehensive metabolic map for production of bio-based chemicals[J]. Nature Catalysis, 2019, 2: 18-33. |
80 | UTESCH T, SABRA W, PRESCHER C, et al. Enhanced electron transfer of different mediators for strictly opposite shifting of metabolism in Clostridium pasteurianum grown on glycerol in a new electrochemical bioreactor[J]. Biotechnology and Bioengineering, 2019, 116(7): 1627-1643. |
[1] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[2] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[3] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[4] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[5] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[6] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[7] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[8] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[9] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[10] | Jiayu LIU, Zhihan YANG, Lei YANG, Liying ZHU, Zhengming ZHU, Ling JIANG. Advances in the development of Clostridium tyrobutyricum cell factories driven by synthetic biotechnology [J]. Synthetic Biology Journal, 2022, 3(6): 1174-1200. |
[11] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[12] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[13] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[14] | Jiaoyu JIN, Jiahai ZHOU. The mystery of Z-genome biosynthesis has been elucidated [J]. Synthetic Biology Journal, 2022, 3(1): 1-5. |
[15] | Shuyuan GUO, Lianghuan WU, Xiangjian LIU, Bo WANG, Tao YU. Developing C1-based metabolic network in methylotrophy for biotransformation [J]. Synthetic Biology Journal, 2022, 3(1): 116-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||