Qi GAO, Wenhai XIAO
Published:
2024-08-30
Contact:
Wenhai XIAO
高琪, 肖文海
通讯作者:
肖文海
作者简介:
基金资助:
CLC Number:
Qi GAO, Wenhai XIAO. Advances in the biosynthesis of monoterpenes by yeast[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-049.
高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-049
单萜 | 底盘 | 策略 | 产量(mg/L) | 参考文献 |
---|---|---|---|---|
香叶醇 | 酿酒酵母 | 1.过表达截短的tHMGR和IDI1 2.利用计算机结构分析和建模来截短CrGES酶的N端转运肽 3.反向融合ERG20ww / t3CrGES与另一拷贝ERG20ww共表达 4.补料分批发酵 | 1680 | [ |
解脂耶氏酵母 | 1.过表达截短的HMG1、IDI和tCrGES 2.过表达3拷贝的tCrGES和单拷贝的ERG10、HMGS、tHMG1、IDI1 | 1000 | [ | |
甘油假丝酵母 | 1.MVA与IUP双途径 2.设计癸烷响应杂交启动子调控基因表达:将PCgALK1的ARR1元件串联至PGAP的核心启动子(PGAP (core-477)) | 1194.6 | [ | |
香茅醇 | 酿酒酵母 | 1.表达CrIS还原酶并敲除ATF1 2.内源Erg20突变为Erg20F96W 3.对融合蛋白、CrIS酶、IDI1使用蛋白支架SF1(SH31PDZ1GBD1) | 8300 | [ |
芳樟醇 | 酿酒酵母 | 1.对芳樟醇合成酶(t67OMcLISM)底物结合口袋的入口处氨基酸位点F447E突变 2.利用细胞质和过氧化物酶体促进芳樟醇合成 3.5L补料分批发酵 | 2600 | [ |
月桂烯 | 酿酒酵母 | 1.使用弱启动子PHXT1替换Erg20的启动子 2.将Erg20F96W与MS/OS进行融合表达 3.优化两相发酵中有机相的添加量 | 8.12 | [ |
罗勒烯 | 酿酒酵母 | 34.56 | ||
柠檬烯 | 酿酒酵母 | 1.动态抑制竞争性旁路 2.优化tLimS拷贝数 3.增加乙酰辅酶A和NADPH供应 | 2630 | [ |
解脂耶氏酵母 | 1.引入额外拷贝的柠檬烯合成基因 2.甘油和柠檬酸作为碳源 | 165.3 | [ | |
薄荷醇 | 酿酒酵母 | 1.薄荷醇从头合成路径的构建 2.过表达MVA路径基因 3.使用弱启动子PHXT1替换Erg20的启动子 4.增加限速酶IPDH与KSI拷贝数 | 6.28 | [ |
蒎烯 | 酿酒酵母 | 1.表达ERG20WW+ tPtPS 2.过表达IDI1 和 MAF1 | 11.7 | [ |
解脂耶氏酵母 | 1.构建非正交生物合成途径 2.利用餐厨废油和木质纤维素水解液作为碳源 | 36.1 | [ | |
甘油假丝酵母 | 1.强化MVA路径并引入NPP合酶 2.过表达Hog1基因与外源磷酸酶 3.对Pt30进行理性设计——点突变(T376R) 4.添加NaCl升高渗透压促使角鲨烯应答 5.优化培养基及5L发酵罐扩大 | 16.4 | [ | |
桧烯 | 酿酒酵母 | 1.在细胞质和线粒体中同时表达t34SabS1 2.过表达线粒体相关基因AIM25 | 154.9 | [ |
Table 1 Current status on yeast synthesis of monoterpenoids
单萜 | 底盘 | 策略 | 产量(mg/L) | 参考文献 |
---|---|---|---|---|
香叶醇 | 酿酒酵母 | 1.过表达截短的tHMGR和IDI1 2.利用计算机结构分析和建模来截短CrGES酶的N端转运肽 3.反向融合ERG20ww / t3CrGES与另一拷贝ERG20ww共表达 4.补料分批发酵 | 1680 | [ |
解脂耶氏酵母 | 1.过表达截短的HMG1、IDI和tCrGES 2.过表达3拷贝的tCrGES和单拷贝的ERG10、HMGS、tHMG1、IDI1 | 1000 | [ | |
甘油假丝酵母 | 1.MVA与IUP双途径 2.设计癸烷响应杂交启动子调控基因表达:将PCgALK1的ARR1元件串联至PGAP的核心启动子(PGAP (core-477)) | 1194.6 | [ | |
香茅醇 | 酿酒酵母 | 1.表达CrIS还原酶并敲除ATF1 2.内源Erg20突变为Erg20F96W 3.对融合蛋白、CrIS酶、IDI1使用蛋白支架SF1(SH31PDZ1GBD1) | 8300 | [ |
芳樟醇 | 酿酒酵母 | 1.对芳樟醇合成酶(t67OMcLISM)底物结合口袋的入口处氨基酸位点F447E突变 2.利用细胞质和过氧化物酶体促进芳樟醇合成 3.5L补料分批发酵 | 2600 | [ |
月桂烯 | 酿酒酵母 | 1.使用弱启动子PHXT1替换Erg20的启动子 2.将Erg20F96W与MS/OS进行融合表达 3.优化两相发酵中有机相的添加量 | 8.12 | [ |
罗勒烯 | 酿酒酵母 | 34.56 | ||
柠檬烯 | 酿酒酵母 | 1.动态抑制竞争性旁路 2.优化tLimS拷贝数 3.增加乙酰辅酶A和NADPH供应 | 2630 | [ |
解脂耶氏酵母 | 1.引入额外拷贝的柠檬烯合成基因 2.甘油和柠檬酸作为碳源 | 165.3 | [ | |
薄荷醇 | 酿酒酵母 | 1.薄荷醇从头合成路径的构建 2.过表达MVA路径基因 3.使用弱启动子PHXT1替换Erg20的启动子 4.增加限速酶IPDH与KSI拷贝数 | 6.28 | [ |
蒎烯 | 酿酒酵母 | 1.表达ERG20WW+ tPtPS 2.过表达IDI1 和 MAF1 | 11.7 | [ |
解脂耶氏酵母 | 1.构建非正交生物合成途径 2.利用餐厨废油和木质纤维素水解液作为碳源 | 36.1 | [ | |
甘油假丝酵母 | 1.强化MVA路径并引入NPP合酶 2.过表达Hog1基因与外源磷酸酶 3.对Pt30进行理性设计——点突变(T376R) 4.添加NaCl升高渗透压促使角鲨烯应答 5.优化培养基及5L发酵罐扩大 | 16.4 | [ | |
桧烯 | 酿酒酵母 | 1.在细胞质和线粒体中同时表达t34SabS1 2.过表达线粒体相关基因AIM25 | 154.9 | [ |
1 | 高扬乐, 谢梦斯, 李力. 利用不同底盘细胞开展生物合成萜类化合物的研究进展[J]. 药物生物技术, 2022, 29(01): 95-101. |
GAO Y L, XIE M S, LI L.Research Progress in Biosynthesis of Terpenoids using Different Chassis Cells[J]. Chinese Journal Of Pharmaceutical Biotechnology, 2022, 29(01): 95-101. | |
2 | KABIR A, CACCIAGRANO F, TARTAGLIA A, et al. Analysis of Monoterpenes and Monoterpenoids[J]. Recent Advances in Natural Products Analysis, 2020: 274-286. |
3 | ORTH A M, POPLACEAN I, FASTOWSKI O,et al. Assessment of dietary exposure to flavouring substances via consumption of flavoured teas. Part II: transfer rates of linalool and linalyl esters into Earl Grey tea infusions[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2014, 31(2): 207-217. |
4 | KARABORKLU S, AYVAZ A. A comprehensive review of effective essential oil components in stored-product pest management[J]. Journal of Plant Diseases and Protection, 2023, 130(3): 449-481. |
5 | DASSANAYAKE M K, CHONG C H, KHOO T J, et al. Synergistic field crop pest management properties of plant-derived essential oils in combination with synthetic pesticides and bioactive molecules: a review[J]. Foods, 2021, 10(9): 2016. |
6 | MARRS T C, MAYNARD R L. Neurotranmission systems as targets for toxicants: a review[J]. Cell Biol Toxicol, 2013, 29(6): 381-396. |
7 | KIM S H, BAE H C, PARK E J, et al. Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways[J]. Biochemical And Biophysical Research Communications, 2011, 407(1): 129-34. |
8 | WITTIG C, SCHEUER C, PARAKENINGS J, et al. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling[J]. PLoS One, 2015, 10(7): e0131946. |
9 | GUPTA P, PHULARA S C. Metabolic engineering for isoprenoid-based biofuel production[J]. Journal of Applied Microbiology, 2015, 119(3): 605-619. |
10 | CIRIMINNA R, LOMELI-RODRIGUEZ M, DEMMA CARA P, et al. Limonene: a versatile chemical of the bioeconomy[J]. Chemical Communications, 2014, 50(97): 15288–15296. |
11 | AJIKUMAR P K, XIAO W H, TYO K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
12 | CHANDRAN S S, KEALEY J T, REEVES C D. Microbial production of isoprenoids[J]. Process Biochemistry, 2011, 46(9): 1703-1710. |
13 | KIM J, SALVADOR M, SAUNDERS E, et al. Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis[J]. Essays Biochem, 2016, 60(4): 303-313. |
14 | IGNEA, C, RAADAM, M H, MOTAWIA, M S, et al. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019, 10 (1): 3799. |
15 | CAO X, LV Y B, CHEN J, et al. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction[J]. Biotechnology for Biofuels and Bioproducts, 2016, 9: 214. |
16 | SARRIA S, WONG B, GARCIA MARTIN H, et al. Microbial synthesis of pinene[J]. Acs Synthetic Biology, 2014, 3(7): 466-475. |
17 | CHATZIVASILEIOU A O, WARD V, EDGAR S M, et al. Two-step pathway for isoprenoid synthesis[J]. Proceedings of The National Academy of Sciences of The United States of America, 2019, 116 (2): 506 –511. |
18 | LUND S, HALL R, WILLIAMS G J. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism[J]. ACS Synthetic Biology, 2019, 8 (2): 232–238. |
19 | MUHAMMAD A, FENG X, RASOOL A, et al. Production of plant natural products through engineered Yarrowia lipolytica[J]. Biotechnology Advances, 2020, 43: 107555. |
20 | LIU G S, LI T, ZHOU W, et al. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2020, 57: 151-161. |
21 | ZHU Z T, DU M M, GAO B, et al. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction[J]. Metabolic Engineering, 2021, 68: 232-245. |
22 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
23 | MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production [J]. Nature, 2016, 537(7622): 694-697. |
24 | LI Z J, WANG Y Z, WANG L R, et al. Advanced strategies for the synthesis of terpenoids in Yarrowia lipolytica[J]. Journal of Agricultural and Food Chemistry, 2021, 69(8): 2367-2381. |
25 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive Biotechnologyogical producer of beta-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
26 | AGRAWAL A, YANG Z, BLENNER M. Engineering Yarrowia lipolytica for the biosynthesis of geraniol[J]. Metabolic Engineering Communications, 2023, 17: e00228. |
27 | WEI L J, ZHONG Y T, NIE M Y, et al. Biosynthesis of α-Pinene by Genetically Engineered Yarrowia lipolytica from Low-Cost Renewable Feedstocks[J]. Journal of Agricultural and Food Chemistry, 2020, 69(1): 275-285. |
28 | ZHUGE J, FANG H Y, WANG Z X, et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes[J]. Applied Microbiology And Biotechnology, 2001, 55: 686-692. |
29 | QIAO Y, LI C, LU X, et al. Identification of key residues forefficient glucose transport bythehexose transporter CgHxt4 inhigh sugar fermentation yeast Candida glycerinogenes[J]. Applied Microbiology And Biotechnology, 2021, 105(19): 7295-7307. |
30 | MA T, CAI H, ZONG H, et al. Effects of trehalose and ergosterol on pinene stress of Candida glycerinogenes[J]. Biotechnology And Applied Biochemistry, 2023, 70(1): 403-414. |
31 | 马腾飞. Candida glycerinogenes蒎烯耐受性及其生物合成研究[D]. 江南大学, 2023. |
MA T F. Cell tolernce and biosynthesis of pinene in Candida glycerinogenes[D]. Jiangnan University,2023. | |
32 | ZHAO C, WANG X H, LU X Y, et al. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes[J]. ACS Synthetic Biology, 2022, 11(5): 1835-1844. |
33 | ZHANG L, CHEN X, CHEN Z, et al. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9567-9580. |
34 | 陈远童. 十二碳二元酸工业生产试验研究[J]. 微生物学通报, 1998, 25(4): 244. |
CHEN Y T. Experimental study on industrial production of dodecanedioic acid[D]. Microbiology China, 1998, 25(4): 244. | |
35 | ALBUQUERQUE T L, SILVA I J DA, DE MACEDO G R, et al. Biotechnologyogical production of xylitol from lignocellulosic wastes: A review [J]. Process Biochemistry, 2014, 49(11): 1779-1789. |
36 | 郭晋蓉. 代谢工程改造热带假丝酵母生产柠檬烯及其衍生物紫苏酸[D]. 江南大学, 2023. |
GUO J R. Production of limonene and its derivative perillic acid in Candida tropicalis via metabolic engineering[D]. Jiangnan University, 2022. | |
37 | FISCHER MJ, MEYER S, CLAUDEL P, et al. Metabolic engineering of monoterpene synthesis in yeast[J]. Biotechnology and Bioengineering, 2011, 108: 1883-1892. |
38 | STRIJBIS K, DISTEL B. Intracellular acetyl unit transport in fungal carbon metabolism[J]. Eukaryotic Cell, 2010, 9(12): 1809-15. |
39 | ZHANG Q, ZENG W Z, XU S,et al. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae[J]. Bioresource Technology, 2021, 342: 125978. |
40 | CARDENAS J, SILVA N A DA. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis[J]. Metabolic Engineering, 2016, 36: 80-89. |
41 | CHEN Y, DAVIET L, SCHALK M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15: 48–54. |
42 | ZHANG X, LIU X, MENG Y, et al. Combinatorial engineering of Saccharomyces cerevisiae for improving limonene production[J]. Biochemical Engineering Journal, 2021, 176: 108155. |
43 | LIAN J, SI T, NAIR N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metabolic Engineering, 2014, 24: 139-149. |
44 | CHEN Y, SIEWERS V, NIELSEN J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae[J]. PLoS One, 2012, 7(8): e42475. |
45 | ZHANG X K, NIE M, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289: 46-54. |
46 | JIANG D, YANG M, CHEN K, et al. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica[J]. Bioresource Technology, 2024, 399: 130614. |
47 | BURG J S, ESPENSHADE P J. Regulation of HMG-CoA reductase in mammals and yeast[J]. Progress in Lipid Research, 2011, 50(4): 403-410. |
48 | IGNEA C, PONTINI M, MAFFEI M E, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synthetic Biology, 2014, 3(5): 298-306. |
49 | IGNEA C, CVETKOVIC I, LOUPASSAKI S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microbial Cell Factories, 2011, 10:4. |
50 | LIU J, ZHANG W, DU G, et al. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae[J]. Journal of Biotechnology, 2013, 168 (4): 446–451. |
51 | MUKHERJEE M, BLAIR R H, WANG Z Q. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production[J]. Metabolic Engineering. 2022, 74: 139-149. |
52 | ZHOU P P, DU Y, XU, et al. Improved linalool production in Saccharomyces cerevisiae by combining directed evolution of linalool synthase and overexpression of the complete mevalonate pathway[J]. Biochemical Engineering Journal, 2020, 161(15): 107655. |
53 | CHEN Y, WANG Y, LIU M, et al. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae[J]. Applied And Environmental Microbiologyl, 2019, 85(7): e01990-18. |
54 | MA Y, ZU Y, HUANG S, et al. Engineering a universal and efficient platform for terpenoid synthesis in yeast[J]. Proceedings of The National Academy of Sciences of The United States of America, 2023, 120(1): e2207680120. |
55 | 张帆, 王颖, 李春, 等. 单萜类化合物的微生物合成[J]. 生物工程学报, 2022, 38(2): 427-442. |
ZHANG F, WANG Y, LI C, et al. Microbial synthesis of monoterpenoids: a review[J]. Chinese Journal of Biotechnology, 2022, 38(2): 427-442. | |
56 | ZHAO J, BAO X, LI C, et al. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Applied Microbiology And Biotechnology, 2016, 100(10): 4561-4571. |
57 | ZHANG Y, WANG J, CAO X, et al. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology, 2020, 134: 109462. |
58 | JIANG G Z, YAO M D, WANG Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 41: 57-66. |
59 | BOHLMANN J, MEYER-GAUEN G, CROTEAU R. Plant terpenoid synthases: molecular biology and phylogenetic analysis[J]. Proceedings of The National Academy of Sciences of The United States of America, 1998, 95(8): 4126-4133. |
60 | DENBY C M, LI R A, VU V T, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer[J]. Nature Communications, 2018, 9(1): 965. |
61 | WANG X, PEREIRA J H, TSUTAKAWA S, et al. Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450[J]. Metabolic Engineering, 2021, 64: 41–51. |
62 | WANG Y, TONG R, YU J Z. Chemical synthesis of multifunctional air pollutants: terpene-derived nitrooxy organosulfates[J]. Environmental Science and Technology, 2021, 55(13): 8573–8582. |
63 | DENG Y, SUN M, XU S, et al. Enhanced(S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Journal of Applied Microbiologyl, 2016, 121(1): 187-195. |
64 | JIANG G, YAO M, WANG Y, et al. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 66: 51-59. |
65 | ZHOU P P, DU Y, FANG X, et al. Combinatorial Modulation of Linalool Synthase and Farnesyl Diphosphate Synthase for Linalool Overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2021, 69(3):1003-1010. |
66 | AYER A, SANWALD J, PILLAY B A. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae[J]. PLoS One, 2013, 8(6): e65240. |
67 | WEINERT B T, IESMANTAVICIUS V, MOUSTAFA T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae[J]. Moecularl Systems Biology, 2014, 10 (1): 716. |
68 | KIM J E, JANG I S, SON S H, et al. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway[J]. Metabolic Engineering, 2019, 56: 50–59. |
69 | GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192–201. |
70 | MA T, SHI B, YE Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134–142. |
71 | KONG X, WU Y, YU W, et al. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies[J]. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7752-7764. |
72 | JIA H J, CHEN T H, QU J Z, et al. Collaborative subcellular compartmentalization to improve GPP utilization and boost sabinene accumulation in Saccharomyces cerevisiae[J]. Biochemical Engineering Journal, 2020, 164: 107768. |
73 | DUSSÉAUX S, WAJN W T, LIU Y, et al. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids[J]. Proceedings of The National Academy of Sciences of The United States of America, 2020, 117(50): 31789-31799. |
74 | GERKE J, FRAUENDORF H, SCHNEIDER D, et al. Production of the fragrance geraniol in peroxisomes of a product-tolerant baker's yeast[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 582052. |
75 | PARVEEN M, HASAN M K, TAKAHASHI J, et al. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(1): 46-55. |
76 | BRENNAN T C, KROMER J O, NIELSEN L K. Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane[J]. Applied And Environmental Microbiology, 2013, 79(12): 3590-3600. |
77 | BAKKALI F, AVERBECK S, AVERBECK D, et al. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae[J]. Mutation Research-fundamental And Molecular Mechanisms of Mutagenesis, 2005, 585(1-2): 1-13. |
78 | URIBE S, RAMIREZ J, PENA A. Effects of beita-pinene on yeast membrane functions[J]. Journal of Bacteriology, 1985, 161(3): 1195-1200. |
79 | 田宁, 咸漠, 胡仰栋, 等. 产香叶醇重组大肠杆菌发酵培养基的优化[J]. 林产化学与工业, 2015, 35(4): 131-137. |
TIAN N, XIAN M, HU Y D, et al. Optimization of fermentation medium of geraniol-producing recombinant Escherichia coli[J]. Chemistry and Industry of Forest Products, 2015, 35(4): 131-137. | |
80 | LIU W, XU X, ZHANG R, et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture[J]. Biotechnology For Biofuels, 2016, 9: 58. |
81 | DUNLOP M J, DOSSANI Z Y, SZMIDT H L, et al. Engineering microbial biofuel tolerance and export using efflux pumps[J]. Molecular Systems Biology, 2011, 7(1): 487. |
82 | WANG Y, LIM L, DIGUISTINI S, et al. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees[J]. New Phytologist, 2013, 197(3): 886-898. |
83 | DEMISSIE Z A, TARNOWYCZ M, ADAL A M, et al. A lavender ABC transporter confers resistance to monoterpene toxicity in yeast[J]. Planta, 2019, 249(1): 139-144. |
84 | CHANG Y L, HUANG L M, KUO X Z, et al. PbABCG1 and PbABCG2 transporters are required for the emission of floral monoterpenes in Phalaenopsis bellina[J]. Plant Journal, 2023, 114(2):279-292. |
85 | RAFIEI V, RUFFINO A, PERSSON HODÉN K, et al. A Verticillium longisporum pleiotropic drug transporter determines tolerance to the plant host β-pinene monoterpene[J]. Molecular Plant Pathology, 2022, 23(2): 291-303. |
86 | 陈天华. 高产桧烯酿酒酵母的构建与优化[D]. 天津大学, 2019. |
CHEN T H. Construction and optimization of Saccharomyces cerevisiae for sabinene overproduction. Tianjin University, 2019. | |
87 | HU Z, LI H, WENG Y, et al. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(12): 1083-1097. |
88 | BRENNAN T C, WILLIAMS T C, SCHULZ B L, et al. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae[J]. Applied And Environmental Microbiology, 2015, 81(10): 3316-3325. |
89 | LI J, ZHU K, MIAO L, et al. Simultaneous Improvement of Limonene Production and Tolerance in Yarrowia lipolytica through Tolerance Engineering and Evolutionary Engineering[J]. Acs Synthetic Biologyl, 2021, 10(4): 884-896. |
90 | 李言, 笪心怡, 张雨晨, 等. 酵母芳樟醇耐受性的工程改造[J]. 微生物学通报, 2022, 49(8): 3062-3078. |
LI Y, DA X Y, ZHANG Y C, et al. Engineering of Saccharomyces cerevisiae for improved tolerance to linalool[J]. Microbiology China, 2022, 49(8): 3062-3078. | |
91 | ZHAO J, LI C, ZHANG Y, et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2017, 16(1): 17. |
92 | AMIRI P, SHAHPIRI A, ASADOLLAHI M A, et al. Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnology Letters, 2016, 38(3): 503-508. |
93 | LIU H, MARSAFARI M, DENG L, et al. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J]. Applied Microbiology And Biotechnology, 2019, 103(7): 3167-3179. |
94 | LI R, WANG K, WANG D, et al. Production of plant volatile terpenoids (rose oil) by yeast cell factories[J]. Green Chemistry, 2021, 23(14): 5088-5096. |
95 | ZHAO C, WANG X H, LU X Y, et al. Metabolic Engineering of Candida glycerinogenes for Sustainable Production of Geraniol[J]. Acs Synthetic Biology, 2023, 12(6): 1836-1844. |
96 | KOIVURANTA K, CASTILLO S, JOUHTEN P, et al. Enhanced Triacylglycerol Production With Genetically Modified Trichosporon oleaginosus[J]. Frontiers in Microbiology, 2018, 9: 1337. |
97 | CHENG B Q, WEI L J, LV Y B, et al. Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24 (3): 500-506. |
98 | ZHANG Y, CAO X, WANG J, et al. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway[J]. Microbial Cell Factories, 2022, 21(1): 212. |
99 | PARK J H, BASSALO M C, LIN G M, et al. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis[J]. Acs Synthetic Biology, 2023, 12(4): 1119-1132. |
100 | ZHOU P, ZHOU X, YUAN D, et al. Combining Protein and Organelle Engineering for Linalool Overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2023, 71(26): 10133-10143. |
101 | ZENG W, JIANG Y, SHAN X, et al. Engineering Saccharomyces cerevisiae for synthesis of β-myrcene and (E)-β-ocimene[J]. 3 Biotech, 2023, 13(12): 384. |
102 | Cheng B Q, Wei L J, Lv Y B, et al. Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition[J]. Biotechnology and Bioprocess Engineering, 2019, 24(3):500-506. |
103 | LV X, ZHOU X, MA J, et al. Engineered Saccharomyces cerevisiae for the De Novo Biosynthesis of (-)-Menthol[J]. Journal of Fungi, . 2022, 8(9): 982. |
104 | 陈天华, 张若思, 姜国珍, 等. 产蒎烯人工酵母细胞的构建[J]. 化工学报, 2019, 70(1): 179-188 |
CHEN T H, ZHANG R S, JIANG G Z, et al. Metabolic engineering of Saccharomyces cerevisiae for pinene production[J]. CIESC Journal, 2019, 70(1): 179-188. |
[1] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[2] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[3] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[4] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[5] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[6] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[7] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[8] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[9] | Jiayu LIU, Zhihan YANG, Lei YANG, Liying ZHU, Zhengming ZHU, Ling JIANG. Advances in the development of Clostridium tyrobutyricum cell factories driven by synthetic biotechnology [J]. Synthetic Biology Journal, 2022, 3(6): 1174-1200. |
[10] | Qi LIU, Zhilan QIAN, Lili SONG, Chaoying YAO, Mingqiang XU, Yanna REN, Menghao CAI. Rewiring and application of Pichia pastoris chassis cell [J]. Synthetic Biology Journal, 2022, 3(6): 1150-1173. |
[11] | Chaofan YANG, Yuchao JIANG, Moli SANG, Shengying LI, Wei ZHANG. Studies on the functional modulating effect of redox partners on the cytochrome P450 enzyme MycG [J]. Synthetic Biology Journal, 2022, 3(3): 587-601. |
[12] | Panpan WANG, Hongwei YU. Application of enzyme catalysis in the preparation of vitamins and their derivatives [J]. Synthetic Biology Journal, 2022, 3(3): 500-515. |
[13] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[14] | Tao TU, Huiying LUO, Bin YAO. Progress in the application of protein engineering in the developing of feed enzymes [J]. Synthetic Biology Journal, 2022, 3(3): 487-499. |
[15] | Shuyuan GUO, Lianghuan WU, Xiangjian LIU, Bo WANG, Tao YU. Developing C1-based metabolic network in methylotrophy for biotransformation [J]. Synthetic Biology Journal, 2022, 3(1): 116-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||