Sen XIAO1,2,4, Litao HU1,2,4, Zhicheng SHI1,2, Fayin WANG1,2, Siting YU1,2, Guocheng DU2,3, Jian CHEN2,3,4, Zhen KANG1,2,4
Received:
2024-08-14
Revised:
2024-10-24
Contact:
Zhen KANG
肖森1,2,4, 胡立涛1,2,4, 石智诚1,2, 王发银1,2, 余思婷1,2, 堵国成2,3, 陈坚2,3,4, 康振1,2,4
通讯作者:
康振
作者简介:
基金资助:
CLC Number:
Sen XIAO, Litao HU, Zhicheng SHI, Fayin WANG, Siting YU, Guocheng DU, Jian CHEN, Zhen KANG. Research advances in biosynthesis of hyaluronic acid with controllable molecular weights[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-062.
肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-062.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-062
工程菌株 | 改造策略 | HA产量(g·L-1) | HA分子量(Da) | 参考 文献 |
---|---|---|---|---|
S. Zooepidimicus ATCC 39920 | 敲除HA裂解酶编码基因hylB | 3.40 | 2.28×106 | [ |
S. Zooepidimicus | 过表达HAS编码基因sehasA,提高碳源浓度 | 6.90 | 2.75×106 | [ |
S. Zooepidimicus MTCC 3523 | 调节溶解氧水平与N-乙酰葡萄糖胺供应水平 | 2.4 | 2.53×106 | [ |
S. Zooepidimicus | 添加铁纳米颗粒 | 0.435 | 1.48×106 | [ |
S. Zooepidimicus ATCC 39920 | 紫外诱变策略,开发两阶段半连续发酵工艺 | 29.38 | - | [ |
E. coli K12 W3110 | 敲除6-磷酸果糖激酶I编码基因pfkA和葡萄糖-6-磷酸脱氢酶编码基因zwf,表达HA合成途径基因簇galU-ugd和glmS-glmM-glmU | 0.02998 | - | [ |
E. coli Top10 | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 0.19 | 0.35-1.9×106 | [ |
E. coli JM109 | 表达多杀巴斯德杆菌来源HAS编码基因pmhasA和大肠杆菌K5来源UDP-葡萄糖脱氢酶编码基因ugdA | 3.8 | - | [ |
Lactobacillus acidophilus | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 1.7 | - | [ |
Lactococcus lactis CES15 | PnisA启动子调控兽疫链球菌来源HAS编码基因sehasA表达 | 6.09 | - | [ |
Streptomyces albulus | 表达兽疫链球菌来源HAS编码基因sehasA和阿维米蒂利斯链霉菌来源UDP-葡萄糖脱氢酶编码基因ugdA、乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU、葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB | 6.2 | 2×106 | [ |
Pichia pastoris | 表达非洲爪蟾来源HAS编码基因xhasA2和UDP-葡萄糖脱氢酶编码基因xhasB,毕赤酵母来源的葡萄糖-6-磷酸尿酰胺转移酶编码基因hasC,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因hasD,磷酸葡萄糖异构酶编码基因hasE | 1.7 | 1.2-2.5×106 | [ |
B. subtilis 168 | 表达兽疫链球菌来源HAS编码基因sehasA,枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD,葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU,磷酸葡萄糖胺变位酶编码基因glmM和谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因glmS;下调6-磷酸果糖激酶I编码基因pfkA表达 | 3.16 | 1.4-1.83×106 | [ |
B. subtilis BGSC 1A751 | 表达细菌血红蛋白编码基因vhb、C组链球菌来源HAS编码基因hasA、枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD | 1.8 | - | [ |
C. glutamicum 13032 | 表达酿脓链球菌来源HAS编码基因spHasA,恶臭假单胞菌来源谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因ptglmS,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因cgugdA2;敲除糖基转移酶编码基因cg0420和cg0424 | 34.2 | 3.21×105 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因sehasA,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因hasB | 8.3 | 1.3×106 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因seHasA,UDP-葡萄糖脱氢酶编码基因hasB,敲除果糖1,6-二磷酸醛缩酶编码基因fba,葡萄糖-6-磷酸脱氢酶编码基因zwf,阻断乳酸和乙酸合成 | 28.7 | 2.1×105 | [ |
Tab. 1 Metabolic engineering modifies microorganisms to synthesize HA
工程菌株 | 改造策略 | HA产量(g·L-1) | HA分子量(Da) | 参考 文献 |
---|---|---|---|---|
S. Zooepidimicus ATCC 39920 | 敲除HA裂解酶编码基因hylB | 3.40 | 2.28×106 | [ |
S. Zooepidimicus | 过表达HAS编码基因sehasA,提高碳源浓度 | 6.90 | 2.75×106 | [ |
S. Zooepidimicus MTCC 3523 | 调节溶解氧水平与N-乙酰葡萄糖胺供应水平 | 2.4 | 2.53×106 | [ |
S. Zooepidimicus | 添加铁纳米颗粒 | 0.435 | 1.48×106 | [ |
S. Zooepidimicus ATCC 39920 | 紫外诱变策略,开发两阶段半连续发酵工艺 | 29.38 | - | [ |
E. coli K12 W3110 | 敲除6-磷酸果糖激酶I编码基因pfkA和葡萄糖-6-磷酸脱氢酶编码基因zwf,表达HA合成途径基因簇galU-ugd和glmS-glmM-glmU | 0.02998 | - | [ |
E. coli Top10 | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 0.19 | 0.35-1.9×106 | [ |
E. coli JM109 | 表达多杀巴斯德杆菌来源HAS编码基因pmhasA和大肠杆菌K5来源UDP-葡萄糖脱氢酶编码基因ugdA | 3.8 | - | [ |
Lactobacillus acidophilus | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 1.7 | - | [ |
Lactococcus lactis CES15 | PnisA启动子调控兽疫链球菌来源HAS编码基因sehasA表达 | 6.09 | - | [ |
Streptomyces albulus | 表达兽疫链球菌来源HAS编码基因sehasA和阿维米蒂利斯链霉菌来源UDP-葡萄糖脱氢酶编码基因ugdA、乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU、葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB | 6.2 | 2×106 | [ |
Pichia pastoris | 表达非洲爪蟾来源HAS编码基因xhasA2和UDP-葡萄糖脱氢酶编码基因xhasB,毕赤酵母来源的葡萄糖-6-磷酸尿酰胺转移酶编码基因hasC,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因hasD,磷酸葡萄糖异构酶编码基因hasE | 1.7 | 1.2-2.5×106 | [ |
B. subtilis 168 | 表达兽疫链球菌来源HAS编码基因sehasA,枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD,葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU,磷酸葡萄糖胺变位酶编码基因glmM和谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因glmS;下调6-磷酸果糖激酶I编码基因pfkA表达 | 3.16 | 1.4-1.83×106 | [ |
B. subtilis BGSC 1A751 | 表达细菌血红蛋白编码基因vhb、C组链球菌来源HAS编码基因hasA、枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD | 1.8 | - | [ |
C. glutamicum 13032 | 表达酿脓链球菌来源HAS编码基因spHasA,恶臭假单胞菌来源谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因ptglmS,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因cgugdA2;敲除糖基转移酶编码基因cg0420和cg0424 | 34.2 | 3.21×105 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因sehasA,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因hasB | 8.3 | 1.3×106 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因seHasA,UDP-葡萄糖脱氢酶编码基因hasB,敲除果糖1,6-二磷酸醛缩酶编码基因fba,葡萄糖-6-磷酸脱氢酶编码基因zwf,阻断乳酸和乙酸合成 | 28.7 | 2.1×105 | [ |
Fig. 2 Effect of HAS-directed modification and cell membrane component modification on HA molecular weight regulation(a) Key sites for transmembrane topology and molecular weight regulation of type I HAS and cell membrane components;(b) Protein structure and molecular weight regulatory key sites of type II HAS
Fig. 3 Effect of optimization of fermentation conditions on the regulation of molecular weight of HA(a) Addition of oxygen carriers to improve oxygen transfer efficiency and dissolved oxygen levels in fermentation broths;(b) The "intracellular accumulation" strategy of HA avoids the destruction of glycan chains by the shear forces of the external environment
Fig. 5 Direct synthesis of low molecular weight HA and oligosaccharides by microbial fermentation(a) Extracellular expression of HAase for degradation and synthesis of low molecular weight HA;(b) Intracellular expression of HAase realizes HA synthesis and depolymerization at the same time
1 | WEISSMANN B, MEYER K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord1,2[J]. Journal of the American Chemical Society, 1954, 76: 1753-7. |
2 | SERRA M, CASAS A E, TOUBARRO D, et al. Microbial hyaluronic acid production: a review[J]. Molecules, 2023, 28(5): 2084. |
3 | KOGAN G, SOLTÉS L, STERN R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1): 17-25. |
4 | KUMARI K, BAGGENSTOSS B A, PARKER A L, et al. Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size[J]. Journal of Biological Chemistry, 2006, 281(17): 11755-60. |
5 | NECAS J, BARTOSIKOVA L, BRAUNER P, et al. Hyaluronic acid (hyaluronan): a review[J]. Veterinarni Medicina, 2008, 53(8): 397-411. |
6 | HYNNEKLEIV L, MAGNO M, VERNHARDSDOTTIR R R, et al. Hyaluronic acid in the treatment of dry eye disease[J]. Acta Ophthalmologica, 2022, 100(8): 844-60. |
7 | RODRIGUEZ-MARQUEZ C D, ARTEAGA-MARIN S, RIVAS-SÁNCHEZ A, et al. A review on current strategies for extraction and purification of hyaluronic acid[J]. International Journal of Molecular Sciences, 2022, 23(11): 6038. |
8 | CHONG B F, BLANK L M, MCLAUGHLIN R, et al. Microbial hyaluronic acid production[J]. Applied Microbiology and Biotechnology, 2005, 66(4): 341-51. |
9 | DEANGELIS P L, JING W, DRAKE R R, et al. Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida [J]. Journal of Biological Chemistry, 1998, 273(14): 8454-8. |
10 | ZHANG Y, DONG J, XU G, et al. Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation[J]. Bioresource Technology, 2023, 377: 128896. |
11 | LIU L, LIU Y, LI J, et al. Microbial production of hyaluronic acid: current state, challenges, and perspectives[J]. Microbial Cell Factories, 2011, 10: 99. |
12 | ZHANG X, WANG M, LI T, et al. Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism[J]. AMB Express, 2016, 6(1): 121. |
13 | PIRES A M, SANTANA M H. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1751-61. |
14 | WEI M, HUANG Y, ZHU J, et al. Advances in hyaluronic acid production: biosynthesis and genetic engineering strategies based on Streptococcus - a review[J]. International Journal of Biological Macromolecules, 2024, 270(2): 132334. |
15 | MENAA F, MENAA A, MENAA B. Hyaluronic acid and derivatives for tissue engineering[J]. Journal of Biotechnology and Biomaterials, 2011, 3: 1-7. |
16 | BUFFA R, NEŠPOROVÁ K, BASARABOVÁ I, et al. Synthesis and study of branched hyaluronic acid with potential anticancer activity[J]. Carbohydrate Polymers, 2019, 223: 115047. |
17 | DOSIO F, ARPICCO S, STELLA B, et al. Hyaluronic acid for anticancer drug and nucleic acid delivery[J]. Advanced Drug Delivery Reviews, 2016, 97: 204-36. |
18 | KIM J H, MOON M J, KIM D Y, et al. Hyaluronic acid-based nanomaterials for cancer therapy[J]. Polymers, 2018, 10(10): 1133. |
19 | PEDRON S, WOLTER G L, CHEN J W E, et al. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens[J]. BioRxiv, 2019, 219: 119371. |
20 | LU J, ZHU Y, SUN H L, et al. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection[J]. Letters in Applied Microbiology, 2016, 62(4): 316-22. |
21 | KIMURA M, MAESHIMA T, KUBOTA T, et al. Absorption of orally administered hyaluronan[J]. Journal of Medicinal Food, 2016, 19(12): 1172-9. |
22 | TIAN X, AZPURUA J, HINE C M, et al. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat [J]. Nature, 2013, 499: 346-9. |
23 | TAKASUGI M, FIRSANOV D, TOMBLINE G, et al. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties[J]. Nature Communications, 2020, 11(1): 2376. |
24 | LAGUNAS-RANGEL F A. Naked mole-rat hyaluronan[J]. Biochimie, 2024, 220: 58-66. |
25 | DEL MARMOL D, HOLTZE S, KICHLER N, et al. Abundance and size of hyaluronan in naked mole-rat tissues and plasma[J]. Scientific Reports, 2021, 11(1): 7951. |
26 | RANKIN K S, FRANKEL D. Hyaluronan in cancer - from the naked mole rat to nanoparticle therapy[J]. Soft Matter, 2016, 12(17): 3841-8. |
27 | BUKHARI S N A, ROSWANDI N L, WAQAS M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: a review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects[J]. International Journal of Biological Macromolecules, 2018, 120(Pt B): 1682-95. |
28 | DOUSE-DEAN T, JACOB C I. Fast and easy treatment for reduction of the Tyndall effect secondary to cosmetic use of hyaluronic acid[J]. Journal of Drugs in Dermatology: JDD, 2008, 7(3): 281-3. |
29 | XUE Y, CHEN H, XU C, et al. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether[J]. RSC Advances, 2020, 10(12): 7206-13. |
30 | ANDRADE DEL OLMO J, ALONSO J M, SÁEZ MARTÍNEZ V, et al. Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus [J]. Materials Science and Engineering: C, 2021, 125: 112102. |
31 | HUERTA-ÁNGELES G, ONDREÁŠ F, BRANDEJSOVÁ M, et al. Formulation of hyaluronan grafted with dodecanoic acid as a potential ophthalmic treatment[J]. Carbohydrate Polymers, 2020, 246: 116578. |
32 | MARINHO A, NUNES C, REIS S. Hyaluronic acid: a key ingredient in the therapy of inflammation[J]. Biomolecules, 2021, 11(10): 1518. |
33 | DONG Y, ARIF A, OLSSON M, et al. Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-α, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages[J]. Scientific Reports, 2016, 6: 36928. |
34 | AUDAM T, DASSANAYAKA S, JURKOVIC A, et al. Abstract 823: The extracellular matrix component, hyaluronan, provokes a pro-inflammatory phenotype in macrophages[J]. Circulation Research, 2019, 125(1s): 823. |
35 | POHLIG F, GUELL F, LENZE U, et al. Hyaluronic Acid suppresses the expression of metalloproteinases in osteoarthritic cartilage stimulated simultaneously by interleukin 1β and mechanical load[J]. PloS One, 2016, 11(3): e0150020. |
36 | DU W, YANG X, HE S, et al. Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the treatment of colorectal cancer[J]. Drug Delivery, 2021, 28(1): 920-9. |
37 | CUI Y, WANG F, VOORHEES J J, et al. Rejuvenation of aged human skin by injection of cross-linked hyaluronic acid[J]. Plastic and Reconstructive Surgery, 2021, 147(1s/2): 43s-9s. |
38 | JANG M, BAEK S, KANG G, et al. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity[J]. International Journal of Cosmetic Science, 2020, 42(3): 302-9. |
39 | MISRA S, HASCALL V C, MARKWALD R R, et al. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer[J]. Frontiers in Immunology, 2015, 6: 201. |
40 | BHATTACHARYA D, SVECHKAREV D, SOUCHEK J J, et al. Impact of structurally modifying hyaluronic acid on CD44 interaction[J]. Journal of Materials Chemistry B, 2017, 5(41): 8183-92. |
41 | KHEGAI I I. Hyaluronan metabolism and tumor progression[J]. Russian Journal of Bioorganic Chemistry, 2022, 48(5): 896-905. |
42 | CAMACHO K M, MENEGATTI S, MITRAGOTRI S. Low-molecular-weight polymer-drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations[J]. Nanomedicine, 2016, 11(9): 1139-51. |
43 | PASSI A, VIGETTI D. Hyaluronan as tunable drug delivery system[J]. Advanced Drug Delivery Reviews, 2019, 146: 83-96. |
44 | WOO J E, SEONG H J, LEE S Y, et al. Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 351. |
45 | YU H, STEPHANOPOULOS G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2008, 10(1): 24-32. |
46 | LAI Z W, RAHIM R A, ARIFF A B, et al. Comparison of hyaluronic acid biosynthesis by the recombinant Escherichia coli strains in different mode of bioreactor operation[J]. The Journal of Microbiology, Biotechnology and Food Sciences, 2016, 2017: 905-10. |
47 | YU H, TYO K, ALPER H, et al. A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors[J]. Biotechnology and Bioengineering, 2008, 101(4): 788-96. |
48 | MAO Z, SHIN H D, CHEN R. A recombinant E. coli bioprocess for hyaluronan synthesis[J]. Applied Microbiology and Biotechnology, 2009, 84(1): 63-9. |
49 | SCHULTE S, DOSS S S, JEEVA P, et al. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan[J]. Applied Microbiology and Biotechnology, 2019, 103(18): 7567-81. |
50 | PUVENDRAN K, JAYARAMAN G. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 6989-7001. |
51 | JEEVA P, SHANMUGA DOSS S, SUNDARAM V, et al. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4363-75. |
52 | SUNGUROĞLU C, SEZGIN D E, AYTAR ÇELIK P, et al. Higher titer hyaluronic acid production in recombinant Lactococcus lactis [J]. Preparative Biochemistry and Biotechnology, 2018, 48(8): 734-42. |
53 | LI Y, LI G, ZHAO X, et al. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis [J]. 3 Biotech, 2019, 9(6): 225. |
54 | WESTBROOK A W, REN X, OH J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis [J]. Metabolic Engineering, 2018, 47: 401-13. |
55 | WIDNER B, BEHR R, VON DOLLEN S, et al. Hyaluronic acid production in Bacillus subtilis [J]. Applied and Environmental Microbiology, 2005, 71(7): 3747-52. |
56 | WESTBROOK A W, REN X, MOO-YOUNG M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis [J]. Biotechnology and Bioengineering, 2018, 115(1): 216-31. |
57 | JIA Y, ZHU J, CHEN X, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights[J]. Bioresource Technology, 2013, 132: 427-31. |
58 | CHIEN L J, LEE C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin[J]. Biotechnology Progress, 2007, 23(5): 1017-22. |
59 | JEONG E, SHIM W Y, KIM J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. Journal of Biotechnology, 2014, 185: 28-36. |
60 | CHENG F, YU H, STEPHANOPOULOS G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019, 55: 276-89. |
61 | CHENG F, GONG Q, YU H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum [J]. Biotechnology Journal, 2016, 11(4): 574-84. |
62 | HOFFMANN J, ALTENBUCHNER J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight[J]. Journal of Applied Microbiology, 2014, 117(3): 663-78. |
63 | CHENG F, LUOZHONG S, GUO Z, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10). |
64 | HU L, WANG Y, HUANG H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum [J]. Nature Communications, 2020, 11(1): 3120. |
65 | UCM R, AEM M, LHB Z, et al. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications[J]. Bioengineered, 2022, 13(4): 9645-61. |
66 | WANG J, HE W, WANG T, et al. Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus [J]. Colloids and Surfaces B: Biointerfaces, 2021, 205: 111854. |
67 | JIN P, KANG Z, YUAN P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35: 21-30. |
68 | SUN X, WANG Z, BI Y, et al. Genetic and functional characterization of the hyaluronate lyase HylB and the beta-N-acetylglucosaminidase HylZ in Streptococcus zooepidemicus [J]. Current Microbiology, 2015, 70(1): 35-42. |
69 | ZAKERI A, RASAEE M J, POURZARDOSHT N. Enhanced hyluronic acid production in Streptococcus zooepidemicus by over expressing HasA and molecular weight control with Niscin and glucose[J]. Biotechnology Reports, 2017, 16: 65-70. |
70 | MOHAN N, TADI S R R, PAVAN S S, et al. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3349-65. |
71 | CHAHUKI F F, AMINZADEH S, JAFARIAN V, et al. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus [J]. International Journal of Biological Macromolecules, 2019, 121: 870-81. |
72 | YOSHIMURA T, SHIBATA N, HAMANO Y, et al. Heterologous production of hyaluronic acid in an ε-poly-l-lysine producer, streptomyces albulus[J]. Applied and Environmental Microbiology, 2015, 81(11): 3631-40. |
73 | CHEN W Y, MARCELLIN E, HUNG J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus [J]. Journal of Biological Chemistry, 2009, 284(27): 18007-14. |
74 | WEIGEL P H, HASCALL V C, TAMMI M. Hyaluronan synthases[J]. Journal of Biological Chemistry, 1997, 272(22): 13997-4000. |
75 | JOHNS M R, GOH L T, OEGGERLI A. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus [J]. Biotechnology Letters, 1994, 16: 507-12. |
76 | LI Y, SHI Z, SHAO Y, et al. Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis [J]. Biotechnology Letters, 2021, 43(1): 271-7. |
77 | HUANG W C, CHEN S J, CHEN T L. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation[J]. Biochemical Engineering Journal, 2006, 32: 239-43. |
78 | SKANDALIS S S, KARALIS T, HELDIN P. Intracellular hyaluronan: importance for cellular functions[J]. Seminars in Cancer Biology, 2020, 62: 20-30. |
79 | HMAR R V, PRASAD S B, JAYARAMAN G, et al. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis [J]. Biotechnology Journal, 2014, 9(12): 1554-64. |
80 | AGARWAL G, K V K, PRASAD S B, et al. Biosynthesis of hyaluronic acid polymer: dissecting the role of sub structural elements of hyaluronan synthase[J]. Scientific Reports, 2019, 9(1): 12510. |
81 | MALONEY F P, KUKLEWICZ J, COREY R A, et al. Structure, substrate recognition and initiation of hyaluronan synthase[J]. Nature, 2022, 604(7904): 195-201. |
82 | HUBBARD C, MCNAMARA J T, AZUMAYA C, et al. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan[J]. Journal of Molecular Biology, 2012, 418(1/2): 21-31. |
83 | WEIGEL P H, BAGGENSTOSS B A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines[J]. Glycobiology, 2012, 22(10): 1302-10. |
84 | YANG J, CHENG F, YU H, et al. Key Role of the Carboxyl terminus of hyaluronan synthase in processive synthesis and size control of hyaluronic acid polymers[J]. Biomacromolecules, 2017, 18(4): 1064-73. |
85 | MANDAWE J, INFANZON B, EISELE A, et al. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic acid[J]. Chembiochem, 2018, 19(13): 1414-23. |
86 | DUAN X J, NIU H X, TAN W S, et al. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. Journal of Microbiology and Biotechnology, 2009, 19(3): 299-306. |
87 | LAI Z W, RAHIM R A, ARIFF A B, et al. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed[J]. Journal of Bioscience and Bioengineering, 2012, 114(3): 286-91. |
88 | ABDULLAH THAIDI N I, MOHAMAD R, WASOH H, et al. Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus [J]. Life, 2023, 13(2). |
89 | HU L, WANG Y, HU Y, et al. Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides[J]. Carbohydrate Polymers, 2022, 295: 119829. |
90 | ZHANG X, DUAN X J, TAN W. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. Food Chemistry, 2010, 119: 1643-6. |
91 | WU Y. Preparation of low-molecular-weight hyaluronic acid by ozone treatment[J]. Carbohydrate Polymers, 2012, 89(2): 709-12. |
92 | KARAMI M, SHAHRAKY M K, RANJBAR M, et al. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid[J]. Biotechnology Letters, 2021, 43(1): 133-42. |
93 | PANG B, WANG H, HUANG H, et al. Enzymatic production of low-molecular-weight hyaluronan and its oligosaccharides: a review and prospects[J]. Journal of Agricultural and Food Chemistry, 2022, 70(44): 14129-39. |
94 | GURA E, HÜCKEL M, MÜLLER P J. Specific degradation of hyaluronic acid and its rheological properties [J]. Polymer Degradation and Stability, 1998, 59(1): 297-302. |
95 | HUANG Y C, HUANG K Y, LEW W Z, et al. Gamma-Irradiation-Prepared Low Molecular Weight Hyaluronic Acid Promotes Skin Wound Healing [J]. Polymers, 2019, 11(7): 1214. |
96 | CHEN H, QIN J, HU Y. Efficient Degradation of High-Molecular-Weight Hyaluronic Acid by a Combination of Ultrasound, Hydrogen Peroxide, and Copper Ion [J]. Molecules, 2019, 24(3): 617. |
97 | HUANG H, LIANG Q, WANG Y, et al. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris [J]. Applied Microbiology and Biotechnology, 2020, 104(4): 1621-32. |
98 | JIN P, KANG Z, ZHANG N, et al. High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers[J]. Scientific Reports, 2014, 4: 4471. |
99 | WANG L, LIU Q, GONG X, et al. Cloning and biochemical characterization of a hyaluronate lyase from Bacillus sp. CQMU-D[J]. Journal of Microbiology and Biotechnology, 2023, 33(2): 235-41. |
100 | LI Y, ZHANG S, WU H, et al. Biochemical characterization of a thermophilic hyaluronate lyase TcHly8C from Thermasporomyces composti DSM22891[J]. International Journal of Biological Macromolecules, 2020, 165(Pt A): 1211-8. |
101 | NGUYEN V A, OGURA K, MATSUE M, et al. Novel hyaluronate lyase involved in pathogenicity of Streptococcus dysgalactiae subsp. equisimilis [J]. Frontiers in Microbiology, 2020, 11: 552418. |
102 | NEHMÉ R, NASREDDINE R, ORLIC L, et al. Kinetic theory of hyaluronan cleavage by bovine testicular hyaluronidase in standard and crowded environments[J]. Biochimica et Biophysica Acta, 2021, 1865(3): 129837. |
103 | LIU L, DU G, CHEN J, et al. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus [J]. Food Chemistry, 2008, 110(4): 923-6. |
104 | HE J, HUANG H, ZOU X, et al. Construction of saturated odd- and even-numbered hyaluronan oligosaccharide building block library[J]. Carbohydrate Polymers, 2020, 231: 115700. |
[1] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[2] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[3] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[4] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[5] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[6] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[7] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[8] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[9] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[10] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[11] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[12] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[13] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[14] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[15] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||