Jinchang LU1,2, Yaokang WU1,2, Xueqin LV1,2, Long LIU1,2, Jian CHEN1,2, Yanfeng LIU1,2
Received:
2024-08-01
Revised:
2024-10-11
Published:
2024-10-15
Contact:
Yanfeng LIU
鲁锦畅1,2, 武耀康1,2, 吕雪芹1,2, 刘龙1,2, 陈坚1,2, 刘延峰1,2
通讯作者:
刘延峰
作者简介:
基金资助:
CLC Number:
Jinchang LU, Yaokang WU, Xueqin LV, Long LIU, Jian CHEN, Yanfeng LIU. Green biomanufacturing of ceramide sphingolipids[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-059.
鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-059.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-059
出发底物 | 产物 | 总收率 | 参考文献 | |
---|---|---|---|---|
鞘氨醇碱从头合成 | 2-叠氮-4-硝基苯基磺酸衍生物 | 鞘氨醇;植物鞘氨醇 | 58% | [ |
立体选择性的环氧化物 | 鞘氨醇 | 51% | [ | |
D-葡萄糖衍生物 | D-赤式鞘氨醇;D-苏式鞘氨醇 | 52% | [ | |
L-丝氨酸 | 鞘氨醇;鞘磷脂;1-磷酸鞘氨醇; 鞘氨醇衍生物 | 37% | [ | |
N-Boc-L-丝氨酸 | 鞘氨醇 | 71% | [ | |
神经酰胺从头合成 | 三羟甲基氨基甲烷;脂肪酸羟基取代物 | 神经酰胺类似物 | 33%~65% | [ |
(2S)-2-氨基苯乙醇(苯甘氨醇);(1R,2R)2-氨基-1-苯基-1,3-丙二醇;(S)-2-氨基(-4-甲氧基)苯乙醇 | 神经酰胺类似物 | 63.5% | [ | |
羟化脂肪酸;环氧甘油基醚 | 神经酰胺类似物 | 60%~75% | [ | |
N-十六烷基-2-氨基乙醇;环己烷;丙二酸二甲酯 | 神经酰胺类似物 | 69% | [ | |
C16-烷基烯二聚体;二乙醇胺/N-甲基-2,3,4,5,6无羟基己胺/D-氨基葡萄糖/3-氨基-1,2-丙二醇/N-(1,3二羟基异丙基)胺/ N-(2,3,4,5,6-五羟基己基)胺等 | 神经酰胺类似物 | 20%~90% | [ | |
脂肪酸与鞘碱化学法合成神经酰胺 | 神经鞘氨醇;不同碳链长度有机酸 | 神经酰胺类似物 | 51%~96% | [ |
共轭羧酸与N‑羟基琥珀酰亚胺;鞘氨醇 | 含共轭羧酸的神经酰胺 | 50%~70% | [ | |
羧酸;植物鞘氨醇 | 神经酰胺III | 84% | [ | |
脂肪酸与鞘碱生物酶法法合成神经酰胺 | 二氢鞘氨醇;脂肪酸 Novozym 435 | 神经酰胺NG | 70%~98% | [ |
活化的羧酸衍生物;植物鞘氨醇/二氢鞘氨醇;Novozym 435 | 神经酰胺 | 98%~99.7% | [ | |
植物鞘氨酸;脂肪酸;Novozym 435 | 神经酰胺III | 94% | [ |
Table. 1 Chemical synthesis of ceramide and its precursor sphingosine base
出发底物 | 产物 | 总收率 | 参考文献 | |
---|---|---|---|---|
鞘氨醇碱从头合成 | 2-叠氮-4-硝基苯基磺酸衍生物 | 鞘氨醇;植物鞘氨醇 | 58% | [ |
立体选择性的环氧化物 | 鞘氨醇 | 51% | [ | |
D-葡萄糖衍生物 | D-赤式鞘氨醇;D-苏式鞘氨醇 | 52% | [ | |
L-丝氨酸 | 鞘氨醇;鞘磷脂;1-磷酸鞘氨醇; 鞘氨醇衍生物 | 37% | [ | |
N-Boc-L-丝氨酸 | 鞘氨醇 | 71% | [ | |
神经酰胺从头合成 | 三羟甲基氨基甲烷;脂肪酸羟基取代物 | 神经酰胺类似物 | 33%~65% | [ |
(2S)-2-氨基苯乙醇(苯甘氨醇);(1R,2R)2-氨基-1-苯基-1,3-丙二醇;(S)-2-氨基(-4-甲氧基)苯乙醇 | 神经酰胺类似物 | 63.5% | [ | |
羟化脂肪酸;环氧甘油基醚 | 神经酰胺类似物 | 60%~75% | [ | |
N-十六烷基-2-氨基乙醇;环己烷;丙二酸二甲酯 | 神经酰胺类似物 | 69% | [ | |
C16-烷基烯二聚体;二乙醇胺/N-甲基-2,3,4,5,6无羟基己胺/D-氨基葡萄糖/3-氨基-1,2-丙二醇/N-(1,3二羟基异丙基)胺/ N-(2,3,4,5,6-五羟基己基)胺等 | 神经酰胺类似物 | 20%~90% | [ | |
脂肪酸与鞘碱化学法合成神经酰胺 | 神经鞘氨醇;不同碳链长度有机酸 | 神经酰胺类似物 | 51%~96% | [ |
共轭羧酸与N‑羟基琥珀酰亚胺;鞘氨醇 | 含共轭羧酸的神经酰胺 | 50%~70% | [ | |
羧酸;植物鞘氨醇 | 神经酰胺III | 84% | [ | |
脂肪酸与鞘碱生物酶法法合成神经酰胺 | 二氢鞘氨醇;脂肪酸 Novozym 435 | 神经酰胺NG | 70%~98% | [ |
活化的羧酸衍生物;植物鞘氨醇/二氢鞘氨醇;Novozym 435 | 神经酰胺 | 98%~99.7% | [ | |
植物鞘氨酸;脂肪酸;Novozym 435 | 神经酰胺III | 94% | [ |
宿主 | 产物 | 底物碳源 | 策略 | 产量 | 参考文献 |
---|---|---|---|---|---|
威克汉姆西弗酵母 | 三乙酰鞘氨醇 | 葡萄糖 | 异源表达棉桃阿舒来源laf1和des1;突变SYR、DES | 33.45 mg/g DCW(500 mL挡板摇瓶) | [ |
威克汉姆西弗酵母(P.ciferrii lig4D strain CS.PCDPro2) | 四乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 阻断shm1、shm2;缺失cha1;删除lcb4;过表达lcb1、lcb2;敲除orm1、orm2;过表达sur2 | 199 mg/g DCW;2 g/L (摇瓶培养) | [ |
威克汉姆西弗酵母(NRRL Y1031) | 四乙酰植物鞘氨醇 | 33 g/L葡萄糖 | - | 291.2±63.7 mg/L (120 mL/500 mL挡板摇瓶) | [ |
威克汉姆西弗酵母 NRRL Y-1031(M40) | 四乙酰植物鞘氨醇 | 30 g/L葡萄糖 30g /L糖蜜 | EMS诱变;BODIPY 505/515染色;荧光激活细胞分选(FACS) | 2.895 g/L (5.6 L生物反应器) | [ |
酿酒酵母K26 | 二乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 质粒表达异源基因sli1、atf2 | 4.3±0.8 mg/L (120 mL/500 mL挡板摇瓶) | [ |
酿酒酵母K26 | 三乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 质粒表达异源基因sli1、atf2 | 1.2±0.1 mg/L (120 mL/500 mL挡板摇瓶) | [ |
解脂耶氏酵母PO1g(MatA, leu2-270, ura3-302::URA3, xpr2-332. axp-2) | 四乙酰植物鞘氨醇 | 200 g/L甘油 橄榄油 | 异源表达sli1、atf2;删除lcb4基因;有性杂交;发酵优化 | 650±24 mg/L (5 L生物反应器) | [ |
威克汉姆西弗酵母 F-60-10A NRRL1031 诱变后菌株:Mutant736 | 四乙酰植物鞘氨醇 | 5 g/L丝氨酸;50 g/L甘油;补加甘油 | γ射线诱变 | 17.7 g/L (3 L生物反应器) | [ |
威克汉姆西弗酵母 | 四乙酰植物鞘氨醇 | 50 g/L甘油;5 g/L L‑丝氨酸 | ARTP诱变 | 30.47 g/L (5 L生物反应器) | [ |
威克汉姆西弗酵母 DSCC 7-25(KCCM-10131) | 四乙酰植物鞘氨醇 | 25~35 g/L甘油 | 从NRRL Y-1031单倍体分离 | 14 g/L (500 L生物反应器) | [ |
威克汉姆西弗酵母CGMCC19562 | 四乙酰植物鞘氨醇 | 6.0 g/L L‑丝氨酸;,42.0 g/L甘油 | 单倍体分离 | 22.14 g/L (生物反应器) | [ |
酿酒酵母 CEN.PK2‑1D | 植物鞘氨醇 | 500 g/L葡萄糖 | 敲除lcb4、shm2、cha1;orm2:: tsc10;elo3::sur2;shm1::lcb1,lcb2; delta 22::hac1 | 2817 mg/L;150.54 mg/g干重 (5 L生物反应器) | [ |
酿酒酵母NCYC 3608(MATalpha gal2 ho::HygMX ura3::KanMX) | 植物鞘氨醇 | 20 g/L葡萄糖 | 缺失his3、leu2、ura3、cha1、cha2、lcb4、lcb5、orm2;质粒过表达ARS/CEN/URA/ScTSC10/ScSUR2、ARS/CEN/HIS/ScLCB1/ScLCB2、ARS/CEN/LEU | 2169 mg/L | [ |
酿酒酵母KCCM50515 | 神经酰胺 | 20 g/L葡萄糖 | 发酵优化 | 1.46 mg/L | [ |
酿酒酵母 KCCM 50515(Matα ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆1) | 神经酰胺 | 20 g/L葡萄糖 | 过表达tscl0 | 9.8 mg/g cell | [ |
酿酒酵母 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达tsc10 | 10.52 mg/g cell | [ |
酿酒酵母 SCEL2,1 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达lcb1、lcb2 | 10.08 mg /g cell | [ |
酿酒酵母 SCEG1C1 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达lag1、lac1 | 9.88 mg/g cell | [ |
酿酒酵母 | 神经酰胺NS | 葡萄糖 | 敲除sur2和scs7;引入人类鞘脂去饱和酶基因des1;失活ydc1;过表达isc1;des1基因产物的内质网定位 | 未定量 | [ |
巴斯德毕赤酵母GS115 | 神经酰胺(d18:0) | 10 g/L甘油 | 敲除Ku70 同源的基因 PAS_chr3_0329;敲除orm1、orm2 同系物同源基因 PAS_chr4_0427 | 90.22 mg/L | [ |
Table. 2 Biosynthesis of ceramides and their precursor derivatives
宿主 | 产物 | 底物碳源 | 策略 | 产量 | 参考文献 |
---|---|---|---|---|---|
威克汉姆西弗酵母 | 三乙酰鞘氨醇 | 葡萄糖 | 异源表达棉桃阿舒来源laf1和des1;突变SYR、DES | 33.45 mg/g DCW(500 mL挡板摇瓶) | [ |
威克汉姆西弗酵母(P.ciferrii lig4D strain CS.PCDPro2) | 四乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 阻断shm1、shm2;缺失cha1;删除lcb4;过表达lcb1、lcb2;敲除orm1、orm2;过表达sur2 | 199 mg/g DCW;2 g/L (摇瓶培养) | [ |
威克汉姆西弗酵母(NRRL Y1031) | 四乙酰植物鞘氨醇 | 33 g/L葡萄糖 | - | 291.2±63.7 mg/L (120 mL/500 mL挡板摇瓶) | [ |
威克汉姆西弗酵母 NRRL Y-1031(M40) | 四乙酰植物鞘氨醇 | 30 g/L葡萄糖 30g /L糖蜜 | EMS诱变;BODIPY 505/515染色;荧光激活细胞分选(FACS) | 2.895 g/L (5.6 L生物反应器) | [ |
酿酒酵母K26 | 二乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 质粒表达异源基因sli1、atf2 | 4.3±0.8 mg/L (120 mL/500 mL挡板摇瓶) | [ |
酿酒酵母K26 | 三乙酰植物鞘氨醇 | 33 g/L葡萄糖 | 质粒表达异源基因sli1、atf2 | 1.2±0.1 mg/L (120 mL/500 mL挡板摇瓶) | [ |
解脂耶氏酵母PO1g(MatA, leu2-270, ura3-302::URA3, xpr2-332. axp-2) | 四乙酰植物鞘氨醇 | 200 g/L甘油 橄榄油 | 异源表达sli1、atf2;删除lcb4基因;有性杂交;发酵优化 | 650±24 mg/L (5 L生物反应器) | [ |
威克汉姆西弗酵母 F-60-10A NRRL1031 诱变后菌株:Mutant736 | 四乙酰植物鞘氨醇 | 5 g/L丝氨酸;50 g/L甘油;补加甘油 | γ射线诱变 | 17.7 g/L (3 L生物反应器) | [ |
威克汉姆西弗酵母 | 四乙酰植物鞘氨醇 | 50 g/L甘油;5 g/L L‑丝氨酸 | ARTP诱变 | 30.47 g/L (5 L生物反应器) | [ |
威克汉姆西弗酵母 DSCC 7-25(KCCM-10131) | 四乙酰植物鞘氨醇 | 25~35 g/L甘油 | 从NRRL Y-1031单倍体分离 | 14 g/L (500 L生物反应器) | [ |
威克汉姆西弗酵母CGMCC19562 | 四乙酰植物鞘氨醇 | 6.0 g/L L‑丝氨酸;,42.0 g/L甘油 | 单倍体分离 | 22.14 g/L (生物反应器) | [ |
酿酒酵母 CEN.PK2‑1D | 植物鞘氨醇 | 500 g/L葡萄糖 | 敲除lcb4、shm2、cha1;orm2:: tsc10;elo3::sur2;shm1::lcb1,lcb2; delta 22::hac1 | 2817 mg/L;150.54 mg/g干重 (5 L生物反应器) | [ |
酿酒酵母NCYC 3608(MATalpha gal2 ho::HygMX ura3::KanMX) | 植物鞘氨醇 | 20 g/L葡萄糖 | 缺失his3、leu2、ura3、cha1、cha2、lcb4、lcb5、orm2;质粒过表达ARS/CEN/URA/ScTSC10/ScSUR2、ARS/CEN/HIS/ScLCB1/ScLCB2、ARS/CEN/LEU | 2169 mg/L | [ |
酿酒酵母KCCM50515 | 神经酰胺 | 20 g/L葡萄糖 | 发酵优化 | 1.46 mg/L | [ |
酿酒酵母 KCCM 50515(Matα ura3-52 lys2-801 ade2-101 trp1-∆63 his3-∆200 leu2-∆1) | 神经酰胺 | 20 g/L葡萄糖 | 过表达tscl0 | 9.8 mg/g cell | [ |
酿酒酵母 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达tsc10 | 10.52 mg/g cell | [ |
酿酒酵母 SCEL2,1 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达lcb1、lcb2 | 10.08 mg /g cell | [ |
酿酒酵母 SCEG1C1 | 神经酰胺 | 葡萄糖;半乳糖 | 过表达lag1、lac1 | 9.88 mg/g cell | [ |
酿酒酵母 | 神经酰胺NS | 葡萄糖 | 敲除sur2和scs7;引入人类鞘脂去饱和酶基因des1;失活ydc1;过表达isc1;des1基因产物的内质网定位 | 未定量 | [ |
巴斯德毕赤酵母GS115 | 神经酰胺(d18:0) | 10 g/L甘油 | 敲除Ku70 同源的基因 PAS_chr3_0329;敲除orm1、orm2 同系物同源基因 PAS_chr4_0427 | 90.22 mg/L | [ |
Fig. 3 Yeast sphingolipid metabolic pathway (Green represents the coding gene, red represents the enzyme)3-P-Glycerate——3磷酸甘油酸;Palmitoy CoA——棕榈酰辅酶A;5,10-Dimethyltetrahydrofolate,5,10-THF——5,10-二甲基四氢叶酸;L-Glycine——L-甘氨酸;3-Ketosphinganine, 3-KDS——3-酮基-二氢鞘氨醇;Dihydrosphingosine, DHS——二氢鞘氨醇;Phytosphingosine, PHS——植物鞘氨醇;Sphingosine,S——鞘氨醇;Dihydrosphingosine-1-phosphate,1-P-DHS——1磷酸二氢鞘氨醇;Phytosphingosine-1-phosphate,1-P-PHS——1磷酸植物鞘氨醇;Phosphoryl ethanolamine, P-Etn——磷酸乙醇胺;Pi——磷酸基团;Inositol phosphorylceramide, IPC——肌醇磷酸神经酰胺; GDP mannose,GDP-Man——鸟苷二磷酸甘露糖;Mannosyl-inositol phosphorylceramide, MIPC——甘露糖肌醇磷酸神经酰胺;Mannosyl-diinositol phosphorylceramide, M(IP)2C——甘露糖-(肌醇-P)2-神经酰胺;Glucosylceramide, GlcCer——葡萄糖糖神经酰胺;Sphingomyelin, SM——鞘磷脂;Ceramide-1phosphate, C1P——神经酰胺1-磷酸盐;ser1——3-磷酸丝氨酸氨基转移酶编码基因;ser2——磷酸甘油酸途径的磷酸丝氨酸磷酸酶编码基因;ser3——3-磷酸甘油酸脱氢酶编码基因;shm1,shm2——L-丝氨酸羟甲基转移酶编码基因;cha1——L-丝氨酸脱氨酶编码基因;lcb1、lcb2、tsc3——丝氨酸棕榈酰转移酶编码基因;tsc10——3-酮基-二氢鞘氨醇还原酶编码基因;des1——鞘脂Δ4-去饱和酶编码基因;lcb4,lcb5——鞘氨醇激酶编码基因 ;lcb3——鞘氨醇磷酸酶编码基因;dpl1——鞘碱磷酸裂解酶编码基因;sur2——C4 羟化酶编码基因;lag1,lac1,lip1——神经酰胺合成酶编码基因;aur1——神经酰胺磷酸肌醇转移酶编码基因;csg1,csg2,csh1,sur1——甘露糖基肌醇磷酸神经酰胺合酶催编码基因;ipt1——肌醇磷酸转移酶编码基因;isc1——复杂鞘脂头基水解酶编码基因;ypc1、ydc1——碱性神经酰胺酶编码基因;ORM1,ORM2——介导鞘脂稳态蛋白;Serine palmitoyl transferase, SPT——丝氨酸棕榈酰转移酶;3-ketodihydrosphingosine reductase, KDSR——3-酮基-二氢鞘氨醇还原酶;Ceramide synthase, CerS——神经酰胺合酶;Ceramide transfer protein, CERT——神经酰胺转运蛋白;Sphingomyelin synthase, SMS——鞘磷脂合成酶;Sphingomyelinase, SMase——鞘磷脂酶家族;Ceramide kinase, CK——经酰胺激酶;Endoplasmic reticulum,ER——内质网
Fig. 4 Schematic diagram of serine palmitoyl transferase catalysisSerine palmitoyl transferase, SPT——丝氨酸棕榈酰转移酶;3-Ketosphinganine, 3-KDS——3-酮基-二氢鞘氨醇;LCB1,LCB2,TSC3——丝氨酸棕榈酰转移酶亚基;Endoplasmic reticulum,ER——内质网
Fig. 5 Schematic diagram of 3-ketodihydrosphingosine reductase catalysis3-Ketosphinganine, 3-KDS——3-酮基-二氢鞘氨醇;KDSR——3-酮基-二氢鞘氨醇还原酶;Dihydrosphingosine, DHS——二氢鞘氨醇;Endoplasmic reticulum,ER——内质网
Fig. 7 Schematic diagram of the strategy for modification of the ceramide biosynthetic pathway3-Ketosphinganine, 3-KDS——3-酮基-二氢鞘氨醇;ORM——介导鞘脂稳态蛋白;Serine palmitoyl transferase, SPT——丝氨酸棕榈酰转移酶;Dihydrosphingosine, DHS——二氢鞘氨醇;Phytosphingosine, PHS——植物鞘氨醇;Ceramide,Cer——神经酰胺;Glucosylceramide, GlcCer——葡萄糖糖神经酰胺;Sphingomyelin, SM——鞘磷脂
1 | MURPHY B, GRIMSHAW S, HOPTROFF M, et al. Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin[J]. Scientific Reports, 2022, 12(1): 5223. |
2 | FUJII M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis[J]. Cells, 2021, 10(9): 2386. |
3 | SCHMITT T, NEUBERT R H H. State of the art in Stratum Corneum research: The biophysical properties of ceramides[J]. Chemistry and Physics of Lipids, 2018, 216: 91-103. |
4 | CHA H J, HE C, ZHAO H, et al. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review)[J]. International Journal of Molecular Medicine, 2016, 38(1): 16-22. |
5 | FEINGOLD K R. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis[J]. Journal of Lipid Research, 2007, 48(12): 2531-2546. |
6 | VAN SMEDEN J, HOPPEL L, VAN DER HEIJDEN R, et al. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery[J]. Journal of Lipid Research, 2011, 52(6): 1211-1221. |
7 | MASUKAWA Y, NARITA H, SHIMIZU E, et al. Characterization of overall ceramide species in human stratum corneum[J]. Journal of Lipid Research, 2008, 49(7): 1466-1476. |
8 | T'KINDT R, JORGE L, DUMONT E, et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Analytical Chemistry, 2012, 84(1): 403-411. |
9 | LI X, YANG Q, ZHENG J, et al. Efficacy and safety of a topical moisturizer containing linoleic acid and ceramide for mild-to-moderate psoriasis vulgaris: A multicenter randomized controlled trial[J]. Dermatologic Therapy, 2020, 33(6): e14263. |
10 | SHIN K O, MIHARA H, ISHIDA K, et al. Exogenous ceramide serves as a precursor to endogenous ceramide synthesis and as a modulator of keratinocyte differentiation[J]. Cells, 2022, 11(11): 1742. |
11 | UCHIDA Y, PARK K. Ceramides in skin health and disease: An update[J]. American Journal of Clinical Dermatology, 2021, 22(6): 853-866. |
12 | SPADA F, HARRISON I P, BARNES T M, et al. A daily regimen of a ceramide-dominant moisturizing cream and cleanser restores the skin permeability barrier in adults with moderate eczema: A randomized trial[J]. Dermatologic Therapy, 2021, 34(4): e14970. |
13 | CAO Y, ZHANG X, HE X, et al. Efficacy of ceramide-containing sunscreen on skin barrier[J]. Journal of Cosmetic Dermatology, 2024, 23(2): 525-528. |
14 | ZHENG Y, HUNT R L, VILLARUZ A E, et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides[J]. Cell Host & Microbe, 2022, 30(3): 301-313.e9. |
15 | KIM D S, KIM S Y, CHUNG J H, et al. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes[J]. Cellular Signalling, 2002, 14(9): 779-785. |
16 | PHILIPS N, TUASON M, CHANG T, et al. Differential effects of ceramide on cell viability and extracellular matrix remodeling in keratinocytes and fibroblasts[J]. Skin Pharmacology and Physiology, 2009, 22(3): 151-157. |
17 | FISCHER CL, DRAKE DR, DAWSON DV, et al. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria [J]. Antimicrob Agents Chemother, 2012, 56(3): 1157-1161. |
18 | BIBEL DJ, ALY R, SHINEFIELD HR. Antimicrobial activity of sphingosines [J]. J Invest Dermatol 1992, 98(3): 269-273. |
19 | DONGFACK MD, LALLEMAND MC, KUETE V, et al. A new sphingolipid and furanocoumarins with antimicrobial activity from Ficus exasperata [J]. Chem Pharm Bull 2012, 60(8): 1072-1075. |
20 | BECAM J, WALTER T, BURGERT A, et al. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria [J]. Scientific Reports, 2017, 7(1): 17627. |
21 | 戚建华, 边凌林, 罗燕, 等. 一种神经酰胺类化合物和应用: CN106631871A[P]. 2017-05-10. |
QI J H, BIAN L L, LUO Y, et al. A ceramide compound and application thereof: CN106631871A[P]. 2017-05-10. | |
22 | OHTA K, HIRAKI S, MIYANABE M, et al. Appearance of intact molecules of dietary ceramides prepared from soy sauce lees and rice glucosylceramides in mouse plasma[J]. Journal of Agricultural and Food Chemistry, 2021, 69(32): 9188-9198. |
23 | MORAD S A F, CABOT M C. Ceramide-orchestrated signalling in cancer cells[J]. Nature Reviews Cancer, 2013, 13(1): 51-65. |
24 | CASTRO B M, PRIETO M, SILVA L C. Ceramide: a simple sphingolipid with unique biophysical properties[J]. Progress in Lipid Research, 2014, 54: 53-67. |
25 | Zhang Y H, Vasko M R, Nicol G D. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. [J]. The Journal of physiology 2002, 544: 385-402. |
26 | COWART L A, OBEID L M. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function[J]. Biochimica Et Biophysica Acta, 2007, 1771(3): 421-431. |
27 | NICHOLSON R J, NORRIS M K, POSS A M, et al. The lard works in mysterious ways: ceramides in nutrition-linked chronic disease[J]. Annual Review of Nutrition, 2022, 42: 115-144. |
28 | OHTA K, HIRAKI S, MIYANABE M, et al. Dietary ceramide prepared from soy sauce lees improves skin barrier function in hairless mice[J]. Journal of Oleo Science, 2021, 70(9): 1325-1334. |
29 | ZHU F, ZHAO B, HU B, et al. Review of available "extraction + purification" methods of natural ceramides and their feasibility for sewage sludge analysis[J]. Environmental Science and Pollution Research, 2023, 30(26): 68022-68053. |
30 | 张可青, 王建华, 于姝燕, 等. 植物中神经酰胺类化合物提取工艺研究进展[J]. 内蒙古中医药, 2022, 41(6): 131-133. |
ZHANG K Q, WANG J H, YU S Y, et al. Research progress on extraction technology of ceramide compounds from plants[J]. Inner Mongolia traditional Chinese medicine, 2022, 41(6): 131-133. | |
31 | YAHYA N A, ATTAN N, WAHAB R A. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds[J]. Food and Bioproducts Processing, 2018, 112: 69-85. |
32 | OJHA K S, AZNAR R, O'DONNELL C, et al. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources[J]. TrAC Trends in Analytical Chemistry, 2020, 122: 115663. |
33 | YANG H, LIEBESKIND L S. A Concise and scalable synthesis of high enantiopurity (-)-D-erythro-sphingosine using peptidyl thiol ester-boronic acid cross-coupling[J]. Organic Letters, 2007, 9(16): 2993-2995. |
34 | YAMAMOTO T, HASEGAWA H, HAKOGI T, et al. Versatile synthetic method for sphingolipids and functionalized sphingosine derivatives via olefin cross metathesis[J]. Organic Letters, 2006, 8(24): 5569-5572. |
35 | CHAUDHARI V D, AJISH KUMAR K S, DHAVALE D D. An efficient synthesis of D-erythro-and D-threo-sphingosine from D-glucose: Olefin Cross-Metathesis Approach[J]. Organic Letters, 2005, 7(26): 5805-5807. |
36 | HE L, BYUN H S, BITTMAN R. Stereoselective preparation of ceramide and its skeleton backbone modified analogues via cyclic thionocarbonate intermediates derived by catalytic asymmetric dihydroxylation of α,β-unsaturated ester precursors[J]. The Journal of Organic Chemistry, 2000, 65(22): 7627-7633. |
37 | RAI A N, BASU A. Synthesis of the Glycosphingolipid β-Galactosyl Ceramide and Analogues via Olefin Cross Metathesis[J]. The Journal of Organic Chemistry, 2005, 70(20): 8228-8230. |
38 | NAKAMURA T, SHIOZAKI M. Stereoselective synthesis of D-erythro-sphingosine and L-lyxo-phytosphingosine[J]. Tetrahedron, 2001, 57(44): 9087-9092. |
39 | LU X, BITTMAN R. Efficient and versatile synthesis of (2S,3R)-sphingosine and its 2-azido-3-O-benzylsphingosine analogue[J]. Tetrahedron Letters, 2005, 46(11): 1873-1875. |
40 | DUCLOS R I. The total syntheses of d-erythro-sphingosine, N-palmitoylsphingosine (ceramide), and glucosylceramide (cerebroside) via an azidosphingosine analog[J]. Chemistry and Physics of Lipids, 2001, 111(2): 111-138. |
41 | 朴尽五, 李知愿, 全圣贤, 等. 新型类神经酰胺化合物及其用途: CN111201216A[P]. 2020-05-26. |
PIAO J W, LI Z Y, QUAN S X, et al. Novel ceramide-like compounds and their applications: CN111201216A[P]. 2020-05-26. | |
42 | 禹柄英, 张元僖, 朱泳协, 等. 新型的类神经酰胺化合物其及其制备方法: CN104854081A[P]. 2015-08-19. |
YU B Y, ZHANG Y X, ZHU Y X, et al. The invention discloses a novel ceramide-like compound and a preparation method thereof: CN104854081A[P]. 2015-08-19. | |
43 | 杨超文, 叶柳. 含共轭羧酸的神经酰胺类化合物及其制备方法和应用: CN115433100A[P]. 2022-12-06. |
YANG C W, YE L. Ceramide compounds containing conjugated carboxylic acids, preparation method and application thereof: CN115433100A[P]. 2022-12-06. | |
44 | ZHANG X, MA Y, OUYANG B, et al. Efficient lipase-catalyzed synthesis of ceramide III series compounds in an eco-friendly solvent[J]. Molecular Catalysis, 2024, 558: 114006. |
45 | F·霍尔曼, O·图姆, C·特勒, 等. 使用真菌脂肪酶和脂肪酸烷基酯通过溶性鞘脂的酶促N-酰化反应制备鞘脂的方法: CN102057049B[P]. 2014-10-01. |
F.H, O.T, C.T, et al. Sphingolipid is prepared by enzymatic n-acylation of soluble sphingolipid using fungal lipase and fatty acid alkyl ester CN102057049B[P]. 2014-10-01. | |
46 | M·F·埃克施泰因, M·D·范洛格切姆, H·H·文克, 等. 制备鞘脂的方法: CN201910247003[P]. 2019-10-11. |
M·F·A, M·D·F, H·H·W, et al. Method for preparing sphingolipid: CN201910247003[P]. 2019-10-11. | |
47 | F·霍尔曼, O·图姆, P·格热比克, 等. 使用脂肪酶和脂肪酸甘油酯通过溶性鞘脂的酶促N-酰化反应制备鞘脂的方法: CN102057050B[P]. 2014-06-11. |
F·H, O·T, P·G, et al. Method of preparing sphingolipid by enzymatic N-acylation of soluble sphingolipid using lipase and fatty acid glyceride: CN102057050B[P]. 2014-06-11. | |
48 | WILD R, SCHMIDT R R. Sphingosine and phytosphingosine from D-threose synthesis of a 4-keto-ceramide[J]. Tetrahedron: Asymmetry, 1994, 5(11): 2195-2208. |
49 | TORSSELL S, SOMFAI P. A practical synthesis of D-erythro-sphingosine using a cross-metathesis approach[J]. Organic & Biomolecular Chemistry, 2004, 2(11): 1643-1646. |
50 | 刘希望. 神经酰胺类似化合物的合成及其生物活性研究[D]. 陕西: 西北农林科技大学, 2010. |
LIU X W. Synthesis and bioactivity of ceramide-like compounds[D]. Shanxi: Northwest Agriculture and Forestry University, 2010. | |
51 | CRITCHLEY P, RAWLINGS A V, SCOTT I R. Synthetic pseudoceramide and cosmetic compositions thereof: US5206020A[P]. 1993-04-27. |
52 | MOTION K R, JANOUSEK A, WATKINS S D. Hydroxy alkyl amides of dicarboxylic acids and their use in cosmetic compositions: US5656668A[P]. 1997-08-12. |
53 | BAIK I S, Lee J G, PARK B D, et al. Pseudoceramides, and dermatologic external preparations containing the same: US6221371B1[P]. 2001-04-24. |
54 | PARK B D, LEE K M, PARK I J, et al. Novel pseudoceramides and their synthesis using alkyl ketene dimer[J]. 대한화장품학회지, 1997, 23(3): 92-96. |
55 | 吴江, 张伟, 朱纯银. 一种酰胺的合成方法及其在 神经酰胺III制备上的应用: CN 110078635 A[P]. 2019-08-02. |
WU J, ZHANG W, ZHU C Y. An amide synthesis method and its application in the preparation of ceramide 3: CN 110078635 A[P]. 2019-08-02. | |
56 | KWUN K H, LEE J H, RHO K H, et al. Production of ceramide with Saccharomyces cerevisiae [J]. Applied Biochemistry and Biotechnology, 2006, 133(3): 203-210. |
57 | HAN C, JANG M, KIM M J, et al. Engineering Yarrowia lipolytica for de novo production of tetraacetyl phytosphingosine[J]. Journal of Applied Microbiology, 2021, 130(6): 1981-1992. |
58 | 黄铭, 吴佳欣, 张目, 等. 毕赤酵母PAS_chr4_0427基因敲除促进神经酰胺合成[J]. 食品与发酵工业, 2024, 1-9. |
WU M, WU J X, ZHANG M, et al. Ceramide synthesis was promoted by PAS_chr4_0427 gene knockout in Pichia pastoris[J]. Food and fermentation industry: 1-9. | |
59 | KURTZMAN C P. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus [J]. Antonie Van Leeuwenhoek, 2011, 99(1): 13-23. |
60 | MAISTER H G, ROGOVIN S P, STODOLA F H, et al. Formation of Extracellular Sphingolipids by Microorganisms: IV. Pilot-Plant Production of Tetraacetylphytosphingosine by Hansenula ciferrii [J]. Applied Microbiology, 1962, 10(5): 401-406. |
61 | WICKERHAM L J, STODOLA F H. Formation of extracellular sphingolipides by microorganisms. I. Tetraacetylphyto-sphingosine from Hansenula ciferri [J]. Journal of Bacteriology, 1960, 80(4): 484-491. |
62 | S·舍费尔, M·A·范登贝尔赫, D·博尔格尔, 等. 使用遗传工程化的微生物菌株的改进的鞘氨醇类碱的生产: CN101490260A[P]. 2009-07-22. |
S·S, M·A·F, D·B, et al. Production of improved sphingosine alkaloids using genetically engineered microbial strains: CN101490260A[P]. 2009-07-22. | |
63 | OLEA-OZUNA R J, POGGIO S, EDBERGSTRÖM E, et al. Five structural genes required for ceramide synthesis in Caulobacter and for bacterial survival[J]. Environmental Microbiology, 2021, 23(1): 143-159. |
64 | FURUYA H, IDE Y, HAMAMOTO M, et al. Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide.[J]. Archives of Microbiology, 2010, 192(5): 365-372. |
65 | HALAMKA T A, GARCIA A, EVANS T W, et al. Occurrence of ceramides in the Acidobacterium Solibacter usitatus: implications for bacterial physiology and sphingolipids in soils[J]. Frontiers in Geochemistry, 2024(2): 1400278. |
66 | STANKEVICIUTE G, TANG P, ASHLEY B, et al. Convergent evolution of bacterial ceramide synthesis[J]. Nature Chemical Biology, 2022, 18(3): 305-312. |
67 | BROWN E M, KE X, HITCHCOCK D, et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis[J]. Cell Host & Microbe, 2019, 25(5): 668-680.e7. |
68 | SCHORSCH C, KÖHLER T, ANDREA H, et al. High-level production of tetraacetyl phytosphingosine (TAPS) by combined genetic engineering of sphingoid base biosynthesis and L-serine availability in the non-conventional yeast Pichia ciferrii [J]. Metabolic Engineering, 2012, 14(2): 172-184. |
69 | VELD F TER, WOLFF D, SCHORSCH C, et al. Production of tetraacetyl phytosphingosine (TAPS) in Wickerhamomyces ciferrii is catalyzed by acetyltransferases Sli1p and Atf2p[J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8537-8546. |
70 | PARK S B, TRAN Q G, RYU A J, et al. Fluorescence-activated cell sorting-mediated directed evolution of Wickerhamomyces ciferrii for enhanced production of tetraacetyl phytosphingosine[J]. Korean Journal of Chemical Engineering, 2022, 39(4): 1004-1010. |
71 | CHOI J Y, HWANG H J, CHO W Y, et al. Differences in the Fatty Acid Profile, Morphology, and Tetraacetylphytosphingosine-Forming Capability Between Wild-Type and Mutant Wickerhamomyces ciferrii [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 662979. |
72 | 纪晓俊, 崔柳伟, 王凯峰, 等. 一株高产四乙酰基植物鞘氨醇的菌株及其应用: CN117070382A[P]. 2023-11-17. |
JI X J, CUI L W, WANG K F, et al. A strain with high yield of tetraacetyl phytosphingosine and its application: CN117070382A[P]. 2023-11-17. | |
73 | PARK C S, JEONG J H, HONG S Y, et al. Yeast Pichia ciferrii : US06194196B1[P]. 2001-02-27. |
74 | 张天萌, 刘金钊, 朱倩倩, 等. 一种高产鞘脂类微生物菌株、它的筛选方法和它的用途: CN114736815A[P]. 2022-07-12. |
ZHANG T M, LIU J Z, ZHU Q Q, et al. A high-yielding sphingolipid microbial strain, its screening method and its use: CN114736815A[P]. 2022-07-12. | |
75 | 孙杰, 谢朋天, 魏春, 等. 一种高产植物鞘氨醇的酿酒酵母菌株: CN116103176A[P]. 2023-05-22. |
SUN J, XIE P T, WEI C, et al. A strain of saccharomyces cerevisiae with high yield of sphingosine: CN116103176A[P]. 2023-05-22. | |
76 | M.施瓦布, M.巴鲍, D·费希尔. 生产植物鞘氨醇或二氢神经鞘氨醇的方法: CN108473968A[P]. 2018-08-31. |
M·S, M·B, D·F, et al. Method for producing phytosphingosine or dihydrosphingosine: CN108473968A[P]. 2018-08-31. | |
77 | KIM S K, NOH Y H, KOO J R, et al. Effect of expression of genes in the sphingolipid synthesis pathway on the biosynthesis of ceramide in Saccharomyces cerevisiae [J]. Journal of Microbiology and Biotechnology, 2010, 20(2): 356-362. |
78 | KIM S K, NOH Y H, KOO J R, et al. Effects of expression of lcb1/lcb2 and lac1/lag1 genes on the biosynthesis of ceramides[J]. Biotechnology and Bioprocess Engineering, 2011, 16(1): 1-6. |
79 | MURAKAMI S, SHIMAMOTO T, NAGANO H, et al. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae [J]. Scientific Reports, 2015, 5: 16319. |
80 | YAMAJI T, HANADA K. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins[J]. Traffic, 2015, 16(2): 101-122. |
81 | CINGOLANI F, FUTERMAN A H, CASAS J. Ceramide synthases in biomedical research[J]. Chemistry and Physics of Lipids, 2016, 197: 25-32. |
82 | SAWAI H, OKAMOTO Y, LUBERTO C, et al. Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in Saccharomyces cerevisiae [J]. The Journal of Biological Chemistry, 2000, 275(50): 39793-39798. |
83 | DICKSON R C. Roles for sphingolipids in Saccharomyces cerevisiae [J]. Advances in Experimental Medicine and Biology, 2010, 688: 217-231. |
84 | ANDO H, KOMURAH N. Recent progress in the synthesis of glycosphingolipids[J]. Current opinion in chemical biology, 2024, 78. |
85 | T W, van den B RJ, RG B, et al. Glycosphingolipids--nature, function, and pharmacological modulation[J]. Angewandte Chemie, 2009, 48(47). |
86 | HARRISON P J, DUNN T M, CAMPOPIANO D J. Sphingolipid biosynthesis in man and microbes[J]. Natural Product Reports, 2018, 35(9): 921-954. |
87 | YARD B A, CARTER L G, JOHNSON K A, et al. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis[J]. Journal of Molecular Biology, 2007, 370(5): 870-886. |
88 | HANADA K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism.[J]. Biochim Biophys Acta, 2003, 1632(1-3):16-30. |
89 | GABLE K, HAN G, MONAGHAN E, et al. Mutations in the Yeast LCB1 and LCB2Genes, Including Those Corresponding to the Hereditary Sensory Neuropathy Type I Mutations, Dominantly Inactivate Serine Palmitoyltransferase*[J]. Journal of Biological Chemistry, 2002, 277(12): 10194-10200. |
90 | GABLE K, SLIFE H, BACIKOVA D, et al. Tsc3p Is an 80-Amino Acid Protein Associated with Serine Palmitoyltransferase and Required for Optimal Enzyme Activity*[J]. Journal of Biological Chemistry, 2000, 275(11): 7597-7603. |
91 | REN J, SAIED E M, ZHONG A, et al. Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway[J]. Journal of Lipid Research, 2018, 59(1): 2126–2139. |
92 | SCHÄFER J H, KÖRNER C, ESCH B M, et al. Structure of the ceramide-bound SPOTS complex [J]. Nature Communications, 2023, 14(1): 6196. |
93 | BEELER T, BACIKOVA D, GABLE K, et al. The Saccharomyces cerevisiae TSC10/YBR265w Gene Encoding 3-Ketosphinganine Reductase Is Identified in a Screen for Temperature-sensitive Suppressors of the Ca2+-sensitive csg2Δ Mutant*[J]. Journal of Biological Chemistry, 1998, 273(46): 30688-30694. |
94 | BRESLOW D K, COLLINS S R, BODENMILLER B, et al. Orm family proteins mediate sphingolipid homeostasis[J]. Nature, 2010, 463(7284): 1048-1053. |
95 | LIU Q, CHAN A K N, CHANG W H, et al. 3-Ketodihydrosphingosine reductase maintains ER homeostasis and unfolded protein response in leukemia[J]. Leukemia, 2022, 36(1): 100-110. |
96 | ZHAO P, ZHUANG Z, GUAN X, et al. Crystal structure of the 3-ketodihydrosphingosine reductase TSC10 from Cryptococcus neoformans [J]. Biochemical and Biophysical Research Communications, 2023, 670: 73-78. |
97 | SCHORLING S, VALLÉE B, BARZ W P, et al. Lag1p and Lac1p Are Essential for the Acyl-CoA–dependent Ceramide Synthase Reaction in Saccharomyces cerevisae [J]. Molecular Biology of the Cell, 2001, 12(11): 3417-3427. |
98 | GUILLAS I, KIRCHMAN P A, CHUARD R, et al. C26‐CoA‐dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p[J]. The EMBO Journal, 2001, 20(11): 2655-2665. |
99 | SCHÄFER J H, CLAUSMEYER L, KÖRNER C, et al. Structure of the yeast ceramide synthase[J]. bioRxiv (2023): n. pag. |
100 | ZHANG M, LI Z, LIU Y, et al. The ceramide synthase (CERS/LASS) family: Functions involved in cancer progression[J]. Cellular Oncology (Dordrecht), 2023, 46(4): 825-845. |
101 | XIE T, FANG Q, ZHANG Z, et al. Structure and mechanism of a eukaryotic ceramide synthase complex[J]. The EMBO journal, 2023, 42(24): e114889. |
102 | COWART L A, HANNUN Y A. Selective substrate supply in the regulation of yeast de novo sphingolipid synthesis[J]. The Journal of Biological Chemistry, 2007, 282(16): 12330-12340. |
103 | HANADA K, HARA T, NISHIJIMA M. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques[J]. The Journal of Biological Chemistry, 2000, 275(12): 8409-8415. |
104 | SCHWAB M, BABAU M, FISCHER D, et al. Method for producing phytosphingosine or sphinganine: 11111511[P]. 2021-09-07. |
106 | LIU M, HUANG C, POLU S R, et al. Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast[J]. Journal of Cell Science, 2012, 125(Pt 10): 2428-2435. |
107 | RODRIGUEZ-GALLARDO S, KUROKAWA K, SABIDO-BOZO S, et al. Ceramide chain length-dependent protein sorting into selective endoplasmic reticulum exit sites[J]. Science Advances, 2020, 6(50): eaba8237. |
108 | LIU L K, CHOUDHARY V, TOULMAY A, et al. An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity[J]. The Journal of Cell Biology, 2017, 216(1): 131-147. |
109 | IKEDA A, SCHLARMANN P, KUROKAWA K, et al. Tricalbins Are Required for Non-vesicular Ceramide Transport at ER-Golgi Contacts and Modulate Lipid Droplet Biogenesis[J]. iScience, 2020, 23(10): 101603. |
110 | ZELNIK I D, VENTURA A E, KIM J L, et al. The role of ceramide in regulating endoplasmic reticulum function[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2020, 1865(1): 158489. |
111 | LIU P, SUN L, SUN Y, et al. Decreased fluidity of cell membranes causes a metal ion deficiency in recombinant Saccharomyces cerevisiae producing carotenoids[J]. Journal of Industrial Microbiology and Biotechnology, 2016, 43(4): 525-535. |
112 | BU X, LIN J Y, CHENG J, et al. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2020, 13(1): 168. |
105 | HAN S, LONE MA, SCHNEITER R, et al. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13):5851-5856. |
[1] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[2] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[3] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[4] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[5] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[6] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[7] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[8] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[9] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[10] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[11] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[12] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[13] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[14] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[15] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||