Synthetic Biology Journal ›› 2025, Vol. 6 ›› Issue (2): 408-421.DOI: 10.12211/2096-8280.2024-050
• Invited Review • Previous Articles Next Articles
SHENG Zhouhuang1,2, CHEN Zhixian1,2, ZHANG Yan1,3
Received:
2024-07-01
Revised:
2024-08-28
Online:
2025-05-20
Published:
2025-04-30
Contact:
CHEN Zhixian, ZHANG Yan
盛周煌1,2, 陈智仙1,2, 张彦1,3
通讯作者:
陈智仙,张彦
作者简介:
基金资助:
CLC Number:
SHENG Zhouhuang, CHEN Zhixian, ZHANG Yan. Research progress of yeast mannoproteins[J]. Synthetic Biology Journal, 2025, 6(2): 408-421.
盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-050
Fig. 2 Biosynthetic pathway of yeast mannoprotein(Glu—Glucose; G6-P—Glucose-6-phosphat; PGM1—Phosphoglucomutase; G1-P—Glucose-1-phosphat; UGP1—Uridine diphosphate glucose pyrophosphatase; UDP-Glu—Uridine diphosphate glucose; PGI1—Phosphoglucose isomerase; F6-P—Fructose-6-phosphate;M6-P—Mannose-6-phosphate; PMI40—Mannose phosphate isomerase; SEC53—Phosphomannomutase; M1-P—Mannose-1-phosphate; PSA1—Guanosine diphosphate mannose pyrophosphatase; GDP-Man—Guanosine diphosphate mannose; UDP-GlcNAc—Uridine diphosphate-N-acetylglucosamine; Dol-P—Dolichol phosphate; Alg—Glycosyltransferase; OST—Oligosaccharides transferase;G-Ⅰ/G-Ⅱ—α-Glucosidase; ERMan1—Endoplasmic reticulum mannosidase Ⅰ;MGAT—Mannosyl-glycoprotein-N-acetylglucosaminyltransferase; DPM—Dolichol phosphate mannose synthase; PMT—Protein O-mannosyltransferase)
1 | BACON J S, FARMER V C, JONES D, et al. The glucan components of the cell wall of baker’s yeast (Saccharomyces cerevisiae) considered in relation to its ultrastructure[J]. Biochemical Journal, 1969, 114(3): 557-567. |
2 | FLEET G H, MANNERS D J. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae [J]. Journal of General Microbiology, 1976, 94(1): 180-192. |
3 | SUNG S S, NELSON R S, SILVERSTEIN S C. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages[J]. The Journal of Cell Biology, 1983, 96(1): 160-166. |
4 | SMITH H, GRANT S, PARKER J, et al. Yeast cell wall mannan rich fraction modulates bacterial cellular respiration potentiating antibiotic efficacy[J]. Scientific Reports, 2020, 10(1): 21880. |
5 | LEE T Y, DUGOUA J J. Nutritional supplements and their effect on glucose control[J]. Current Diabetes Reports, 2011, 11(2): 142-148. |
6 | ONITAKE T, UENO Y, TANAKA S, et al. Pulverized konjac glucomannan ameliorates oxazolone-induced colitis in mice[J]. European Journal of Nutrition, 2015, 54(6): 959-969. |
7 | 刘红芝. 酿酒酵母甘露聚糖的制备、结构鉴定及免疫活性研究[D]. 北京: 中国农业科学院, 2009. |
LIU H Z. Study on preparation of Saccharomyces cerevisiae mannan and its structure identification and immunocompetence[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. | |
8 | ZHAO Y Y, WANG J Q, FU Q Z, et al. Characterization and antioxidant activity of mannans from Saccharomyces cerevisiae with different molecular weight[J]. Molecules, 2022, 27(14): 4439. |
9 | KOROLENKO T A, BGATOVA N P, OVSYUKOVA M V, et al. Hypolipidemic effects of β-glucans, mannans, and fucoidans: mechanism of action and their prospects for clinical application[J]. Molecules, 2020, 25(8): 1819. |
10 | GALINARI É, SABRY D A, SASSAKI G L, et al. Chemical structure, antiproliferative and antioxidant activities of a cell wall α-D-mannan from yeast Kluyveromyces marxianus [J]. Carbohydrate Polymers, 2017, 157: 1298-1305. |
11 | DE ISEPPI A, CURIONI A, MARANGON M, et al. Characterization and emulsifying properties of extracts obtained by physical and enzymatic methods from an oenological yeast strain[J]. Journal of the Science of Food and Agriculture, 2019, 99(13): 5702-5710. |
12 | DE MELO A N F, DE SOUZA E L, SILVA ARAUJO V B DA, et al. Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast[J]. LWT-Food Science and Technology, 2015, 62(1): 771-774. |
13 | RAMOS-PINEDA A M, GARCÍA-ESTÉVEZ I, DUEÑAS M, et al. Effect of the addition of mannoproteins on the interaction between wine flavonols and salivary proteins[J]. Food Chemistry, 2018, 264: 226-232. |
14 | DE ISEPPI A, LOMOLINO G, MARANGON M, et al. Current and future strategies for wine yeast lees valorization[J]. Food Research International, 2020, 137: 109352. |
15 | RODRIGUES A, RICARDO-DA-SILVA J M, LUCAS C, et al. Effect of commercial mannoproteins on wine colour and tannins stability[J]. Food Chemistry, 2012, 131(3): 907-914. |
16 | 周义发, 梁忠岩. 酵母甘露聚糖的研究(Ⅰ): 纯化与鉴定[J]. 东北师大学报(自然科学版), 1991, 23(2): 79-82, 86. |
ZHOU Y F, LIANG Z Y. Studies on yeast mannan—purification and identification (Natural Science Edition)[J]. Journal of Northeast Normal University, 1991, 23(2): 79-82, 86. | |
17 | SNYMAN C, MEKOUE NGUELA J, SIECZKOWSKI N, et al. Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts[J]. Foods, 2021, 10(5): 924. |
18 | FAUSTINO M, DURÃO J, PEREIRA C F, et al. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae - a sustainable source of functional ingredients[J]. Carbohydrate Polymers, 2021, 272: 118467. |
19 | 周义发, 焦明大, 胡阿林, 等. 酵母甘露聚糖的电子显微镜观察[J]. 东北师大学报(自然科学版), 1994, 26(1): 58-59, 91. |
ZHOU Y F, JIAO M D, HU A L, et al. Electron microscope observation of mannan[J]. Journal of Northeast Normal University (Natural Science Edition), 1994, 26(1): 58-59, 91. | |
20 | 刘焕新, 陈宗道, 王光慈, 等. 啤酒酵母胞壁多糖提取工艺的研究[J]. 重庆大学学报, 1994, 17(6): 43-48. |
LIU H X, CHEN Z D, WANG G C, et al. The extraction technique of the cell wall polysaccharides from beer yeast[J]. Journal of Chongqing University, 1994, 17(6): 43-48. | |
21 | 孙建义, 李卫芬. 啤酒酵母甘露聚糖的提取及其对鸡肠道微生物区系的影响[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 447-450. |
SUN J Y, LI W F. The preparation of mannan-oligosacchride from Saccharomyces cerevisiae and its effects on intestinal microflora in chicken[J]. Journal of Zhejiang Agricultural University (Agric & Life Sci), 2001, 27(4): 447-450. | |
22 | 张玉香, 尹卓容. 甘露糖蛋白的提纯及分子量测定[J]. 酿酒科技, 2005(4): 72-74. |
ZHANG Y X, YIN Z R. Purification of mannose glycoprotein and measurement of its molecular weight[J]. Liquor-making Science & Technology, 2005(4): 72-74. | |
23 | 倪靖岳. 酵母甘露聚糖的生产技术研究[D]. 石家庄: 河北科技大学, 2015. |
NI J Y. Production technology of yeast mannan[D]. Shijiazhuang: Hebei University of Science and Technology, 2015. | |
24 | LI J, KARBOUNE S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall[J]. International Journal of Biological Macromolecules, 2018, 119: 654-661. |
25 | LIŽIČÁROVÁ I, MATULOVÁ M, CAPEK P, et al. Human pathogen Candida dubliniensis: a cell wall mannan with a high content of β-1,2-linked mannose residues[J]. Carbohydrate Polymers, 2007, 70(1): 89-100. |
26 | MARTÍNEZ J M, CEBRIÁN G, ÁLVAREZ I, et al. Release of mannoproteins during Saccharomyces cerevisiae autolysis induced by pulsed electric field[J]. Frontiers in Microbiology, 2016, 7: 1435. |
27 | GANAN M, CARRASCOSA A V, DE PASCUAL-TERESA S, et al. Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria[J]. Journal of Food Science, 2012, 77(3): M176-M180. |
28 | CUSKIN F, LOWE E C, TEMPLE M J, et al. Human gut bacteroidetes can utilize yeast mannan through a selfish mechanism[J]. Nature, 2015, 517(7533): 165-169. |
29 | LIU L, DANG Y F. Antimicrobial activity of mannose binding lectin in grass carp (Ctenopharyngodon idella) in vivo and in vitro [J]. Fish & Shellfish Immunology, 2020, 98: 25-33. |
30 | MEDZHITOV R, JANEWAY C A JR. Decoding the patterns of self and nonself by the innate immune system[J]. Science, 2002, 296(5566): 298-300. |
31 | BAZAN S B, BREINIG T, SCHMITT M J, et al. Heat treatment improves antigen-specific T cell activation after protein delivery by several but not all yeast Genera[J]. Vaccine, 2014, 32(22): 2591-2598. |
32 | INOUE M, OKINAGA T, USUI M, et al. β-Glucan suppresses cell death of ASC deficient macrophages invaded by periodontopathic bacteria through the caspase-11 pathway[J]. FEMS Microbiology Letters, 2019, 366(8): fnz093. |
33 | FERENCZI S, SZEGI K, WINKLER Z, et al. Oligomannan prebiotic attenuates immunological, clinical and behavioral symptoms in mouse model of inflammatory bowel disease[J]. Scientific Reports, 2016, 6: 34132. |
34 | HOVING L R, VAN DER ZANDE H J P, PRONK A, et al. Dietary yeast-derived mannan oligosaccharides have immune-modulatory properties but do not improve high fat diet-induced obesity and glucose intolerance[J]. PLoS One, 2018, 13(5): e0196165. |
35 | SHITULENI S A, GAN F, NIDO S A, et al. Effects of yeast polysaccharide on biochemical indices, antioxidant status, histopathological lesions and genetic expressions related with lipid metabolism in mice fed with high fat diet[J]. Bioactive Carbohydrates and Dietary Fibre, 2016, 8(2): 51-57. |
36 | 杨晓红, 王元秀, 郑明洋, 等. 酵母甘露聚糖的降血脂作用研究[J]. 食品与药品, 2013, 15(2): 92-93. |
YANG X H, WANG Y X, ZHENG M Y, et al. Study on hypolipidemic activity of yeast mannan[J]. Food and Drug, 2013, 15(2): 92-93. | |
37 | CHEN Z Y, LIN S S, JIANG Y, et al. Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation[J]. Journal of Medicinal Food, 2019, 22(10): 1009-1021. |
38 | PEREYRA C M, CAVAGLIERI L R, CHIACCHIERA S M, et al. The corn influence on the adsorption levels of aflatoxin B1 and Zearalenone by yeast cell wall[J]. Journal of Applied Microbiology, 2013, 114(3): 655-662. |
39 | JANA U K, SURYAWANSHI R K, PRAJAPATI B P, et al. Prebiotic mannooligosaccharides: synthesis, characterization and bioactive properties[J]. Food Chemistry, 2021, 342: 128328. |
40 | MARZAIOLI A M, BEDINI E, LANZETTA R, et al. Conversion of yeast mannan polysaccharide in mannose oligosaccharides with a thiopropargyl linker at the pseudo-reducing end[J]. Carbohydrate Research, 2014, 383: 43-49. |
41 | NAKAJIMA T, BALLOU C E. Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation[J]. Journal of Biological Chemistry, 1974, 249(23): 7679-7684. |
42 | 贺丹艳, 罗永发. 甘露寡糖的研究与应用[J]. 饲料研究, 2010(6): 4-7. |
HE D Y, LUO Y F. Research and application of mannan oligosaccharide[J]. Feed Research, 2010(6): 4-7. | |
43 | 张玉香, 周元, 屈慧鸽, 等. 甘露糖蛋白的提取及乳化性质研究[J]. 安徽农业科学, 2008, 36(25): 10742-10744. |
ZHANG Y X, ZHOU Y, QU H G, et al. Extraction of mannose glycoprotein and research on emulsification properties[J]. Journal of Anhui Agricultural Sciences, 2008, 36(25): 10742-10744. | |
44 | DIKIT P, MANEERAT S, MUSIKASANG H, et al. Emulsifier properties of the mannoprotein extract from yeast isolated from sugar palm wine[J]. Science Asia, 2010, 36(4): 312-318. |
45 | 谢芳, 潘寒姁, 袁树枝, 等. 酵母甘露聚糖处理对番茄果实贮藏效果的影响[J]. 食品科学, 2015, 36(2): 221-225. |
XIE F, PAN H X, YUAN S Z, et al. Effects of infiltration with yeast mannan on postharvest storage of tomato fruit[J]. Food Science, 2015, 36(2): 221-225. | |
46 | 张丙云, 王玉丽, 王永刚. 复配酵母甘露聚糖对草莓的保鲜研究[J]. 中国食品工业, 2011(8): 42. |
ZHANG B Y, WANG Y L, WANG Y G. Study on the preservation of strawberry by compound yeast mannan[J]. China Food Industry, 2011(8): 42. | |
47 | 侯亚彬, 徐梦晨, 武佩贤, 等. 酵母来源甘露聚糖的提取纯化及其对水果保鲜[J]. 化学研究, 2019, 30(2): 197-201. |
HOU Y B, XU M C, WU P X, et al. Extraction and purification of mannan from yeast and it used for fruit preservation[J]. Chemical Research, 2019, 30(2): 197-201. | |
48 | XIAO R, POWER R F, MALLONEE D, et al. Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens[J]. Poultry Science, 2012, 91(7): 1660-1669. |
49 | KUMAGAI Y, KAWAKAMI K, MUKAIHARA T, et al. The structural analysis and the role of calcium binding site for thermal stability in mannanase[J]. Biochimie, 2012, 94(12): 2783-2790. |
50 | TESTER R F, AL-GHAZZEWI F H. Mannans and health, with a special focus on glucomannans[J]. Food Research International, 2013, 50(1): 384-391. |
51 | LIU H X, GONG J S, LI H, et al. Biochemical characterization and cloning of an endo-1,4-β-mannanase from Bacillus subtilis YH12 with unusually broad substrate profile[J]. Process Biochemistry, 2015, 50(5): 712-721. |
52 | DIEZ L, GUADALUPE Z, AYESTARÁN B, et al. Effect of yeast mannoproteins and grape polysaccharides on the growth of wine lactic acid and acetic acid bacteria[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7731-7739. |
53 | SCHMIDT S A, TAN E L, BROWN S, et al. Hpf2 glycan structure is critical for protection against protein haze formation in white wine[J]. Journal of Agricultural and Food Chemistry, 2009, 57(8): 3308-3315. |
54 | TANG Q L, HUANG G L, ZHAO F Y, et al. The antioxidant activities of six (1→3)-β-D-glucan derivatives prepared from yeast cell wall[J]. International Journal of Biological Macromolecules, 2017, 98: 216-221. |
55 | GALINARI É, ALMEIDA-LIMA J, MACEDO G R, et al. Antioxidant, antiproliferative, and immunostimulatory effects of cell wall α-D-mannan fractions from Kluyveromyces marxianus [J]. International Journal of Biological Macromolecules, 2018, 109: 837-846. |
56 | LIU Y, HUANG G L. The derivatization and antioxidant activities of yeast mannan[J]. International Journal of Biological Macromolecules, 2018, 107: 755-761. |
57 | 季小莉, 赵国群, 刘金龙. 酿酒酵母甘露聚糖的理化性质及吸湿保湿性[J]. 精细化工, 2018, 35(2): 284-290. |
JI X L, ZHAO G Q, LIU J L. Physicochemical properties, hygroscopicity and moisturizing performance of mannan from Saccharomyces cerevisiae [J]. Fine Chemicals, 2018, 35(2): 284-290. | |
58 | YOON B H, LEE S M, CHANG H I, et al. Mannoproteins from Saccharomyces cerevisiae stimulate angiogenesis by promoting the akt-eNOS signaling pathway in endothelial cells[J]. Biochemical and Biophysical Research Communications, 2019, 519(4): 767-772. |
59 | DE GROOT P W, RUIZ C, VÁZQUEZ DE ALDANA C R, et al. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae [J]. Comparative and Functional Genomics, 2001, 2(3): 124-142. |
60 | GOW N A R, LATGE J P, MUNRO C A. The fungal cell wall: structure, biosynthesis, and function[M/OL]//The fungal kingdom. Washington, DC, USA: ASM Press, 2017: 267-292. (2017-09-05)[2024-06-01]. . |
61 | LESAGE G, BUSSEY H. Cell wall assembly in Saccharomyces cerevisiae [J]. Microbiology and Molecular Biology Reviews, 2006, 70(2): 317-343. |
62 | LIPKE P N, OVALLE R J. Cell wall architecture in yeast: new structure and new challenges[J]. Journal of Bacteriology, 1998, 180(15): 3735-3740. |
63 | KWAK S, ROBINSON S J, LEE J W, et al. Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering[J]. Biomaterials, 2022, 282: 121379. |
64 | ROSE A H. The yeasts, volume3, metabolism and physiology of yeast[M]. 2nd Edition. New York: Academic Press, 1989, 186(1): 183. |
65 | KAPTEYN J C, VAN DEN ENDE H, KLIS F M. The contribution of cell wall proteins to the organization of the yeast cell wall[J]. Biochimica et Biophysica Acta, 1999, 1426(2): 373-383. |
66 | JUNGMANN J, MUNRO S J. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1,6-mannosyltransferase activity[J]. EMBO Journal, 1998, 17(2): 423-434. |
67 | RAYNER J C, MUNRO S. Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 1998, 273(41): 26836-26843. |
68 | LOBSANOV Y D, ROMERO P A, SLENO B, et al. Structure of Kre2p/Mnt1p: a yeast alpha1,2-mannosyltransferase involved in mannoprotein biosynthesis[J]. Journal of Biological Chemistry, 2004, 279(17): 17921-17931. |
69 | STRAHL-BOLSINGER S, GENTZSCH M, TANNER W. Protein O-mannosylation[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1999, 1426(2): 297-307. |
70 | CONDE R, PABLO G, CUEVA R, et al. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins[J]. Yeast, 2003, 20(14): 1189-1211. |
71 | DEAN N, ZHANG Y B, POSTER J B. The VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 1997, 272(50): 31908-31914. |
72 | STRIEBECK A, ROBINSON D A, SCHÜTTELKOPF A W, et al. Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis[J]. Open Biology, 2013, 3(9): 130022. |
73 | KLIS F M, DE KOSTER C G, BRUL S. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans [J]. Eukaryotic Cell, 2014, 13(1): 2-9. |
74 | SCHIAVONE M, SIECZKOWSKI N, CASTEX M, et al. Effects of the strain background and autolysis process on the composition and biophysical properties of the cell wall from two different industrial yeasts[J]. FEMS Yeast Research, 2015, 15(2): fou012. |
[1] | LU Jinchang, WU Yaokang, LV Xueqin, LIU Long, CHEN Jian, LIU Yanfeng. Green biomanufacturing of ceramide sphingolipids [J]. Synthetic Biology Journal, 2025, 6(2): 422-444. |
[2] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[3] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
[4] | TANG Chuan′gen, WANG Jing, ZHANG Shuo, ZHANG Haoning, KANG Zhen. Advances in synthesis and mining strategies for functional peptides [J]. Synthetic Biology Journal, 2025, 6(2): 461-478. |
[5] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. |
[6] | ZHU Fanghuan, CEN Xuecong, CHEN Zhen. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
[7] | LIU Yining, PU Wei, YANG Jinxing, WANG Yu. Recent advances in the biosynthesis of ω-amino acids and lactams [J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366. |
[8] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[9] | CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. |
[10] | LIU Zijian, MU Baiyang, DUAN Zhiqiang, WANG Xuan, LU Xiaojie. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[11] | ZHANG Shouqi, WANG Tao, KONG Yao, ZOU Jiasheng, LIU Yuanning, XU Zhengren. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[12] | XIE Xiangqian, GUO Wen, WANG Huan, LI Jin. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine [J]. Synthetic Biology Journal, 2024, 5(5): 981-996. |
[13] | ZHANG Bohang, QI Xiaoxuan, YUAN Yan. Advancements in testicular organoids for in vitro spermatogenesis [J]. Synthetic Biology Journal, 2024, 5(4): 770-781. |
[14] | TANG Zhijun, HU Youcai, LIU Wen. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[15] | ZHANG Jun, JIN Shixue, YUN Qian, QU Xudong. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||