Rixin ZHANG, Xiao-jun TIAN
Received:
2024-11-27
Revised:
2025-02-19
Published:
2025-02-19
Contact:
Xiao-jun TIAN
张日新, 田晓军
通讯作者:
田晓军
作者简介:
CLC Number:
Rixin ZHANG, Xiao-jun TIAN. The Cell 'Economics Paradox' in Synthetic Gene Circuits[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-083.
张日新, 田晓军. 合成基因回路面临的细胞‘经济学窘境’[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-083.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-083
Fig. 2 Analytical solutions of the total protein noise (ηtotal:total protein noise; ηp:birth/death of protein noise; ηm:mRNA fluctuating noise; ηRC:resource competition noise) [34]
Fig.4 Cascading bistable switches circuit demonstrates two different cell fate transition paths based on the strength of the links between the two modules[43]
Fig.5 Diagram of resource reallocation strategies[55,60-61](a)The function of negative feedback controller[55] (b)The MazF resource allocator enhances gluconate production[60] (c)SpoT regulation of ribosomes and growth rate[61]
1 | MOE-BEHRENS G H, DAVIS R, HAYNES K A. Preparing synthetic biology for the world[J]. Frontiers in Microbiology, 2013, 4. |
2 | WURTZEL E T, VICKERS C E, HANSON A D, et al. Revolutionizing agriculture with synthetic biology[J]. Nature Plants, 2019, 5(12): 1207-1210. |
3 | MENG F, ELLIS T. The second decade of synthetic biology: 2010–2020[J]. Nature Communications, 2020, 11(1): 5174. |
4 | NGUYEN P Q, HUANG X, COLLINS D S, et al. Harnessing synthetic biology to enhance ocean health[J]. Trends in Biotechnology, 2023, 41(7): 860-874. |
5 | TANG T C, AN B, HUANG Y, et al. Materials design by synthetic biology[J]. Nature Reviews Materials, 2021, 6(4): 332-350. |
6 | BORKOWSKI O, CERONI F, STAN G B, et al. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology[J]. Current Opinion in Microbiology, 2016, 33: 123-130. |
7 | SHAKIBA N, JONES R D, WEISS R, et al. Context-aware synthetic biology by controller design: Engineering the mammalian cell[J]. Cell Systems, 2021, 12(6): 561-592. |
8 | LIAO C, BLANCHARD A E, LU T. An integrative circuit–host modelling framework for predicting synthetic gene network behaviours[J]. Nature Microbiology, 2017, 2(12): 1658-1666. |
9 | DEL VECCHIO D. Modularity, context-dependence, and insulation in engineered biological circuits[J]. Trends in Biotechnology, 2015, 33(2): 111-119. |
10 | BOO A, ELLIS T, STAN G B. Host-aware synthetic biology[J]. Current Opinion in Systems Biology, 2019, 14: 66-72. |
11 | ILIA K, DEL VECCHIO D. Squaring a Circle: To What Extent Are Traditional Circuit Analogies Impeding Synthetic Biology?[J]. GEN Biotechnology, 2022, 1(2): 150-155. |
12 | ŞIMŞEK E, YAO Y, LEE D, et al. Toward predictive engineering of gene circuits[J]. Trends in Biotechnology, 2023, 41(6): 760-768. |
13 | HANS B, P D P. Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates[J]. EcoSal Plus, 2008, 3(1): 10.1128/ecosal.5.2.3. |
14 | VIND J, SØRENSEN M A, RASMUSSEN M D, et al. Synthesis of Proteins in Escherichia coli is Limited by the Concentration of Free Ribosomes: Expression from Reporter Genes does not always Reflect Functional mRNA Levels[J]. Journal of Molecular Biology, 1993, 231(3): 678-688. |
15 | CHURCHWARD G, BREMER H, YOUNG R. Transcription in bacteria at different DNA concentrations[J]. Journal of Bacteriology, 1982, 150(2): 572-581. |
16 | STOEBEL D M, DEAN A M, DYKHUIZEN D E. The Cost of Expression of Escherichia coli lac Operon Proteins Is in the Process, Not in the Products[J]. Genetics, 2008, 178(3): 1653-1660. |
17 | CARBONELL-BALLESTERO M, GARCIA-RAMALLO E, MONTAÑEZ R, et al. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law[J]. Nucleic Acids Research, 2016, 44(1): 496-507. |
18 | GYORGY A, JIMÉNEZ J I, YAZBEK J, et al. Isocost Lines Describe the Cellular Economy of Genetic Circuits[J]. Biophysical Journal, 2015, 109(3): 639-646. |
19 | DEL VECCHIO D, QIAN Y, MURRAY R M, et al. Future systems and control research in synthetic biology[J]. Annual Reviews in Control, 2018, 45: 5-17. |
20 | BASHOR C J, COLLINS J J. Insulating gene circuits from context by RNA processing[J]. Nature Biotechnology, 2012, 30(11): 1061-1062. |
21 | QIAN Y, HUANG H H, JIMÉNEZ J I, et al. Resource Competition Shapes the Response of Genetic Circuits[J]. ACS Synthetic Biology, 2017, 6(7): 1263-1272. |
22 | CERONI F, ALGAR R, STAN G B, et al. Quantifying cellular capacity identifies gene expression designs with reduced burden[J]. Nature Methods, 2015, 12(5): 415-418. |
23 | JONES R D, QIAN Y, SICILIANO V, et al. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells[J]. Nature Communications, 2020, 11(1): 5690. |
24 | DI BLASI R, PISANI M, TEDESCHI F, et al. Resource-aware construct design in mammalian cells[J]. Nature Communications, 2023, 14(1): 3576. |
25 | MORIYA T, YAMAOKA T, WAKAYAMA Y, et al. Comparison between Effects of Retroactivity and Resource Competition upon Change in Downstream Reporter Genes of Synthetic Genetic Circuits[J]. Life, 2019, 9(1). |
26 | CAMERON D E, COLLINS J J. Tunable protein degradation in bacteria[J]. Nature Biotechnology, 2014, 32(12): 1276-1281. |
27 | HERMSEN R, TANS S, WOLDE P R TEN. Transcriptional Regulation by Competing Transcription Factor Modules[J]. PLOS Computational Biology, 2006, 2(12): e164-. |
28 | DONG H, NILSSON L, KURLAND C G. Co-variation of tRNA Abundance and Codon Usage in Escherichia coli at Different Growth Rates[J]. Journal of Molecular Biology, 1996, 260(5): 649-663. |
29 | LOVE A M, NAIR N U. Specific codons control cellular resources and fitness[J]. Science Advances, 2024, 10(8): eadk3485. |
30 | COOKSON N A, MATHER W H, DANINO T, et al. Queueing up for enzymatic processing: correlated signaling through coupled degradation[J]. Molecular Systems Biology, 2011, 7(1): 561. |
31 | BUTZIN N C, HOCHENDONER P, OGLE C T, et al. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing[J]. ACS Synthetic Biology, 2017, 6(3): 455-462. |
32 | PAULSSON J. Models of stochastic gene expression[J]. Physics of Life Reviews, 2005, 2(2): 157-175. |
33 | PAULSSON J. Summing up the noise in gene networks[J]. Nature, 2004, 427(6973): 415-418. |
34 | GOETZ H, STONE A, ZHANG R, et al. Double‐Edged Role of Resource Competition in Gene Expression Noise and Control[J]. Advanced Genetics, 2022, 3. |
35 | ALON U. Network motifs: theory and experimental approaches[J]. Nature Reviews Genetics, 2007, 8(6): 450-461. |
36 | SHEN-ORR S S, MILO R, MANGAN S, et al. Network motifs in the transcriptional regulation network of Escherichia coli[J]. Nature Genetics, 2002, 31(1): 64-68. |
37 | MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network Motifs: Simple Building Blocks of Complex Networks[J]. Science, 2002, 298(5594): 824-827. |
38 | WANG L, WALKER B L, IANNACCONE S, et al. Bistable switches control memory and plasticity in cellular differentiation[J]. Proceedings of the National Academy of Sciences, 2009, 106(16): 6638-6643. |
39 | VEENING J W, SMITS W K, KUIPERS O P. Bistability, Epigenetics, and Bet-Hedging in Bacteria[J]. Annual Review of Microbiology, 2008, 62(Volume 62, 2008): 193-210. |
40 | CHAKRABORTY P, GHOSH S. Emergent correlations in gene expression dynamics as footprints of resource competition[J]. The European Physical Journal E, 2021, 44(10): 131. |
41 | PARTCH C L, GREEN C B, TAKAHASHI J S. Molecular architecture of the mammalian circadian clock[J]. Trends in Cell Biology, 2014, 24(2): 90-99. |
42 | ITO H, MUTSUDA M, MURAYAMA Y, et al. Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus[J]. Proceedings of the National Academy of Sciences, 2009, 106(33): 14168-14173. |
43 | ZHANG R, GOETZ H, MELENDEZ-ALVAREZ J, et al. Winner-takes-all resource competition redirects cascading cell fate transitions[J]. Nature Communications, 2021, 12(1): 853. |
44 | S.-T. L, Y.-C. X, DENNIS P,et al. mRNA Composition and Control of Bacterial Gene Expression[J]. Journal of Bacteriology, 2000, 182(11): 3037-3044. |
45 | LIANG S T, BIPATNATH M, XU Y C, et al. Activities of constitutive promoters in Escherichia coli11Edited by D. E. Draper[J]. Journal of Molecular Biology, 1999, 292(1): 19-37. |
46 | KLUMPP S, HWA T. Growth-rate-dependent partitioning of RNA polymerases in bacteria[J]. Proceedings of the National Academy of Sciences, 2008, 105(51): 20245-20250. |
47 | KLUMPP S, ZHANG Z, HWA T. Growth Rate-Dependent Global Effects on Gene Expression in Bacteria[J]. Cell, 2009, 139(7): 1366-1375. |
48 | ALEXANDER W A, MOSS B, FUERST T R. Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor[J]. Journal of Virology, 1992, 66(5): 2934-2942. |
49 | CHAMBERLIN M, MCGRATH J, WASKELL L. New RNA Polymerase from Escherichia coli infected with Bacteriophage T7[J]. Nature, 1970, 228(5268): 227-231. |
50 | STUDIER F W, MOFFATT B A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes[J]. Journal of Molecular Biology, 1986, 189(1): 113-130. |
51 | KUSHWAHA M, SALIS H M. A portable expression resource for engineering cross-species genetic circuits and pathways[J]. Nature Communications, 2015, 6(1): 7832. |
52 | EL-SAMAD H, KURATA H, DOYLE J C, et al. Surviving heat shock: Control strategies for robustness and performance[J]. Proceedings of the National Academy of Sciences, 2005, 102(8): 2736-2741. |
53 | SEGALL‐SHAPIRO T H, MEYER A J, ELLINGTON A D, et al. A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase[J]. Molecular Systems Biology, 2014, 10(7): 742. |
54 | DARLINGTON A P S, BATES D G. Architectures for Combined Transcriptional and Translational Resource Allocation Controllers[J]. Cell Systems, 2020, 11(4): 382-392.e9. |
55 | DARLINGTON A P S, KIM J, JIMÉNEZ J I, et al. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes[J]. Nature Communications, 2018, 9(1): 695. |
56 | ORELLE C, CARLSON E D, SZAL T, et al. Protein synthesis by ribosomes with tethered subunits[J]. Nature, 2015, 524(7563): 119-124. |
57 | ALEKSASHIN N A, SZAL T, D'AQUINO A E, et al. A fully orthogonal system for protein synthesis in bacterial cells[J]. Nature Communications, 2020, 11(1): 1858. |
58 | DE JONG H, GEISELMANN J, ROPERS D. Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery[J]. Trends in Microbiology, 2017, 25(6): 480-493. |
59 | DARLINGTON A P S, KIM J, JIMÉNEZ J I, et al. Engineering Translational Resource Allocation Controllers: Mechanistic Models, Design Guidelines, and Potential Biological Implementations[J]. ACS Synthetic Biology, 2018, 7(11): 2485-2496. |
60 | VENTURELLI O S, TEI M, BAUER S, et al. Programming mRNA decay to modulate synthetic circuit resource allocation[J]. Nature Communications, 2017, 8(1): 15128. |
61 | BARAJAS C, HUANG H H, GIBSON J, et al. Feedforward growth rate control mitigates gene activation burden[J]. Nature Communications, 2022, 13(1): 7054. |
62 | ZHU M, DAI X. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli[J]. Nucleic Acids Research, 2019, 47(9): 4684-4693. |
63 | BÜKE F, GRILLI J, COSENTINO LAGOMARSINO M, et al. ppGpp is a bacterial cell size regulator[J]. Current Biology, 2022, 32(4): 870-877.e5. |
64 | MU H, HAN F, WANG Q, et al. Recent functional insights into the magic role of (p)ppGpp in growth control[J]. Computational and Structural Biotechnology Journal, 2022, 21. |
65 | ROELL G W, ZHA J, CARR R R, et al. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): 35. |
66 | TSOI R, WU F, ZHANG C, et al. Metabolic division of labor in microbial systems[J]. Proceedings of the National Academy of Sciences, 2018, 115(10): 2526-2531. |
67 | OVÁDI J, SAKS V. On the origin of intracellular compartmentation and organized metabolic systems[J]. Molecular and Cellular Biochemistry, 2004, 256(1): 5-12. |
68 | MAMPEL J, BUESCHER J M, MEURER G, et al. Coping with complexity in metabolic engineering[J]. Trends in Biotechnology, 2013, 31(1): 52-60. |
69 | CHIRANJIT C, SHARMISTHA S, SUNNY C, et al. Diverse Bacterial Microcompartment Organelles[J]. Microbiology and Molecular Biology Reviews, 2014, 78(3): 438-468. |
70 | YEATES T O, JORDA J, BOBIK T A. The Shells of BMC-Type Microcompartment Organelles in Bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2013, 23(4-5): 290-299. |
71 | KERFELD C A, HEINHORST S, CANNON G C. Bacterial Microcompartments[J]. Annual Review of Microbiology, 2010, 64(Volume 64, 2010): 391-408. |
72 | THOMMES M, WANG T, ZHAO Q, et al. Designing Metabolic Division of Labor in Microbial Communities[J]. mSystems, 2019, 4(2). |
73 | LINDEMANN S R. A piece of the pie: engineering microbiomes by exploiting division of labor in complex polysaccharide consumption[J]. Current Opinion in Chemical Engineering, 2020, 30: 96-102. |
74 | ALNAHHAS R N, WINKLE J J, HIRNING A J, et al. Spatiotemporal Dynamics of Synthetic Microbial Consortia in Microfluidic Devices[J]. ACS Synthetic Biology, 2019, 8(9): 2051-2058. |
75 | KIM H J, BOEDICKER J Q, CHOI J W, et al. Defined spatial structure stabilizes a synthetic multispecies bacterial community[J]. Proceedings of the National Academy of Sciences, 2008, 105(47): 18188-18193. |
76 | XU P. Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering[J]. Biotechnology and Bioengineering, 2021, 118(1): 199-209. |
77 | SHOPERA T, HE L, OYETUNDE T, et al. Decoupling Resource-Coupled Gene Expression in Living Cells[J]. ACS Synthetic Biology, 2017, 6(8): 1596-1604. |
78 | JONES R D, QIAN Y, ILIA K, et al. Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles[J]. Nature Communications, 2022, 13(1): 1720. |
79 | CERONI F, BOO A, FURINI S, et al. Burden-driven feedback control of gene expression[J]. Nature Methods, 2018, 15(5): 387-393. |
80 | FREI T, CELLA F, TEDESCHI F, et al. Characterization and mitigation of gene expression burden in mammalian cells[J]. Nature Communications, 2020, 11(1): 4641. |
81 | STONE A, RIJAL S, ZHANG R, et al. Enhancing circuit stability under growth feedback with supplementary repressive regulation[J]. Nucleic Acids Research, 2024, 52(3): 1512-1521. |
82 | HUANG H H, QIAN Y, DEL VECCHIO D. A quasi-integral controller for adaptation of genetic modules to variable ribosome demand[J]. Nature Communications, 2018, 9(1): 5415. |
83 | STONE A, ZHANG R, TIAN X J. Coupling Shared and Tunable Negative Competition Against Winner-Take-All Resource Competition Via CRISPRi Moieties[J]. 2021 American Control Conference (ACC), 2021: 1882. |
84 | STONE A, RYAN J, TANG X, et al. Negatively Competitive Incoherent Feedforward Loops Mitigate Winner-Take-All Resource Competition[J]. ACS Synthetic Biology, 2022, 11(12): 3986-3995. |
85 | CHAKRAVARTY S, ZHANG R, TIAN X J. Noise Reduction in Resource-Coupled Multi-Module Gene Circuits through Antithetic Feedback Control[J]. bioRxiv, 2024: 2024.05.24.595570. |
86 | CHAKRAVARTY S, GUTTAL R, ZHANG R, et al. Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism[J]. ACS Synthetic Biology, 2024, 13(12): 4050-4060. |
87 | RAI K, WANG Y, O'CONNELL R W, et al. Using machine learning to enhance and accelerate synthetic biology[J]. Current Opinion in Biomedical Engineering, 2024, 31: 100553. |
[1] | Ting SHI, Zhan SONG, Shiyi SONG, Yi-Heng P. Job ZHANG. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[2] | Meng CHAI, Fengqing WANG, Dongzhi WEI. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[3] | Mingwei SHAO, Simian SUN, Shimao YANG, Guoqiang CHEN. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[4] | Yu CHEN, Kang ZHANG, Yijing QIU, Caiyun CHENG, Jingjing YIN, Tianshun SONG, Jingjing XIE. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[5] | Haotian ZHENG, Chaofeng LI, Liangxu LIU, Jiawei WANG, Hengrun LI, Jun NI. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[6] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[7] | Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies [J]. Synthetic Biology Journal, 2024, 5(4): 883-897. |
[8] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[9] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[10] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[11] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[12] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[13] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[14] | Xiya GUO, Ji CHEN, Mingxin DONG. New strategies for engineering influenza viruses and their applications [J]. Synthetic Biology Journal, 2024, 5(2): 267-280. |
[15] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||