Synthetic Biology Journal

   

Plant artificial chromosomes: current research progress and future application perspectives

PU Ya1,2, JIAO Yuling1,2   

  1. 1.State Key Laboratory of Gene Function and Modulation Research,School of Life Sciences,Peking University,Beijing 100871,China
    2.Peking -Tsinghua Center for Life Sciences,Center for Quantitative Biology,Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China
  • Received:2025-09-01 Revised:2025-09-26 Published:2025-09-29
  • Contact: JIAO Yuling

植物人工染色体的研究现状与应用前景

蒲娅1,2, 焦雨铃1,2   

  1. 1.北京大学,生命科学学院,基因功能研究与操控全国重点实验室,北京 100871
    2.北京大学,前沿交叉学科研究院,生命科学联合中心,定量生物学中心,北京 100871
  • 通讯作者: 焦雨铃
  • 作者简介:蒲娅(1994—),女,博士后。研究方向为植物人工着丝粒的构建与功能研究。 E-mail:puya0824@pku.edu.cn
    焦雨铃(1979—),男,教授,博士生导师,研究方向为植物发育生物学与合成生物学等。 E-mail:yuling.jiao@pku.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFE0101100);国家重点研发计划项目(2024YFF1000704)

Abstract:

Continuous and remarkable innovation in biology and biotechnology has increasingly revealed the limitations of traditional genetic engineering, such as random integration of transgenes and challenges in regulating multiple genes, in both basic research and practical applications. With the rapid advancement of synthetic biology, which emphasizes the design and construction of novel biological systems with predefined functions, plant artificial chromosomes (PACs) have emerged as a pivotal development. PACs not only deepen our understanding of chromosome structure and function at the molecular level but also serve as precisely engineered chromosomal vectors. These constructs effectively avoid position effects and linkage drag, providing a robust platform for multigene co-expression, complex trait stacking, and metabolic pathway engineering. This review summarizes the history, progress, and current status of PACs research, highlighting various construction strategies. These include truncating and modifying endogenous chromosomes, assembling chromosomal elements (e.g., telomeres, centromeres, and replication origins) to build PACs, as well as de novo designing and synthesizing chromosomal fragments for genome rewriting. The latter approach involves creating entirely new DNA sequences tailored to specific research or application needs. In addition, the review also addresses the critical challenges of constructing functional centromeres, which are essential for accurate chromosome segregation during cell division, and examines techniques for delivering large DNA fragments into plant cells—a key step for the efficient introduction of PACs. Furthermore, this paper highlights persistent challenges in the field, such as difficulties in centromere synthesis, technical bottlenecks in delivering large DNA fragments, and the instability of artificial chromosomes. Finally, it underscores the broad application prospects of PACs in fundamental chromosome research, synthetic biotechnology, and agricultural genetic engineering. By integrating with emerging technologies like gene editing and AI-driven design, PACs are poised to become core tools for elucidating chromosomal mechanisms, enabling precisely crop improvement, and advancing green biomanufacturing, thereby driving sustainable agricultural development and breakthroughs in plant science.

Key words: plant artificial chromosome, minichromosome, synthetic genome, artificial centromere, large DNA fragment transfer

摘要:

由于生物科学与技术的持续革新,传统基因工程的局限性日益凸显。随着合成生物学的迅猛发展,植物人工染色体(Plant Artificial Chromosome,PAC)应运而生。PAC不仅加深了我们对染色体结构与功能的理解,还可作为人为设计与构建的相对独立的工具型染色体,能够避免位置效应与不利连锁现象,为多基因协同表达、复杂性状组合以及完整代谢通路的构建提供高效平台。本文总结了PAC的研究历史和现状,包括截短改造内源染色体与组装染色体元件构建PAC的策略、从头设计与合成染色体片段以实现基因组的改写、功能性着丝粒的构建以及DNA大片段转移技术。此外,本文也讨论了该领域发展所面临的挑战,包括着丝粒合成的复杂性、DNA大片段转移困难,以及PAC的不稳定性。最后,本文强调了PAC在染色体基础研究、合成生物技术及农业基因工程中的广阔应用前景。

关键词: 植物人工染色体, 微型染色体, 合成基因组, 人工着丝粒, DNA大片段转移

CLC Number: