WEI Jiaxiu1, JI Peiyun1, JIE Qingyu1, HUANG Qiuyan1, YE Hao1, DAI Junbiao1,2()
Received:
2025-08-20
Revised:
2025-09-27
Published:
2025-09-29
Contact:
DAI Junbiao
魏家秀1, 嵇佩云1, 节庆雨1, 黄秋燕1, 叶浩1, 戴俊彪1,2()
通讯作者:
戴俊彪
作者简介:
基金资助:
CLC Number:
WEI Jiaxiu, JI Peiyun, JIE Qingyu, HUANG Qiuyan, YE Hao, DAI Junbiao. Construction and application of plant artificial chromosomes[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-086.
魏家秀, 嵇佩云, 节庆雨, 黄秋燕, 叶浩, 戴俊彪. 植物人工染色体的构建与应用[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-086.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-086
[1] | COHEN S N, CHANG A C, BOYER H W, et al. Construction of biologically functional bacterial plasmids in vitro [J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11): 3240-3244. |
[2] | MURRAY A W, SZOSTAK J W. Construction of artificial chromosomes in yeast[J]. Nature, 1983, 305(5931): 189-193. |
[3] | DAVID T, BURKE G F C, OLSON MAYNARD V.. Cloning of large fragments of exogenous DNA into yeast by means of artificial chromosomes vectors[J]. Science 236: 806–812. |
[4] | HARRINGTON J J, VAN BOKKELEN G, MAYS R W, et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes[J]. Nature Genetics, 1997, 15(4): 345-355. |
[5] | CARLSON S R, RUDGERS G W, ZIELER H, et al. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome[J]. PLoS Genet, 2007, 3(10): 1965-1974. |
[6] | WEICHANG YU J C L, FANGPU HAN, JAMES A AND. BIRCHLER. Telomere-mediated chromosomal truncation in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17331-17336. |
[7] | BIRCHLER J A, HAN F. Maize centromeres: structure, function, epigenetics [J]. Annual review of genetics, 2009, 43: 287-303. |
[8] | JIANG S, LUO Z, WU J, et al. Building a eukaryotic chromosome arm by de novo design and synthesis[J]. Nature Communications, 2023, 14(1): 7886. |
[9] | JAKUBIEC A, SAROKINA A, CHOINARD S, et al. Replicating minichromosomes as a new tool for plastid genome engineering[J]. Nature Plants, 2021, 7(7): 932-941. |
[10] | SHAO R F, BARKER S C. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination[J]. Gene, 2011, 473(1): 36-43. |
[11] | RUF S, KARCHER D, BOCK R. Determining the transgene containment level provided by chloroplast transformation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 6998-7002. |
[12] | MALIGA P. Plastid transformation in higher plants[J]. Annual review of plant biology, 2004, 55: 289-313. |
[13] | BOCK R. Transgenic plastids in basic research and plant biotechnology[J]. Journal of molecular biology, 2001, 312(3): 425-438. |
[14] | TAUNT H N, STOFFELS L, PURTON S. Green biologics: The algal chloroplast as a platform for making biopharmaceuticals[J]. Bioengineered, 2018, 9(1): 48-54. |
[15] | SHABIR H W, NADIA H, HITESH KUMAR, et al. Plant plastid engineering [J]. Current Genomics, 2010, 11: 500-512. |
[16] | JAMES J S, DAI J, CHEW W L, et al. The design and engineering of synthetic genomes[J]. Nature Reviews Genetics, 2025, 26(5): 298-319. |
[17] | PUCHTA H, HOUBEN A. Plant chromosome engineering-past, present and future[J]. New Phytologist, 2024, 241(2): 541-552. |
[18] | WEICHANG YU F H, ZHI GAO, JUAN M. VEGA,et al. Construction and behavior of engineered minichromosomes in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21), 8924-8929. |
[19] | ZHONG C X, MARSHALL J B, TOPP C, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3[J]. Plant Cell, 2002, 14(11): 2825-2836. |
[20] | GENT J I, WANG N, DAWE R K. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives[J]. Genome biology, 2017, 18(1): 121. |
[21] | ZáVODNíK M, FAJKUS P, FRANEK M, et al. Telomerase RNA gene paralogs in plants - the usual pathway to unusual telomeres[J]. New Phytologist, 2023, 239(6): 2353-2366. |
[22] | KUMAWAT S, CHOI J Y. No end in sight: Mysteries of the telomeric variation in plants[J]. American Journal of Botany, 2023, 110(11): e16244. |
[23] | GRAHAM N D, CODY J P, SWYERS N C, et al. Chapter Three-Engineered minichromosomes in plants: structure, function, and applications[M]//JEON K W. International Review of Cell and Molecular Biology. Academic Press. 2015: 63-119. |
[24] | BIRCHLER J A, GRAHAM N D, SWYERS N C, et al. Plant minichromosomes[J]. Current Opinion in Biotechnology, 2016, 37: 135-142. |
[25] | YIN X, ZHANG Y, CHEN Y, et al. Precise characterization and tracking of stably inherited artificial minichromosomes made by telomere-mediated chromosome truncation in Brassica napus [J]. Frontiers in Plant Science, 2021, 12. |
[26] | GAETA R T, MASONBRINK R E, ZHAO C, et al. In vivo modification of a maize engineered minichromosome[J]. Chromosoma, 2013, 122(3): 221-232. |
[27] | YAN X, LI C, YANG J, et al. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus [J]. The Plant Journal : for cell and molecular biology, 2017, 91(4): 700-713. |
[28] | KAPUSI E, MA L, TEO C H, et al. Telomere-mediated truncation of barley chromosomes[J]. Chromosoma, 2012, 121(2): 181-190. |
[29] | TEO C H, MA L, KAPUSI E, et al. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana [J]. The Plant Journal: for cell and molecular biology, 2011, 68(1): 28-39. |
[30] | NELSON A D, LAMB J C, KOBROSSLY P S, et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis [J]. Plant Cell, 2011, 23(6): 2263-2272. |
[31] | XU C, CHENG Z, YU W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation[J]. The Plant Journal: for cell and molecular biology, 2012, 70(6): 1070-1079. |
[32] | YAN D, MA Y, WANG H, et al. High ionic conductivity conjugated artificial solid electrolyte interphase enabling stable lithium metal batteries[J]. Green Chemistry, 2025, 27(25): 7564-7574. |
[33] | LIU J, ZHANG R, CHAI N, et al. Programmable genome engineering and gene modifications for plant biodesign[J]. Plant Communication, 2025: 101427. |
[34] | YANG X, LI J, CHEN L, et al. Stable mitotic inheritance of rice minichromosomes in cell suspension cultures[J]. Plant Cell Reports, 2015, 34(6): 929-941. |
[35] | SATTAR M N, HASHEDI S A AL, MUNIR M, et al. Practical applications of minichromosomes in modern agriculture for better crops[M]//AL-KHAYRI J M, YATOO A M, JAIN S M, et al. Handbook of Agricultural Technologies. Singapore; Springer Nature Singapore. 2025: 1-22. |
[36] | JONES N, HOUBEN A. B Chromosomes in plants: escapees from the A chromosome genome? [J]. Trends Plant Science, 2003, 8(9): 417-23. |
[37] | BIRCHLER J A, SWYERS N C. Engineered minichromosomes in plants [J]. Experimental Cell Research, 2020, 388(2). |
[38] | YU W, HAN F, GAO Z, et al. Construction and behavior of engineered minichromosomes in maize [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8924-8929. |
[39] | NAISH M. Bridging the gap: unravelling plant centromeres in the telomere-to-telomere era [J]. New Phytologist, 2024, 244(6): 2143-2149. |
[40] | COMAI L, MAHESHWARI S, MARIMUTHU M P A. Plant centromeres [J]. Current Opinion Plant Biology, 2017, 36: 158-167. |
[41] | YU W, YAU Y Y, BIRCHLER J A. Plant artificial chromosome technology and its potential application in genetic engineering [J]. Plant Biotechnology Journal, 2015, 14(5): 1175-1182. |
[42] | ANANIEV E V, WU C, CHAMBERLIN M A, et al. Artificial chromosome formation in maize (Zea mays L.) [J]. Chromosoma, 2009, 118(2): 157-177. |
[43] | LOGSDON G A, GAMBOGI C W, LISKOVYKH M A, et al. Human artificial chromosomes that bypass centromeric DNA [J]. Cell, 2019, 178(3): 624-639 e19. |
[44] | MENDIBURO MJ P J, FULOP S, SCHEPERS A, HEUN P. Drosophila CENH3 is sufficient for centromere formation [J]. Science, 2011, 334: 686–690. |
[45] | ZENG Y, WANG M, GENT J I, et al. Increased maize chromosome number by engineered chromosome fission[J]. Science Advances, 2025, 11(21): eadw3433. |
[46] | DAWE R K, GENT J I, ZENG Y, et al. Synthetic maize centromeres transmit chromosomes across generations[J]. Nature Plants, 2023, 9(3): 433-441. |
[47] | PESKA V, GARCIA S. Origin, diversity, and evolution of telomere sequences in plants[J]. Frontiers in plant science, 2020, 11: 117. |
[48] | TAN X Y, WU X L, HAN M Z, et al. Yeast autonomously replicating sequence (ARS): identification, function, and modification[J]. Engineering in Life Sciences, 2021, 21(7): 464-474. |
[49] | ECKDAHL T T, BENNETZEN J L, ANDERSON J N. DNA structures associated with autonomously replicating sequences from plants[J]. Plant molecular biology, 1989, 12(5): 507-516. |
[50] | MOLIN W T, YAGUCHI A, BLENNER M, et al. Autonomous replication sequences from the Amaranthus palmeri eccDNA replicon enable replication in yeast[J]. BMC Research Notes, 2020, 13(1): 330. |
[51] | OCCHIALINI A, PFOTENHAUER A C, LI L, et al. Mini-synplastomes for plastid genetic engineering[J]. Plant biotechnology journal, 2022, 20(2): 360-373. |
[52] | OCCHIALINI A, KING G, MAJDI M, et al. An optimized version of the small synthetic genome (mini-synplastome) for plastid metabolic engineering in Solanum tuberosum (potato)[J]. ACS synthetic biology, 2024, 13(12): 4245-4257. |
[53] | YONG J, WU M, CARROLL B J, et al. Enhancing plant biotechnology by nanoparticle delivery of nucleic acids[J]. Trends in Genetics, 2024, 40(4): 352-363. |
[54] | RUSTGI S, NAVEED S, WINDHAM J, et al. Plant biomacromolecule delivery methods in the 21st century[J]. Frontiers in genome editing, 2022, 4: 1011934. |
[55] | MIYAMOTO T, NUMATA K. Advancing biomolecule delivery in plants: harnessing synthetic nanocarriers to overcome multiscale barriers for cutting-edge plant bioengineering[J]. Bulletin of the Chemical Society of Japan, 2023, 96(9): 1026-1044. |
[56] | CHO H J, MOY Y, RUDNICK N A, et al. Development of an efficient marker-free soybean transformation method using the novel bacterium H1[J]. Plant Biotechnology Journal, 2022, 20(5): 977-990. |
[57] | WOO S S, JIANG J, GILL B S, et al. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor [J]. Nucleic Acids Research, 1994, 22(23): 4922-4931. |
[58] | WANG G L, HOLSTEN T E, SONG W Y, et al. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus [J]. Plant Journal, 1995, 7(3): 525-533. |
[59] | HAMILTON C M, FRARY A, LEWIS C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9975-9979. |
[60] | ZIEMIENOWICZ A. Agrobacterium-mediated plant transformation: Factors, applications and recent advances[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(4): 95-102. |
[61] | LI X, YANG Q, PENG L, et al. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42): 26389-26397. |
[62] | GORALOGIA G S, WILLIG C, STRAUSS S H. Engineering Agrobacterium for improved plant transformation[J]. The Plant Journal : for cell and molecular biology, 2025, 121(5): e70015. |
[63] | LIU Y C, VIDALI L. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens [J]. Journal of visualized experiments : JoVE, 2011, (50). |
[64] | BATES G W. Plant transformation via protoplast electroporation[M]//HALL R D. Plant Cell Culture Protocols. Totowa, NJ; Humana Press. 1999: 359-366. |
[65] | MORI K, TANASE K, SASAKI K. Novel electroporation-based genome editing of carnation plant tissues using RNPs targeting the anthocyanidin synthase gene[J]. Planta, 2024, 259(4): 84. |
[66] | LEE K, WANG K. Strategies for genotype-flexible plant transformation [J]. Current Opinion in Biotechnology, 2023, 79: 102848. |
[67] | ISMAGUL A, YANG N, MALTSEVA E, et al. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions[J]. BMC plant biology, 2018, 18(1): 135. |
[68] | KANDHOL N, DASH P K, SINGH V P, et al. Nanomaterial-based gene delivery in plants: an upcoming genetic revolution?[J]. Trends in Plant Science, 2025, S1360-1385(25)00128-1. |
[69] | YAN Y, ZHU X, YU Y, et al. Nanotechnology Strategies for Plant Genetic Engineering[J]. Advanced Materials, 2022, 34(7). |
[70] | ZUVIN M, KURUOGLU E, KAYA V O, et al. Magnetofection of green fluorescent protein encoding dna-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells[J]. ACS omega, 2019, 4(7): 12366-12374. |
[71] | LIU Y, YANG H, SAKANISHI A. Ultrasound: Mechanical gene transfer into plant cells by sonoporation[J]. Biotechnology Advances, 2006, 24(1): 1-16. |
[72] | YANG L, CUI G, WANG Y, et al. Expression of foreign genes demonstrates the effectiveness of pollen-mediated transformation in Zea mays [J]. Frontiers in plant science, 2017, 8: 383. |
[73] | JOERSBO M, BRUNSTEDT J. Sonication: A new method for gene transfer to plants[J]. Physiologia Plantarum, 2006, 85(2): 230-234. |
[74] | NANASATO Y, KONAGAYA K, OKUZAKI A, et al. Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers[J]. Plant cell reports, 2011, 30(8): 1455-1464. |
[75] | JUNJO MATSUSHITA M O, YOHICHI WAKITA, OSAMU TANAKA, et al. Transgenic plant regeneration through silicon carbide whisker-mediated transformation of rice(Oryza sativa L.)[J]. Breeding Science, 1999, 49: 21-26. |
[76] | LIU Y G, SHIRANO Y, FUKAKI H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning [J]. Proc Natl Acad Sci U S A, 1999, 96(11): 6535-6540. |
[77] | LIN L, LIU Y G, XU X, et al. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5962-5967. |
[78] | SRIVASTAVA V, THOMSON J. Gene stacking by recombinases[J]. Plant biotechnology journal, 2016, 14(2): 471-482. |
[79] | ZHU Q L, LIU Y G. TransGene Stacking II vector system for plant metabolic engineering and synthetic biology [J]. Methods in Molecular Biology, 2021, 2238: 19-35. |
[80] | ZHAO Y C, HAN J L, TAN J T, et al. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination [J]. Plant Biotechnol Journal, 2022, 20(10): 1983-1995. |
[81] | ZHU Q L, ZENG D C, YU S Z, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm [J]. Molecular Plant, 2018, 11(12): 1440-1448. |
[82] | ZHU Q L, YU S Z, ZENG D C, et al. Development of "Purple Endosperm Rice" by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system [J]. Molecular Plant, 2017, 10(7): 918-929. |
[83] | WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice [J]. Molecular Plant, 2020, 13(12): 1802-1815. |
[84] | SUN C, LI H C, LIU Y J, LI Y J, et al. Iterative recombinase technologies for efficient and precise genome engineering across kilobase to megabase scales[J]. Cell 2025, 188: 1–18. |
[85] | RENSING S A, GOFFINET B, MEYBERG R, et al. The Moss Physcomitrium (Physcomitrella) patens: A Model Organism for Non-Seed Plants[J]. Plant Cell, 2020, 32(5): 1361-1376. |
[86] | KAMISUGI Y, CUMING A C, COVE D J. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens [J]. Nucleic acids research, 2005, 33(19): e173. |
[87] | BEN-TOV D, MAFESSONI F, CUCUY A, et al. Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks[J]. Nature Communications, 2024, 15(1): 5096. |
[88] | JEONG S H, LEE H J, LEE S J. Recent advances in CRISPR-Cas technologies for synthetic biology[J]. Journal of Microbiology, 2023, 61(1): 13-36. |
[89] | ROZOV S M, PERMYAKOVA N V, DEINEKO E V. The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions[J]. International journal of molecular sciences, 2019, 20(13), 3371. |
[90] | LIANG Z, CHEN K, LI T, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes [J]. Nature Communications, 2017, 8: 14261. |
[91] | WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins [J]. Nature Biotechnology, 2015, 33(11): 1162-1164. |
[92] | NILI OSTROV J B, ELLIS TOM, BENJAMIN GORDON D., et al. Technological challenges and milestones for writing genomes [J]. Science, 2019, 366: 310–312. |
[93] | LIU W, STEWART C N, JR. Plant synthetic biology[J]. Trends in plant science, 2015, 20(5): 309-317. |
[94] | VOLLEN K, ZHAO C, ALONSO J M, et al. Sourcing DNA parts for synthetic biology applications in plants [J]. Current opinion in biotechnology, 2024, 87: 103140. |
[95] | PFOTENHAUER A C, OCCHIALINI A, NGUYEN M A, et al. Building the plant SynBio toolbox through combinatorial analysis of dna regulatory elements[J]. ACS synthetic biology, 2022, 11(8): 2741-2755. |
[96] | NAYAK N, MEHROTRA S, KARAMCHANDANI A N, et al. Recent advances in designing synthetic plant regulatory modules[J]. Frontiers in plant science, 2025, 16: 1567659. |
[97] | TIAN C, LI J, WU Y, et al. An integrative database and its application for plant synthetic biology research[J]. Plant communications, 2024, 5(5): 100827. |
[98] | GOMIDE M D S, LEITAO M C, COELHO C M. Biocircuits in plants and eukaryotic algae[J]. ]. Frontiers in plant science, 2022, 13: 982959. |
[99] | BASSO M F, ARRAES F B M, GROSSI-DE-SA M, et al. Insights into genetic and molecular elements for transgenic crop development[J]. Frontiers in plant science, 2020, 11: 509. |
[100] | ANDRES J, BLOMEIER T, ZURBRIGGEN M D. Synthetic switches and regulatory circuits in plants[J]. Plant Physiology, 2019, 179(3): 862-884. |
[101] | EMILIANI V, ENTCHEVA E, HEDRICH R, et al. Optogenetics for light control of biological systems[J]. Nature reviews. Methods primers, 2022, 2, 55. |
[102] | KONG C, YANG Y, QI T, et al. Predictive genetic circuit design for phenotype reprogramming in plants[J]. Nature Communications, 2025, 16(1): 715. |
[103] | VAZQUEZ-VILAR M, QUIJANO-RUBIO A, FERNANDEZ-DEL-CARMEN A, et al. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data[J]. Nucleic acids research, 2017, 45(4): 2196-2209. |
[104] | YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature protocols, 2007, 2(7): 1565-1572. |
[105] | JIANG F, ZHU J, LIU H L. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation[J]. Protoplasma, 2013, 250(6): 1231-1238. |
[106] | DLUGOSZ E M, LENAGHAN S C, STEWART C N, JR. A robotic platform for high-throughput protoplast isolation and transformation[J]. Journal of visualized experiments : JoVE, 2016, (115), 54300. |
[107] | ONG J Y, SWIDAH R, MONTI M, et al. SCRaMbLE: A study of its robustness and challenges through enhancement of hygromycin b resistance in a semi-synthetic yeast[J]. Bioengineering (Basel), 2021, 8(3). |
[108] | SCHINDLER D, WALKER R S K, JIANG S, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast [J]. Cell, 2023, 186(24): 5237-5253.e22. |
[109] | NGUYEN E, POLI M, DURRANT M G, et al. Sequence modeling and design from molecular to genome scale with Evo[J]. Science, 2024, 386(6723): eado9336. |
[110] | ŽIGA AVSEC N L, CHENG JUN, GUIDO NOVATI, et al. AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model[J]. Google, 2025. |
[111] | PRADHAN B, PANDA D, BISHI S K, et al. Progress and prospects of C(4) trait engineering in plants[J]. Plant biology (Stuttgart, Germany), 2022, 24(6): 920-31. |
[112] | PRYWES N, PHILLIPS N R, TUCK O T, et al. Rubisco function, evolution, and engineering[J]. Annual review of biochemistry, 2023, 92: 385-410. |
[113] | BAHUGUNA V, BHATT G, MAIKHURI R, et al. Nitrogen fixation through genetic engineering: a future systemic approach of nitrogen fixation[M]//NATH M, BHATT D, BHARGAVA P, et al. Microbial Metatranscriptomics Belowground. Singapore; Springer Singapore. 2021: 109-122. |
[114] | BENNETT E M, MURRAY J W, ISALAN M. Engineering nitrogenases for synthetic nitrogen fixation: from pathway engineering to directed evolution[J]. Biodesign research, 2023, 5: 0005. |
[115] | MONTESINOS E. Functional Peptides for Plant Disease Control[J]. Annual review of phytopathology, 2023, 61: 301-324. |
[116] | AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens[J]. Trends in plant science, 2012, 17(2): 73-90. |
[117] | HUANG W, ZHANG Y, XIAO N, et al. Trans-complementation of the viral movement protein mediates efficient expression of large target genes via a tobacco mosaic virus vector[J]. Plant biotechnology journal, 2024, 22(11): 2957-2970. |
[118] | HU Y J, GU C C, WANG X F, et al. Asymmetric total synthesis of taxol[J]. Journal of the American Chemical Society, 2021, 143(42): 17862-17870. |
[119] | LI J, MUTANDA I, WANG K, et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana [J]. Nature Communications, 2019, 10(1): 4850. |
[120] | SU C, CUI H, WANG W, et al. Bioremediation of complex organic pollutants by engineered Vibrio natriegens [J]. Nature, 2025, 642(8069): 1024-1033. |
[121] | BOEHM C R, BOCK R. Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism[J]. Plant Physiology, 2019, 179(3): 794-802. |
[122] | ZHANG Y Z, YUAN J, ZHANG L, et al. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis [J]. Nature Communications, 2020, 11(1): 6212. |
[1] | FANG Xinyi, SUN Lichao, HUO Yixin, WANG Ying, YUE Haitao. Trends and challenges in microbial synthesis of higher alcohols [J]. Synthetic Biology Journal, 2025, 6(4): 873-898. |
[2] | WU Xiaoyan, SONG Qi, XU Rui, DING Chenjun, CHEN Fang, GUO Qing, ZHANG Bo. A comparative analysis of global research and development competition in synthetic biology [J]. Synthetic Biology Journal, 2025, 6(4): 940-955. |
[3] | ZHANG Jiankang, WANG Wenjun, GUO Hongju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and application of a high-throughput microbial clone picking workstation based on machine vision [J]. Synthetic Biology Journal, 2025, 6(4): 956-971. |
[4] | LI Quanfei, CHEN Qian, LIU Hao, HE Kundong, PAN Liang, LEI Peng, GU Yi’an, SUN Liang, LI Sha, QIU Yibin, WANG Rui, XU Hong. Synthetic biology and applications of high-adhesion protein materials [J]. Synthetic Biology Journal, 2025, 6(4): 806-828. |
[5] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
[6] | TIAN Xiao-jun, ZHANG Rixin. “Economics Paradox” with cells in synthetic gene circuits [J]. Synthetic Biology Journal, 2025, 6(3): 532-546. |
[7] | ZHANG Yiqing, LIU Gaowen. Exploration of gene functions and library construction for engineering strains from a synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(3): 685-700. |
[8] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[9] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
[10] | SONG Chengzhi, LIN Yihan. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. |
[11] | ZHANG Mengyao, CAI Peng, ZHOU Yongjin. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors [J]. Synthetic Biology Journal, 2025, 6(2): 334-356. |
[12] | ZHANG Lu’ou, XU Li, HU Xiaoxu, YANG Ying. Synthetic biology ushers cosmetic industry into the “bio-cosmetics” era [J]. Synthetic Biology Journal, 2025, 6(2): 479-491. |
[13] | YI Jinhang, TANG Yulin, LI Chunyu, WU Heyun, MA Qian, XIE Xixian. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 254-289. |
[14] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[15] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||