Synthetic Biology Journal

   

Construction and application of plant artificial chromosomes

WEI Jiaxiu1, JI Peiyun1, JIE Qingyu1, HUANG Qiuyan1, YE Hao1, DAI Junbiao1,2()   

  1. 1.Shenzhen Branch,Guangdong Laboratory for Lingnan Modern Agriculture,Key Laboratory of Synthetic Biology,Ministry of Agriculture and Rural Affairs,Agricultural Genomics Institute at Shenzhen,Chinese Academy of Agricultural Sciences,Shenzhen 518120,Guangdong,China
    2.Shenzhen Key Laboratory of Synthetic Genomics,Guangdong Provincial Key Laboratory of Synthetic Genomics,Key Laboratory of Quantitative Synthetic Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China
  • Received:2025-08-20 Revised:2025-09-27 Published:2025-09-29
  • Contact: DAI Junbiao

植物人工染色体的构建与应用

魏家秀1, 嵇佩云1, 节庆雨1, 黄秋燕1, 叶浩1, 戴俊彪1,2()   

  1. 1.中国农业科学院农业基因组研究所,农业农村部合成生物学重点实验室,广东省岭南现代农业实验室,广东 深圳 518120
    2.中国科学院深圳先进技术研究院合成生物学研究所,广东省合成基因组学重点实验室,深圳市合成基因组学重点实验室,定量合成生物学重点实验室,广东 深圳 518055
  • 通讯作者: 戴俊彪
  • 作者简介:魏家秀(1992—),女,博士。研究方向为叶绿体基因组的核迁移。E-mail:weijiaxiu@caas.cn
    嵇佩云(1996—),女,博士。研究方向为植物高效同源重组元件的挖掘与应用。E-mail:jipeiyun@caas.cn
    戴俊彪(1974—),男,博士,研究员,博士生导师,广东省合成基因组学重点实验室主任,深圳合成基因组学重点实验室主任,欧洲科学院院士。研究方向为开发基因和基因组的合成、组装及转移技术,通过基因组的设计构建解析基因组功能,并进行合成生物的改造和优化等方面的研究工作。戴俊彪研究员是人工合成酵母基因组国际计划
  • 基金资助:
    国家重点研发计划(2023YFA0913500);国家自然科学基金(32301232);中国农业科学院科技创新工程专项(2060299)

Abstract:

Plant artificial chromosomes (PACs) are human-designed chromosomes capable of independent replication and stable inheritance in plant cells, possessing substantial potential for genetic engineering. A key advantage of PACs lie in the capacity to accommodate large genetic cassettes while functioning independently of the host genome, establishing PACs as a versatile platform for stability and biosafety genetic manipulation. This review systematically outlines current strategies for PAC construction, methodologies, and future application prospects from a synthetic biology perspective. Current strategies for PAC construction are broadly categorized into top-down and bottom-up approaches. The top-down strategy utilizes endogenous chromosomal elements through techniques such as telomere-mediated chromosomal truncation (TMCT) to generate minichromosomes. In contrast, the bottom-up strategy focuses on de novo assembly of functional elements, including centromeres, telomeres, and autonomous replication sequences to synthesize novel chromosomes. Significant progress has also been made in developing extra-nuclear PACs based on plastid or mitochondrial genomes, which benefit from prokaryotic-like transcription and translation systems and offer higher transgene containment. However, the efficient delivery of large PAC constructs into plant cells remains a major technical hurdle. This review evaluates various delivery methodologies to address this challenge. By enabling high-capacity, chromosome-scale engineering, PACs significantly expand the scope of synthetic biology, supporting not only large-scale genomic modifications in existing species but also the de novo design of synthetic gene networks and metabolic pathways. Delivering large PAC constructs into plant cells remains a major bottleneck, and the review evaluates various methods. By enabling chromosomal-level engineering, PACs broaden the scope of synthetic biology. Beyond supporting large-scale modifications in existing plants, PACs also allow the de novo assembly of novel gene networks and metabolic pathways, paving the way for engineering plant systems with novel, non-native traits and functions. To fully unleash this potential, several technical challenges must be addressed, including efficient synthesis and delivery of large DNA fragments, enhancement of genetic stability, and the integration of artificial intelligence (AI) with synthetic biology for precise design and functional optimization of PACs. Through iterative design-build-test-learn (DBTL) cycles, PACs can be developed into predictable and stable biological systems. The convergence of these approaches is expected to drive transformative applications across agriculture, pharmaceuticals, and ecology.

Key words: artificial chromosomes, genome engineering, plastid artificial chromosomes, synthetic biology

摘要:

植物人工染色体(PAC)是一种人工构建、能在植物细胞中独立复制并稳定遗传的染色体载体,具有高度工程化潜力。其核心优势在于能够承载超大容量基因模块并且独立于天然染色体系统,被视为一种潜在的通用基因操作平台,具有遗传稳定性与安全性。本文将从合成生物学视角,系统评述PAC的构建策略、递送技术及应用前景。当前,PAC主要采取自上而下与自下而上两种构建策略。然而,PAC的大容量也使其递送更为困难。PAC的构建不仅能在染色体尺度上改造现有植物,更能通过构建全新的基因网络和代谢途径,尝试设计和创造自然界尚未存在的、具有特殊功能或属性的新生命形式,极大地拓展了合成生物学在植物领域的疆界。为充分释放这一潜力,未来研究需攻克超大DNA片段合成与递送的技术瓶颈,持续优化其遗传稳定性,并深度融合人工智能与合成生物学技术,以实现PAC的精准设计与高效功能调控,从而驱动其在农业、医药及环保等领域的突破性应用。

关键词: 人工染色体, 基因组工程, 叶绿体人工染色体, 合成生物学

CLC Number: