Synthetic Biology Journal

   

Strategies and prospects of synthetic biology in crop photosynthesis

Yang SUN, Lichao CHEN, Yanyun SHI, Ke WANG, Dandan LU, Xiumei XU, Lixin ZHANG   

  1. State Key Laboratory of Crop Stress Adaptation and Improvement,Henan Key Laboratory of Synthetic Biology and Biomanufacturing,School of Life Sciences,Henan University,Kaifeng 475004,Henan,China
  • Received:2024-12-17 Revised:2025-03-12 Published:2025-03-13
  • Contact: Lixin ZHANG

作物光合作用合成生物学的策略与展望

孙扬, 陈立超, 石艳云, 王珂, 吕丹丹, 徐秀美, 张立新   

  1. 省部共建作物逆境适应与改良国家重点实验室,河南省合成生物与生物制造重点实验室,生命科学学院,河南大学,河南 开封 475000
  • 通讯作者: 张立新
  • 作者简介:孙扬(1993—),男,讲师,硕士生导师,研究方向为逆境下光合作用调控机制以及光合作用合成生物学。 E-mail:sunyy@henu.edu.cn
    张立新(1970—),男,教授,博士生导师,研究方向为光合作用功能调控机理,包括叶绿体基因表达调控、光合膜复合物组装、叶绿体信号转导、光合作用环境调节等。 E-mail:zhanglixin@henu.edu.cn
  • 基金资助:
    国家重点研发计划“合成生物学”重点专项(2020YFA0907600);河南省中原学者项目(234000510005)

Abstract:

Photosynthesis is the primary source of energy and materials for nearly all life activities on Earth, and its efficiency directly affects crop growth and yield. With the rapid development of synthetic biology, researchers have begun to explore engineering approaches to optimize the fundamental processes of photosynthesis at different levels, such as light energy utilization, carbon fixation, photorespiration, and stress adaptation. This review summarizes recent advances in improving photosynthetic efficiency, with a focus on the synthetic biological strategies that can be implemented in crops. To achieve efficient light absorption and electron transport, novel light energy conversion models have been developed, involving the engineering of light-harvesting antennae to minimize energy loss and the development of orthogonal electron transport chains to enhance quantum yield. Multi-level optimization strategies have been developed for carbon assimilation pathways, including directed evolution and activity modification of Rubisco, optimization of key enzymes in the Calvin-Benson-Bassham cycle, and the introduction of CO2 concentrating mechanisms into C3 plants. Furthermore, novel photorespiratory bypasses have been engineered through synthetic biology approaches, which optimize glycolate metabolism to effectively reduce photorespiratory carbon loss while enhancing photosynthetic efficiency in crops. Additionally, various engineering strategies have been developed to optimize photosynthetic performance under adverse conditions, such as the enhancement of non-photochemical quenching components to tolerate high light and the application of stress-responsive elements to adapt to temperature fluctuations. By employing synthetic biology techniques, significant improvements in plant photosynthetic efficiency and stress resistance have been achieved. This has led to enhanced biomass and crop yields, thereby providing new solutions to address global food security challenges. In the future, strategies based on synthetic biology, combined with a deeper understanding of the molecular mechanisms of photosynthesis and emerging technologies like artificial intelligence, will offer more effective methods and pathways for the engineering of photosynthesis, resulting in a substantial enhancement of crop photosynthetic efficiency.

Key words: photosynthetic efficiency, synthetic biology, photosynthetic electron transfer model, Rubisco engineering, photorespiratory bypass, photosynthetic stress adaptation

摘要:

光合作用是地球上几乎所有生命活动的能量和物质来源,其效率直接影响作物的生长和产量。随着合成生物学的快速发展,研究者们开始探索通过工程化手段,从不同层次优化光合作用的基本环节,包括光能利用、碳固定、光呼吸及光合逆境适应等。本文综述了近年来在提高光合作用效率方面的研究进展,重点讨论了新型光能转化模型的构建、Rubisco的定向进化与活性改造、碳同化途径的优化、光呼吸支路的设计以及逆境高光效回路的构建等策略。通过合成生物学的手段,可以显著提高植物的光合效率和抗逆能力,实现生物量和作物产量的提升,为应对全球粮食安全挑战提供新的解决方案。未来,基于合成生物学的策略,深入解析光合作用的分子机制,结合人工智能等新兴技术,将为光合作用的工程化改造提供更为有效的方法和途径,实现作物光合作用效率的显著提升。

关键词: 光合作用效率, 合成生物学, 光合电子传递模型, Rubisco改造, 光呼吸支路, 光合逆境适应

CLC Number: