ZHENG Lei, ZHENG Qiteng, ZHANG Tianjiao, DUAN Kun, ZHANG Ruifu
Received:
2025-07-21
Revised:
2025-09-09
Published:
2025-09-10
Contact:
ZHANG Ruifu
郑雷, 郑棋腾, 张天骄, 段鲲, 张瑞福
通讯作者:
张瑞福
作者简介:
基金资助:
CLC Number:
ZHENG Lei, ZHENG Qiteng, ZHANG Tianjiao, DUAN Kun, ZHANG Ruifu. Engineering rhizosphere synthetic microbial communities to enhance crop nutrient use efficiency[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-075.
郑雷, 郑棋腾, 张天骄, 段鲲, 张瑞福. 构建根际合成微生物菌群促进作物养分高效吸收利用[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-075.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-075
[1] | Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age [J]. Trends in Ecology and Evolution, 2008, 23(2): 95-103. |
[2] | Shi J C, Wang X L, Wang E T. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems [J]. Annual Review Plant Biology, 2023, 74: 569-607. |
[3] | Yang J, Lan L Y, Jin Y, et al. Mechanisms underlying legume-rhizobium symbioses [J]. Journal of Integrative Plant Biology, 2022, 64(2): 244-267. |
[4] | Pang Z Q, Chen J, Wang T H, et al. Linking plant secondary metabolites and plant microbiomes: a review [J]. Front in Plant Science, 2021, 12: 621276. |
[5] | Venturi V, Keel C. Signaling in the rhizosphere [J]. Trends in Plant Science 2016, 21(3): 187-198. |
[6] | Zhou X G, Zhang J Y, Khashi u Rahman M, et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes [J]. Molecular Plant, 2023, 16(5): 849-864. |
[7] | Yu P, He X M, Baer M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation [J]. Nature Plants, 2021, 7: 481-499. |
[8] | Singh B K, Hu H W, Macdonald C A, et al. Microbiome-facilitated plant nutrient acquisition [J]. Cell Host Microbe, 2025, 33(6): 869-881. |
[9] | Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health [J]. Nature Review Microbiology, 2020, 18(11): 607-621. |
[10] | Griffin C, Oz M T, Demirer G S. Engineering plant-microbe communication for plant nutrient use efficiency [J]. Current Opinion Biotechnology, 2024, 88: 103150. |
[11] | Dai R, Zhang J Y, Liu F, et al. Crop root bacterial and viral genomes reveal unexplored species and microbiome patterns [J]. Cell, 2025, 188(9): 2521-2539.e22. |
[12] | Dong Q Q, Su H J, Sun Y X, et al. Metagenomic insights into nitrogen cycling functional gene responses to nitrogen fixation and transfer in maize-peanut intercropping [J]. Plant Cell Environment, 2024, 47(12): 4557-4571. |
[13] | Elias M, Tanaka M, Sakai M, et al. C-terminal periplasmic domain of Escherichia coli quinoprotein glucose dehydrogenase transfers electrons to ubiquinone [J]. The Journal of Biology Chemistry, 2001, 276(251): 48356–48361. |
[14] | Liu Y, Jia B L, Ren Y, et al. Bacterial social interactions in synthetic Bacillus consortia enhance plant growth [J]. IMeta, 2025, e70053. |
[15] | Berg G, Kusstatscher P, Abdelfattah A, et al. Microbiome Modulation-Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants [J]. Frontiers in Microbiology, 2021, 12: 650610. |
[16] | Erlacher A, Cardinale M, Grosch R, et al. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome [J]. Frontiers in Microbiology, 2014, 5: 175. |
[17] | Jiang W Y, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nature Biotechnology, 2013, 31(3): 233-239. |
[18] | Johns N I, Blazejewski T, Gomes A L, et al. Principles for designing synthetic microbial communities [J]. Current Opinion in Microbiology, 2016, 31: 146-153. |
[19] | Stenuit B, Agathos SN. Deciphering microbial community robustness through synthetic ecology and molecular systems synecology [J]. Current Opinion in Microbiology, 2015, 33: 305-317. |
[20] | Hu J, Wei Z, Friman V P, et al. Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression [J]. mBio, 2016, 7(6): e01790-16. |
[21] | Wang J J, Li R C, Zhang H, et al. Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application [J]. BMC Microbiology, 2020, 20(1): 38. |
[22] | Wang J, Uwiragiye Y, Cao M M, et al. Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses[J]. Environmental Science Technology, 2025, 59(33): 17595-17605. |
[23] | Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review[J]. Plant and Soil, 2001, 237: 173-195. |
[24] | Guerinot M L, Yi Y. Iron: Nutritious, Noxious, and Not Readily Available[J]. Plant Physiol, 1994, 104(3): 815-820. |
[25] | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
[26] | Yue H, Yue W J, Jiao S, et al. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions [J]. Microbiome, 2023, 11(1): 70. |
[27] | Xu H R, Liu W D, He Y H, et al. Plant-root microbiota interactions in nutrient utilization [J]. Frontiers of Agricultural Science and Engineering, 2025, 12(1): 16-26. |
[28] | Craine J M, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition [J]. Ecology, 2007, 88(8): 2105-2113. |
[29] | Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect [J]. Soil Biology and Biochemistry, 2011, 43(1): 86-96. |
[30] | Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant and Soil, 2002, 245: 35-47. |
[31] | Liu S B, He F K, Kuzyakov Y, et al. Nutrients in the rhizosphere: A meta-analysis of content, availability, and influencing factors [J]. The Science of the Total Environment, 2022, 826: 153908. |
[32] | Schalk I J. Bacterial siderophores: diversity, uptake pathways and applications [J]. Nature Review Microbiology, 2025, 23(1): 24-40. |
[33] | Fan X Y, Ge A H, Qi S S, et al. Root exudates and microbial metabolites: signals and nutrients in plant-microbe interactions [J]. Science China Life Science, 2025, 11. |
[34] | Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network [J]. Nature Review Microbiol, 2018, 16(5): 263-276. |
[35] | Cheng S, Gong X, Xue W, et al. Evolutionarily conserved core microbiota as an extended trait in nitrogen acquisition strategy of herbaceous species [J]. New Phytologist, 2024, 244(4): 1570-1584. |
[36] | Yang N, Nesme J, Røder H L, et al. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis [J]. NPJ Biofilms and Microbiomes, 2021, 7(1): 82. |
[37] | Porter S S, Dupin S E, Denison R F, et al. Host-imposed control mechanisms in legume-rhizobia symbiosis[J]. Nature Microbiology. 2024, 9(8):1929-1939. |
[38] | Priya H, Dhar D W, Singh R, et al. Co-cultivation approach to decipher the influence of nitrogen-fixing Cyanobacterium on growth and N uptake in rice crop [J]. Current Microbiology, 2022, 79(2): 53. |
[39] | Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes [J]. Journal of Biotechnology, 2003, 106(2-3): 169-178. |
[40] | Waller S, Wilder S L, Schueller M J, et al. Examining the effects of the nitrogen environment on growth and N2-fixation of endophytic Herbaspirillum seropedicae in maize seedlings by applying 11C radiotracing [J]. Microorganisms, 2021, 9(8): 1582. |
[41] | Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects [J]. FEMS Microbiology Reviews, 2000, 24(4): 487-506. |
[42] | Haskett T L, Paramasivan P, Mendes MD, et al. Engineered plant control of associative nitrogen fixation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(16): e2117465119. |
[43] | Zhang L, Zhang M, Huang S, et al. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants [J]. Nature. Communication, 2022, 13: 3361. |
[44] | Van Deynze A, Zamora P, Delaux PM, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota [J]. PLoS Biology, 2018, 16(8): e2006352. |
[45] | Calvo P, Zebelo S, McNear D, et al. Plant growth-promoting rhizobacteria induce changes in Arabidopsis thaliana gene expression of nitrate and ammonium uptake genes [J]. Journal of Plant Interactions, 2019, 14: 224-231. |
[46] | Chen Y, Li Y C, Fu Y S, et al. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway [J]. Journal of Experimental Botany, 2024, 75(11): 3388-3400. |
[47] | McGrath J W, Chin J P, Quinn J P. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules [J]. Nature Reviews Microbiology, 2013, 11(6): 412-419 |
[48] | Gross A, Lin Y, Weber P K, et al. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests [J]. Ecology, 2020, 101(2): e02928. |
[49] | Liang J L, Liu J, Jia P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. The ISME Journal, 2020, 14(6): 1600-1613. |
[50] | Billah M, Khan M, Bano A, et al. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture [J]. Geomicrobiol Journal, 2019, 36: 904-916. |
[51] | Zhao B Y, Jia X Q, Yu N, et al. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants [J]. The New Phytologist, 2024, 242(4): 1507-1522. |
[52] | De Zutter N, Ameye M, Vermeir P V, al at. Innovative rhizosphere-based enrichment under P-limitation selects for bacterial isolates with high-performance P-solubilizing traits [J]. Microbiology Spectrum, 2022, 10(6): e0205222. |
[53] | Singh S K, Wu X X, Shao C Y, et al. Microbial enhancement of plant nutrient acquisition [J]. Stress Biology, 2022, 2(1): 3. |
[54] | Shao J H, Miao Y J, Liu K M, et al. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization [J]. Soil Biology and Biochemistry, 2021, 159: 108273. |
[55] | Pang F, Li Q, Solanki M K, et al. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms [J]. Frontier in Microbiology, 2024, 15: 1383813. |
[56] | Liu J P, Xu W F, Zhang Q, et al. OsPHR2-mediated recruitment of Pseudomonadaceae enhances rice phosphorus uptake [J]. Plant Communications, 2024, 5(8): 100930. |
[57] | Liu C, Bai Z, Luo Y, et al. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation [J]. Nature Communication, 2024, 15(1): 9732. |
[58] | Harbort C J, Hashimoto M, Inoue H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis [J]. Cell Host Microbe, 2020, 28(6): 825-837.e6. |
[59] | Wang N, Wang T, Chen Y, et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize[J]. Nature Communications, 2024, 15(1): 839. |
[60] | Zamioudis C, Korteland J, Van Pelt J A, et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses [J]. The Plant Journal, 2015, 84(2): 309-322. |
[61] | Prity S A, Sajib S A, Das U, et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status [J]. Protoplasma, 2020, 257(5): 1373-1385. |
[62] | Zhang P F, Jin T, Kumar Sahu S, et al. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis [J]. Molecules, 2019, 24(7): 1411. |
[63] | Nett R S, Montanares M, Marcassa A, et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution [J]. Nature Chemical Biology, 2017, 13(1): 69-74. |
[64] | Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, et al. Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria [J]. Microbiological Research, 2018, 208: 85-98. |
[65] | Hayashi S, Gresshoff P M, Ferguson B J. Mechanistic action of gibberellins in legume nodulation [J]. Journal of Integrative Plant Biology, 2014, 56(10): 971-978. |
[66] | Großkinsky D K, Tafner R, Moreno M V, et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis [J]. Scientific Reports, 2016, 6(1): 23310. |
[67] | Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review [J]. Microbiological Research, 2018, 209: 21-32. |
[68] | Conway J M, Walton W G, Salas-González I, et al. Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome [J]. Nature Microbiology, 2022, 7(11): 1817-1833. |
[69] | Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies [J]. Cell, 2024, 187(5): 1076-1100. |
[70] | Chen L, Zhang S, Xue N N, et al. Engineering a precise adenine base editor with minimal bystander editing [J]. Nature Chemical Biology, 2023, 19(1): 101-110. |
[71] | Xu P Y, Saito M, Faure G, et al. Structural insights into the diversity and DNA cleavage mechanism of Fanzor [J]. Cell, 2024, 187(19): 5238-5252.e20. |
[72] | Wei Y H, Gao P F, Pan D, et al. Engineering eukaryotic transposon-encoded Fanzor2 system for genome editing in mammals [J]. Nature Chemical Biology, 2025. |
[73] | Hua Y, Tay N E S, Ye X J, et al. Protein editing using a coordinated transposition reaction [J]. Science, 2025, 388(6742): 68-74. |
[74] | Dixon R A, Postgate J R. Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli [J]. Nature, 1972, 237(5350): 102-103. |
[75] | Temme K, Zhao D H, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085-7090. |
[76] | Wang L Y, Zhang L H, Liu Z Z, et al. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli [J]. PLoS Genetics, 2013, 9(10): e1003865. |
[77] | Li X X, Liu Q, Liu X M, et al. Using synthetic biology to increase nitrogenase activity [J]. Microbial Cell Factories, 2016, 15: 43. |
[78] | Zhang T, Yan Y L, He S, et al. Involvement of the ammonium transporter amtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501 [J]. Research in Microbiology, 2012, 163(5): 332-339. |
[79] | Bageshwar U K, Srivastava M, Pardha-Saradhi P, et al. An Environmentally friendly engineered azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield [J]. Applied and Environmental Microbiology, 2017, 83(15): e00590-17. |
[80] | Compant S, Cassan F, Kostić T, et al. Harnessing the plant microbiome for sustainable crop production [J]. Nature Review Microbiology, 2025, 23(1): 9-23. |
[81] | Wen A, Havens K L, Bloch S E, et al. Enabling biological nitrogen fixation for cereal crops in fertilized fields [J]. ACS Synthetic Biology, 10(12): 3264-3277. |
[82] | Ryu M H, Zhang J, Toth T, et al. Control of nitrogen fixation in bacteria that associate with cereals [J]. Nature Microbiology, 2020, 5(2): 314-330. |
[83] | Allen R S, Tilbrook K, Warden A C, et al. Expression of 16 nitrogenase proteins within the plant mitochondrial matrix [J]. Frontiers in Plant Science, 2017, 8: 287. |
[84] | He W S, Bure´n S, Baysal C, et al. Nitrogenase cofactor maturase nifB isolated from transgenic rice is active in FeMo-co synthesis [J]. ACS Synthetic Biology, 2022, 11(9): 3028-3036. |
[85] | Alori E T, Glick B R, Babalola O O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture [J]. Frontiers in Microbiology. 2017, 8: 971. |
[86] | Buch A, Archana G, Naresh Kumar G. Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield [J]. Bioresour Technology, 2010, 101(2): 679-687. |
[87] | Adhikary H, Sanghavi P B, Macwan S R, et al. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads [J]. PLoS ONE, 2014, 9: e107554-e107554. |
[88] | Shulse C N, Chovatia M, Agosto C, et al. Engineered root bacteria release plant-available phosphate from phytate [J]. Applied and Environmental Microbiology, 2019, 85(18): e01210-01219. |
[89] | Liu Y P, Shu X, Chen L, et al. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization [J]. Nature Microbiology, 2023, 8(8): 1434-1449. |
[90] | Chen J W, Zhang X, Kuang M, et al. Endophytic Enterobacter sp. YG-14 mediated arsenic mobilization through siderophore and its role in enhancing phytostabilization[J]. Journal of hazardous materials, 2024, 465:133206. |
[91] | De Souza R S C, Armanhi J S L, Arruda P, et al. From microbiome to traits: designing synthetic microbial communities for improved crop resiliency [J]. Frontiers in Plant Science, 2020, 11: 1179. |
[92] | Xi H C, Nie X Q, Gao F, et al. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine [J]. Science Advances, 2023, 9(43): eadj9075. |
[93] | Shen J Y, Wang M X, Wang E T. Exploitation of the microbiome for crop breeding [J]. Nature Plants, 2024, 10(4): 533-534. |
[94] | Vorholt J A, Vogel C, C Iet al Carlström. Establishing causality: opportunities of synthetic communities for plant microbiome research [J]. Cell Host Microbe, 2017, 22(2): 142-155. |
[95] | Jing J Y, Garbeva P, Raaijmakers J M, et al. Strategies for tailoring functional microbial synthetic communities [J]. The ISME Journal, 2024, 18(2): wrae049. |
[96] | Lawson C E, Harcombe W R, Hatzenpichler R, et al. Common principles and best practices for engineering microbiomes [J]. Nature Review Microbiology, 2019, 17(12): 725-741. |
[97] | Wang W, Xia Y W, Zhang P P, et al. Narrow-spectrum resource-utilizing bacteria drive the stability of synthetic communities through enhancing metabolic interactions [J]. Nature Communication, 2025, 16(1): 6088. |
[98] | Kaur S, Egidi E, Qiu Z G, et al. Synthetic community improves crop performance and alters rhizosphere microbial communities [J]. Journal of Sustainable Agriculture and Environment, 1: 118-131. |
[99] | Chai Y N, Ge Y F, Stoerger V, et al. High-resolution phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and synthetic microbial communities [J]. Plant Cell & Environment, 2021, 44(5): 1611-1626. |
[100] | Niu B, Paulson J N, Zheng X, et al. Simplified and representative bacterial community of maize roots [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2450-E2459. |
[101] | Xun W B, Ren Y, Yan H, et al. Sustained inhibition of maize seed-borne Fusarium Using a Bacillus-dominated rhizospheric stable core microbiota with unique cooperative patterns [J]. Advanced Science, 2023, 10(5): 2205215 |
[102] | Qiao Y Z, Wang Z D, Sun H, et al. Synthetic community derived from grafted watermelon rhizosphere provides protection for ungrafted watermelon against Fusarium oxysporum via microbial synergistic effects [J]. Microbiome, 2024, 12(1): 101. |
[103] | Xu X M, Dinesen C, Pioppi A, et al. Composing a microbial symphony: synthetic communities for promoting plant growth [J]. Trends in Microbiology, 2025, 33(17): 735-751. |
[104] | Northen T R, Kleiner M, Torres M, et al. Community standards and future opportunities for synthetic communities in plant-microbiota research [J]. Nature Microbiology, 2024, 9(11): 2774-2784. |
[105] | Wang C H, Li Y J, Li M J, et al. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean [J]. Journal of Integrative Plant Biology, 2021, 63(6): 1021-1035. |
[106] | Li Y J, Li R R, Liu R, et al. A simplified SynCom based on core-helper strain interactions enhances symbiotic nitrogen fixation in soybean [J]. Journal of Integrative Plant Biology, 2025, 67(6): 1582-1598. |
[107] | Liu C Y, Jiang M T, Yuan M M, et al. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils [J]. Nature Food, 2023, 4(10): 912-924. |
[108] | Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity [J]. Nature, 2017, 543(7646): 513-518. |
[109] | Haskett T L, Tkacz A, Poole P S. Engineering rhizobacteria for sustainable agriculture [J]. The ISME Journal, 2021, 15(4): 949-964. |
[110] | Ofek M, Voronov-Goldman M, Hadar Y, et al. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities [J]. Environmental Microbiology, 2014, 16(7): 2157-2167 |
[111] | Zhong X B, Wang J, Shi X L, et al. Genetically optimizing soybean nodulation improves yield and protein content [J]. Nature Plants, 2024, 10(5): 736-742. |
[1] | FANG Xinyi, SUN Lichao, HUO Yixin, WANG Ying, YUE Haitao. Trends and challenges in microbial synthesis of higher alcohols [J]. Synthetic Biology Journal, 2025, 6(4): 873-898. |
[2] | WU Xiaoyan, SONG Qi, XU Rui, DING Chenjun, CHEN Fang, GUO Qing, ZHANG Bo. A comparative analysis of global research and development competition in synthetic biology [J]. Synthetic Biology Journal, 2025, 6(4): 940-955. |
[3] | ZHANG Jiankang, WANG Wenjun, GUO Hongju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and application of a high-throughput microbial clone picking workstation based on machine vision [J]. Synthetic Biology Journal, 2025, 6(4): 956-971. |
[4] | LI Quanfei, CHEN Qian, LIU Hao, HE Kundong, PAN Liang, LEI Peng, GU Yi’an, SUN Liang, LI Sha, QIU Yibin, WANG Rui, XU Hong. Synthetic biology and applications of high-adhesion protein materials [J]. Synthetic Biology Journal, 2025, 6(4): 806-828. |
[5] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
[6] | TIAN Xiao-jun, ZHANG Rixin. “Economics Paradox” with cells in synthetic gene circuits [J]. Synthetic Biology Journal, 2025, 6(3): 532-546. |
[7] | ZHANG Yiqing, LIU Gaowen. Exploration of gene functions and library construction for engineering strains from a synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(3): 685-700. |
[8] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[9] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
[10] | SONG Chengzhi, LIN Yihan. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. |
[11] | ZHANG Mengyao, CAI Peng, ZHOU Yongjin. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors [J]. Synthetic Biology Journal, 2025, 6(2): 334-356. |
[12] | ZHANG Lu’ou, XU Li, HU Xiaoxu, YANG Ying. Synthetic biology ushers cosmetic industry into the “bio-cosmetics” era [J]. Synthetic Biology Journal, 2025, 6(2): 479-491. |
[13] | YI Jinhang, TANG Yulin, LI Chunyu, WU Heyun, MA Qian, XIE Xixian. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 254-289. |
[14] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[15] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||