1 |
ZHU L Y, LI H Y, LUO T, et al. Human milk oligosaccharides: a critical review on structure, preparation, their potential as a food bioactive component, and future perspectives[J]. Journal of Agricultural and Food Chemistry, 2023, 71(43): 15908-15925.
|
2 |
中国食品科学技术学会. 母乳低聚糖(HMOs)的科学共识[J]. 中国食品学报, 2023, 23(6): 452-457.
|
|
The Chinese Institute of Food Science and Technology. Scientific consensus on human milk oligosaccharides(HMOs)[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(6): 452-457.
|
3 |
YU W W, JIN K, WANG D D, et al. De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis[J]. Nature Communications, 2024, 15(1): 7989.
|
4 |
LIAO C, XU X H, HUANG H Y, et al. Construction of a plasmid-free Escherichia coli strain for lacto-N-neotetraose biosynthesis[J]. Systems Microbiology and Biomanufacturing, 2024, 4(3): 965-982.
|
5 |
HUANG H Y, YU W W, XU X H, et al. Combinatorial engineering of Escherichia coli for enhancing 3-fucosyllactose production[J]. ACS Synthetic Biology, 2024, 13(6): 1866-1878.
|
6 |
ZHANG Q W, LIU Z M, XIA H Z, et al. Engineered Bacillus subtilis for the de novo production of 2'-fucosyllactose[J]. Microbial Cell Factories, 2022, 21(1): 110.
|
7 |
CHEN Q, XU X H, SUN Z Y, et al. Metabolic engineering of Bacillus subtilis for de novo synthesis of 6'-sialyllactose[J/OL]. Systems Microbiology and Biomanufacturing. (2024-05-28)[2024-11-01]. .
|
8 |
ZHANG Q W, XU X H, ZHANG W, et al. De novo 2'-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis [J]. Metabolic Engineering, 2025, 88: 85-93.
|
9 |
WAN L, ZHU Y Y, ZHANG W L, et al. Phase-separated synthetic organelles based on intrinsically disordered protein domain for metabolic pathway assembly in Escherichia coli [J]. ACS Nano, 2023, 17(11): 10806-10816.
|
10 |
JI M Q, YAO B H, ZHOU J Y, et al. Engineering a silk protein-mediated customizable compartment for modular metabolic synthesis[J]. ACS Synthetic Biology, 2024, 13(12): 4180-4190.
|
11 |
WAN L, ZHU Y Y, KE J T, et al. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli [J]. Metabolic Engineering, 2024, 85: 167-179.
|
12 |
LIAO Y X, LAO C W, WU J Y, et al. High-yield synthesis of lacto- N-neotetraose from glycerol and glucose in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5325-5338.
|
13 |
BARNUM C R, PAVIANI B, COUTURE G, et al. Engineered plants provide a photosynthetic platform for the production of diverse human milk oligosaccharides[J]. Nature Food, 2024, 5(6): 480-490.
|
14 |
YAO X H, TAHERI A, LIU H, et al. Improvement and application of vacuum-infiltration system in tomato[J]. Horticulture Research, 2024, 11(9): uhae197.
|
15 |
HU H Y, DU H. A comprehensive framework for the production of plant-based molecules[J]. Nature Food, 2024, 5(6): 461-462.
|
16 |
邵洁, 刘海利, 王勇. 植物合成生物学的现在与未来[J]. 合成生物学, 2020, 1(4): 395-412.
|
|
SHAO J, LIU H L, WANG Y. Present and future of plant synthetic biology[J]. Synthetic Biology Journal, 2020, 1(4): 395-412.
|
17 |
任杰, 曾安平. 基于二氧化碳的生物制造: 从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862.
|
|
REN J, ZENG A P. CO2 based biomanufacturing: from basic research to industrial application[J]. Synthetic Biology Journal, 2021, 2(6): 854-862.
|
18 |
JODLBAUER J, ROHR T, SPADIUT O, et al. Biocatalysis in green and blue: cyanobacteria[J]. Trends in Biotechnology, 2021, 39(9): 875-889.
|
19 |
SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
|
20 |
陈雨, 张康, 邱以婧, 等. 微生物电合成技术转化二氧化碳研究进展[J]. 合成生物学, 2024, 5(5): 1142-1168.
|
|
CHEN Y, ZHANG K, QIU Y J, et al. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168.
|
21 |
ZHENG T T, ZHANG M L, WU L H, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5: 388-396.
|