HE Yangyu1, YANG Kai1, WANG Weilin1, HUANG Qian3, QIU Ziying1, SONG Tao1, HE Liushang1, YAO Jinxin2, GAN Lu2, HE Yuchi1
Received:
2025-06-09
Revised:
2025-08-26
Published:
2025-08-27
Contact:
GAN Lu, HE Yuchi
何杨昱1, 杨凯1, 王玮琳1, 黄茜3, 丘梓樱1, 宋涛1, 何流赏1, 姚金鑫2, 甘露2, 何玉池1
通讯作者:
甘露,何玉池
作者简介:
基金资助:
CLC Number:
HE Yangyu, YANG Kai, WANG Weilin, HUANG Qian, QIU Ziying, SONG Tao, HE Liushang, YAO Jinxin, GAN Lu, HE Yuchi. Design and Practice of Plant Synthetic Biology Theme in the International Genetically Engineered Machine Competition[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-057.
何杨昱, 杨凯, 王玮琳, 黄茜, 丘梓樱, 宋涛, 何流赏, 姚金鑫, 甘露, 何玉池. 国际基因工程机器大赛中植物合成生物学主题的设计与实践[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-057
创新维度 | 技术突破点示例 | 应用场景靶点 |
---|---|---|
底盘系统改造 | 叶绿体/线粒体合成工厂构建[ | 高附加值天然产物生产 |
代谢网络重构 | 跨物种萜类合成途径的移植[ | 抗逆作物开发(抗旱/耐盐) |
智能调控装置 | 光控CRISPR开关的系统设计[ | 环境污染物实时监测与修复 |
细胞通讯工程 | 根系植物-微生物群体系统[ | 智能施肥/病虫害预警 |
植物营养强化 | 多营养协同强化[ | 复合营养作物培育 |
Table 1 Selection dimension matrix
创新维度 | 技术突破点示例 | 应用场景靶点 |
---|---|---|
底盘系统改造 | 叶绿体/线粒体合成工厂构建[ | 高附加值天然产物生产 |
代谢网络重构 | 跨物种萜类合成途径的移植[ | 抗逆作物开发(抗旱/耐盐) |
智能调控装置 | 光控CRISPR开关的系统设计[ | 环境污染物实时监测与修复 |
细胞通讯工程 | 根系植物-微生物群体系统[ | 智能施肥/病虫害预警 |
植物营养强化 | 多营养协同强化[ | 复合营养作物培育 |
维度 | 评估指标 | 验证方法 |
---|---|---|
科学原创性 | 是否提出新机制/新理论(如植物新型信号传导路径设计等) | 文献分析、专利检索等 |
技术独特性 | 是否开发新元件/新思路(如植物特异的CRISPR-Cas12f系统等) | 对比现有技术(Benchling元件库比对)、元件功能 实验验证等 |
应用颠覆性 | 是否开辟新模式/新场景(如海水稻可实现在盐碱地生长等) | 行业需求分析(PEST 分析模型)等 |
系统复杂性 | 是否实现多层次调控(如结合基因回路+代谢调控等) | 计算机分析(Cobra框架 建模、Cell Designer) |
Table 2 Matrix of dimensions for assessing the innovativeness of selected topics
维度 | 评估指标 | 验证方法 |
---|---|---|
科学原创性 | 是否提出新机制/新理论(如植物新型信号传导路径设计等) | 文献分析、专利检索等 |
技术独特性 | 是否开发新元件/新思路(如植物特异的CRISPR-Cas12f系统等) | 对比现有技术(Benchling元件库比对)、元件功能 实验验证等 |
应用颠覆性 | 是否开辟新模式/新场景(如海水稻可实现在盐碱地生长等) | 行业需求分析(PEST 分析模型)等 |
系统复杂性 | 是否实现多层次调控(如结合基因回路+代谢调控等) | 计算机分析(Cobra框架 建模、Cell Designer) |
底盘植物 | 生长周期 | 转化效率 | 应用场景 | 元件兼容性 |
---|---|---|---|---|
烟草 | 苗床期约60天,大田期约100天[ | 农杆菌浸润法效率达60%-80%[ | 常用于瞬时表达系统,适合重组蛋白生产 | 具有高度兼容性,对多种标准化载体适配良好[ |
拟南芥 | 约6周 | 农杆菌介导浸花法效率可达30%- 50%[ | 常用于基础代谢通路解析 | 适配多数标准化载体,对iGEM元件库有较好的适配能力[ |
水稻 | 营养生长约90天,生殖生长约70天[ | 农杆菌介导法效率为10%-20%[ | 常用于作物性状改良 | 在启动子等元件选择上具有一定的特异性[ |
浮萍 | 约30天 | 因株系而异,瞬时转染效率较高,而稳定转化的效率很低[ | 常作为生物反应器生产外源蛋白 | 目前针对浮萍兼容性的研究相对较少,需要进一步探索其适配性 |
Table 3 A lateral comparison of various plant-based materials
底盘植物 | 生长周期 | 转化效率 | 应用场景 | 元件兼容性 |
---|---|---|---|---|
烟草 | 苗床期约60天,大田期约100天[ | 农杆菌浸润法效率达60%-80%[ | 常用于瞬时表达系统,适合重组蛋白生产 | 具有高度兼容性,对多种标准化载体适配良好[ |
拟南芥 | 约6周 | 农杆菌介导浸花法效率可达30%- 50%[ | 常用于基础代谢通路解析 | 适配多数标准化载体,对iGEM元件库有较好的适配能力[ |
水稻 | 营养生长约90天,生殖生长约70天[ | 农杆菌介导法效率为10%-20%[ | 常用于作物性状改良 | 在启动子等元件选择上具有一定的特异性[ |
浮萍 | 约30天 | 因株系而异,瞬时转染效率较高,而稳定转化的效率很低[ | 常作为生物反应器生产外源蛋白 | 目前针对浮萍兼容性的研究相对较少,需要进一步探索其适配性 |
Fig.1 Shows the changes in the number of patents for high-value-added products synthesized using plant chassis technology in China over the past five years.
申请号 | 申请日期 | 专利名称 | 描述 | 参考 |
---|---|---|---|---|
CN202411992792.5 | 2024.12.31 | 一种氧甲基转移酶及其在生物合成异嗪皮啶嗪皮啶中的应用 | 基于申请的氧甲基转移酶,结合异嗪皮啶的代谢途径,可以在藻类和植物底盘中实现异嗪皮啶的合成。 | [ |
CN202310573134.1 | 2023.05.18 | 一种利用多基因共表达在植物中异源合成人参皂苷Rg3的方法 | 为利用植物底盘合成稀有人参皂苷Rg3提供了一种可行的技术。 | [ |
CN202211273337.0 | 2022.10.18 | 一种可提升广藿香醇合成量的融合基因及方法 | 以番茄果实为底盘,在其细胞质体的MEP通路中重构广藿香醇合成通路,显著提升广藿香醇的合成量。 | [ |
CN202210565180.2 | 2022.05.23 | 一种黄酮合酶Ⅰ/黄烷酮-3-羟化酶及在黄酮类化合物合成领域的应用 | PnFNS Ⅰ/F3H基因可用于在大肠杆菌和植物底盘中生产黄酮和黄酮醇类化合物,具有较高的应用价值。 | [ |
CN202010435008.6 | 2020.05.21 | 一种高效人工根际联合固氮体系 | 根据合成生物学理论与方法构建的高效人工根际联合固氮体系。 | [ |
Tab.3 Parts of patent technology based on plant platforms
申请号 | 申请日期 | 专利名称 | 描述 | 参考 |
---|---|---|---|---|
CN202411992792.5 | 2024.12.31 | 一种氧甲基转移酶及其在生物合成异嗪皮啶嗪皮啶中的应用 | 基于申请的氧甲基转移酶,结合异嗪皮啶的代谢途径,可以在藻类和植物底盘中实现异嗪皮啶的合成。 | [ |
CN202310573134.1 | 2023.05.18 | 一种利用多基因共表达在植物中异源合成人参皂苷Rg3的方法 | 为利用植物底盘合成稀有人参皂苷Rg3提供了一种可行的技术。 | [ |
CN202211273337.0 | 2022.10.18 | 一种可提升广藿香醇合成量的融合基因及方法 | 以番茄果实为底盘,在其细胞质体的MEP通路中重构广藿香醇合成通路,显著提升广藿香醇的合成量。 | [ |
CN202210565180.2 | 2022.05.23 | 一种黄酮合酶Ⅰ/黄烷酮-3-羟化酶及在黄酮类化合物合成领域的应用 | PnFNS Ⅰ/F3H基因可用于在大肠杆菌和植物底盘中生产黄酮和黄酮醇类化合物,具有较高的应用价值。 | [ |
CN202010435008.6 | 2020.05.21 | 一种高效人工根际联合固氮体系 | 根据合成生物学理论与方法构建的高效人工根际联合固氮体系。 | [ |
[1] | 潘俊慧, 周凯钰太, 王素春, 等. 合成生物学概述及其在兽医领域的应用前景展望[J]. 中国动物检疫, 2025, 42(02): 57-65. |
PAN J H, ZHOU K Y T, WANG S C, et al. An overview of synthetic biology and its prospects for application in veterinary medicine[J]. Chinese Animal Quarantine, 2025, 42(02): 57-65. | |
[2] | YIN Y, WEN J L, WEN M, et al. The design strategies for CRISPR-based biosensing: Target recognition, signal conversion, and signal amplification, Biosensors and Bioelectronics[J]. 2024, 246:115839. |
[3] | YANG Z R, CAO Y B, SHI Y T, et al. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture[J]. Molecular Plant, 2023, 16(10), 496-1517. |
[4] | ZOU Q, PAN W S, QIU J, et al. Recent advances in optimization strategies and applications of plant bioreactors[J]. China Biotechnology, 2023, 43(1): 71-86. |
[5] | XU H, CHAO Y, ZHANG Y, et al. Forestation at the right time with the right species can generate persistent carbon benefits in China[J]. Proc. Natl. Acad. Sci. U.S.A. 2023, 120(41): e2304988120. |
[6] | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学:生命科学, 2019, 49(12): 1543-1572. |
ZHANG X E. Review and prospect of synthetic biology development in china[J]. Chinese Science: Life Science, 2019, 49(12): 1543-1572. | |
[7] | 赵国华, 浦佳丽, 唐北沙. ZFN、TALEN和CRISPR/Cas9基因编辑技术在疾病研究及基因治疗中的应用[J]. 中华医学遗传学杂 志, 2016, 33(6): 857-862. |
ZHAO G H, PU J L, TANG B S. The applications of ZFN, TALEN, and CRISPR/Cas9 gene editing technologies in disease research and gene therapy[J]. Chinese Journal of Medical Genetics, 2016, 33(6): 857-862. | |
[8] | LAN T L, CHEN L G, WANG Y, et al. Genome synthesis in plants[J]. Nature Reviews Bioengineering, 2025: 1-15. |
[9] | TIAN C F, LI J H, WANG Y. From qualitative to quantitative: the state of the art and challenges for plant synthetic biology[J]. Quantitative Biology, 2023, 11(3): 214‒230. |
[10] | MILLERT E TE, BENEYTON T, SCHWANDER T, et al. Photosynthetic CO2 fixation via photodynamic effects in chloroplast mimics: natural andsynthetic components[J]. Science, 2020, 368(6491): 649-654. |
[11] | DEMURTAS O C, NICOLIA A, DIRETTO G. Terpenoid transport in plants:How far from the final picture?[J]. Plants, 2023, 12, 634. |
[12] | LIU J L, ZHANG R X, CHAI N, et al. Programmable genome engineering and gene modifications for plant biodesign[J]. Plant Communications, 2025,6(8): 101427. |
[13] | BAI B, LIU W D, QIU X Y, et al. The root microbiome: Community assembly and its contributions to plant fitness[J]. Journal of Integrative Plant Biology, 2022 64(2): 230-243. |
[14] | CHAI N, XU J, ZHANG R X, et al. Synthetic metabolic engineering of functional crops: Boosting nutrition and human health[J]. The Crop Journal, 2025, ISSN 2214-5141. |
[15] | 宋凯. 合成生物学导论[M]. 北京: 科学出版社, 2010:172. |
SONG K. Introduction to synthetic biology[M]. Beijing: Science Publishing House, 2010:172. | |
[16] | LAWSON C E, HARCOMBE W R, HATZENPICHLER R. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17(12): 725-741. |
[17] | PAULINA F, FEI Z, ALEXANDER E, et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop[J].eLife, 2016,5: e13664. |
[18] | SANTOYO G. How plants recruit their microbiome? New insights into beneficial interactions[J].Journal of Advanced Research, 2022, 40: 45-58. |
[19] | 吴荣荣, 汪阳忠, 潘晓璐, 等. 烟草瞬时表达技术的多途径应用研究进展[J]. 中国烟草科学, 2024, 45(05): 114-120. |
WU R R, WANG Y Z, PAN X L, et al. Advances in the Multifaceted Applications of Tobacco Transient Expression Technology[J]. Chinese Tobacco Science, 2024, 45(05): 114-120. | |
[20] | 郎宸用. 拟南芥MEP途径关键酶及代谢中间产物对萜类化合物生物合成的调控[D]. 吉林大学, 2016. |
LANG C Y. Regulation of key enzymes and metabolic intermediates in MEP pathway on terpenoid biosynthesis in Arabidopsis thaliana[D]. Jilin University, 2016. | |
[21] | ADAMS J P, ADELI A, HSU C Y, et al. Plant-based FRET biosensor discriminates environmental zinc levels[J]. Plant Biotechnology Journal, 2012, 10(2): 207-216. |
[22] | 邓接楼, 王爱斌, 涂晓虹. 秋水仙素对杂交水稻发芽率及主要农艺性状的影响[J]. 上饶师范学院学报, 2014, 34(3): 53-59. |
DENG J L, WANG A B, TU X H. Effects of colchicine on germination rate and main agronomic traits of hybrid rice[J]. Journal of Shangrao Teachers College, 2014, 34(3): 53-59. | |
[23] | SONG Y J, HU Z L, LIU S Z, et al. Utilization of microalgae and duckweed as sustainable protein sources for food and feed: nutritional potential and functional applications[J]. Journal of Agricultural and Food Chemistry, 2025, 73(8): 4466-4482. |
[24] | 唐娅丽, 于昌江, 刘宇, 等. 浮萍合成生物学研究进展[J]. 生命科学, 2020, 32(2): 100-109. |
TANG Y L, YU C J, LIU Y, et al. Advances in duckweed synthetic biology research[J]. Life Sciences, 2020, 32(2): 100-109. | |
[25] | MCCANTS C B, WOLTZ W G. Growth and mineral nutrition of tobacco[J]. Advances in Agronomy, 1967, 19: 211-265. |
[26] | ZHANG Y J, CHEN M X, SIEMIATKOWSKA B, et al. A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species[J]. Plant Communications, 2020, 1(5): 100028. |
[27] | LIU C Y, CHEN Q, QU Y, et al. The plant platform for natural products synthesis: Tobacco[J]. Industrial Crops and Products, 2025, 225:120605. |
[28] | CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J].The Plant Journal, 1998, 16(6): 735-43. |
[29] | HOLLAND C K, JEZ J M. Arabidopsis: the original plant chassis organism[J]. Plant Cell Reports. 2018, 37(10): 1359-1366. |
[30] | MOHAPATRA P K, SARKAR R K, PANDA D, et al. Staging of rice plant growth and development[J]. Tillering Behavior of Rice Plant, 2025, :105-139. |
[31] | MOHAMMED S, SAMAD A A, RAHMAT Z. Agrobacterium-Mediated transformation of rice: Constraints and possible solutions[J]. Rice Science, 2019, 26(3): 133-146. |
[32] | SHIMAMOTO K. The molecular biology of rice[J]. Science,1995, 270(5243): 1772-3. |
[33] | YANG G L, FANG Y, XU Y L, et al. Frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor[J]. Plant Molecular Biology, 2018, 98(4/5): 319-331. |
[34] | 中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心). 一种氧甲基转移酶及其在生物合成异嗪皮啶和嗪皮啶中的应用: 202411992792.5[P]. 2025-04-04. |
Shenzhen Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences(Shenzhen Branch Center of Lingnan Modern Agricultural Science and Technology Guangdong Laboratory). An oxymethyltransferase and its application in the biosynthesis of isoxaziridine and ziridine: 202411992792.5[P]. 2025-04-04. | |
[35] | 浙江大学. 一种利用多基因共表达在植物中异源合成人参皂苷Rg3的方法: 202310573134.1[P]. 2023-09-05. |
Zhejiang University. A method for heterologous synthesis of ginsenoside Rg3 in plants using multi-gene co-expr: 202310573134.1[P]. 2023-09-05. | |
[36] | 重庆大学. 一种可提升广藿香醇合成量的融合基因及方法: 202211273337.0[P] .2024-09-17. |
Chongqing University. A fusion gene and method to enhance patchouli alcohol synthesis: 202211273337.0[P]. 2024-09-17. | |
[37] | 山东大学. 一种黄酮合酶I/黄烷酮-3-羟化酶及在黄酮类化合物合成领域的应用: 202210565180.2[P]. 2023-08-22. |
Shandong University. A flavonoid synthase I/flavanone-3-hydroxylase and its application in flavonoid synthesis: 202210565180.2[P]. 2023-08-22. | |
[38] | 中国农业科学院生物技术研究所. 一种高效人工根际联合固氮体系: 202010435008.6[P]. 2020-05-21. |
Institute of Biotechnology, Chinese Academy of Agricultural Sciences. An efficient artificial rhizosphere combined nitrogen fixation system: 202010435008.6[P]. 2020-05-21. | |
[39] | JULIE K, SMITH J V, SCHLOSS BARBARA J M. Functional expression of plant acetolactate synthase genes in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(11): 4179–4183. |
[40] | CAPARCO A A, GONZÁLEZ-GAMBOA I, CHANG-LIAO S, et al. A plug-and-play strategy for agrochemical delivery using a plant virus nanotechnology[J]. Journal of Nanoparticle Research, 2024, 26, 280. |
[41] | TIAN C F, LI J H, WU Y H, et al. An integrative database and its application for plant synthetic biology research[J]. Plant Communications, 2024, 5(5): 100827. |
[42] | NIELSEN A A K, et al. Genetic circuit design automation[J]. Science,2016, 352(6281), aac7341. |
[43] | BANF M, RHEE S Y. Computational inference of gene regulatory networks: Approaches, limitations and opportunities[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(1): 41-52. |
[44] | MENG X Y, ZHANG H X, MEZEI M, et al. Molecular docking: a powerful approach for structure-based drug discovery[J]. Current Computer-Aided Drug Design, 2011, 7(2): 146-57. |
[45] | KONG C, YANG Y, QI T C, et al. Predictive genetic circuit design for phenotype reprogramming in plants[J]. Nature communications, 2025, 16(1): 715. |
[46] | 朱新广, 常天根, 宋青峰, 等. 数字植物: 科学内涵、瓶颈及发展策略[J]. 合成生物学, 2020, 1(03):285-297. |
ZHU X G, CHANG T G, SONG Q F, et al. Digital plants: scientific connotation, bottlenecks and development strategies[J]. Synthetic Biology, 2020, 1(03): 285-297. | |
[47] | 潘慧, 李攀, 等. 基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J]. 江苏农业科学, 2020, 48(20): 49-55. |
PAN H, LI P, et al. Production of arabidopsis ugt84a1/ugt84a2 double mutant and mutation site analysis based on CRISPR/Cas9 system[J]. Jiangsu Agricultural Science, 2020, 48(20): 49-55. | |
[48] | 蔡波, 李晓晓, 张凌寒, 等. CRISPR/Cas9技术联合脂质体转染子宫内膜癌细胞单质粒基因敲除方法首次编辑免疫相关基因HLA-DRA[J]. 中国组织工程研究, 2023, 27(15): 2356-2362. |
CAI B, LI X X, ZHANG L H, et al. CRISPR/Cas9 technology combined with liposome transfection of endometrial cancer cells by single plasmid knockout method for the first time to edit the immune-related gene HLA-DRA[J]. Tissue Engineering Research in China, 2023, 27(15): 2356-2362. | |
[49] | 李淑萍. 农杆菌T-DNA导入植物基因组的分子机理[J]. 河南农业科学, 2005, 34(4): 16-21. |
LI S P. Molecular mechanisms of Agrobacterium T-DNA integration into plant genomes[J]. Henan Agricultural Sciences, 2005, 34(4): 16-21. | |
[50] | OZYIGIT I I, YUCEBILGILI KURTOGLU K. Particle bombardment technology and its applications in plants[J]. Molecular Biology Reports, 2020, 47(12): 9831-9847. |
[51] | ALTPETER F, BAISAKH N, BEACHY R N, et al. Particle bombardment and the genetic enhancement of crops: Myths and realities[J]. Molecular Breeding, 2015, 15:305-327. |
[52] | KESHAVAREDDY G, KUMAR A R V, RAMU V S.Methods of Plant Transformation-A Review[J]. International Journal of Current Microbiology and Applied Sciences, 2018, 7(7): 2656-2668. |
[53] | GAD A E, ROSENBERG N, ALTMAN A. Liposome-mediated gene delivery into plant cells[J]. Physiologia Plantarum, 1990, 79(1): 177-183. |
[54] | SU W B, XU M Y, RADANI Y, et al. Technological development and application of plant genetic transformation[J]. International Journal Molecular Sciences, 2023, 24, 10646. |
[55] | KAEPPLER H F, GU W, SOMERS D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells[J]. Plant Cell Reports, 1990, 9(8): 415-8. |
[56] | SHIVASHAKARAPPA K, MARRIBOINA S, DUMENYO K, et al. Nanoparticle-mediated gene delivery techniques in plant systems[J]. Frontiers in Nanotechnology, 2025, (7), 1516180. |
[57] | DENG X, CAO M, ZHANG J, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer[J]. Biomaterials, 2014, 35(14): 4333-4344. |
[58] | LV Z Y, JIANG R, CHEN J F, et al. Nanoparticle-mediated gene transformation strategies for plant genetic engineering[J]. The Plant Journal. 2020, 104(4): 880-891. |
[59] | HAMERS R J. Nanomaterials and global sustainability[J]. Accounts of Chemical Research, 2017, 50(3): 633–637. |
[60] | CUNNINGHAM F J, GOH N S, DEMIRER G S, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering[J]. Trends Biotechnol, 2018, 36(9): 882-897. |
[1] | YANG Jianzhao, ZHU Xinguang. Plant synthetic biology for carbon peak and carbon neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 847-869. |
[2] | SHAO Jie, LIU Haili, WANG Yong. Present and future of plant synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 395-412. |
[3] | ZHANG Bo, MA Yongshuo, SHANG Yi, HUANG Sanwen. Recent advances in plant synthetic biology [J]. Synthetic Biology Journal, 2020, 1(2): 121-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||