LIU Dan1,2, WANG Jianyu3, JIANG Zhengqiang1,2
Received:
2025-08-04
Revised:
2025-09-16
Published:
2025-09-18
Contact:
JIANG Zhengqiang
刘丹1,2, 王建宇3, 江正强1,2
通讯作者:
江正强
作者简介:
基金资助:
CLC Number:
LIU Dan, WANG Jianyu, JIANG Zhengqiang. Research progress and development trends in the biosynthesis of neutral core human milk oligosaccharides[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-083.
刘丹, 王建宇, 江正强. 中性核心母乳寡糖生物合成的研究进展和发展趋势[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-083.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-083
classification | HMOs | concentrations in colostrum (g/L) | concentrations in mature breast milk (g/L) |
---|---|---|---|
neutral HMOs | 2'-FL | 3.03 ± 1.79 | 1.64 ± 1.54 |
3-FL | 0.41 ± 0.43 | 1.35 ± 1.00 | |
LNFP I | 1.90 ± 0.96 | 0.70 ± 0.67 | |
LNFP II | 0.28 ± 0.37 | 0.54 ± 0.52 | |
LDFT | 0.65 ± 0.71 | 0.19 ± 0.21 | |
LNDFH I | 0.47 ± 0.26 | 0.25 ± 0.25 | |
LNDFH II | 0.08 ± 0.10 | 0.12 ± 0.15 | |
DFLNH | 0.05 ± 0.11 | 0.28 ± 0.30 | |
neutral core HMOs | LNT II | 0.16 ± 0.08 | 0.03 ± 0.01 |
LNT | 0.59 ± 0.39 | 0.59 ± 0.27 | |
LNnT | 0.40 ± 0.12 | 0.34 ± 0.14 | |
sialylated HMOs | 3'-SL | 0.21 ± 0.06 | 0.10 ± 0.02 |
6'-SL | 0.33 ± 0.11 | 0.22 ± 0.09 | |
DSLNT | 0.36 ± 0.14 | 0.19 ± 0.07 | |
LSTc | 1.37 ± 0.56 | 0.23 ± 0.18 |
Table 1 Concentrations of major HMOs in human colostrum and regular milk
classification | HMOs | concentrations in colostrum (g/L) | concentrations in mature breast milk (g/L) |
---|---|---|---|
neutral HMOs | 2'-FL | 3.03 ± 1.79 | 1.64 ± 1.54 |
3-FL | 0.41 ± 0.43 | 1.35 ± 1.00 | |
LNFP I | 1.90 ± 0.96 | 0.70 ± 0.67 | |
LNFP II | 0.28 ± 0.37 | 0.54 ± 0.52 | |
LDFT | 0.65 ± 0.71 | 0.19 ± 0.21 | |
LNDFH I | 0.47 ± 0.26 | 0.25 ± 0.25 | |
LNDFH II | 0.08 ± 0.10 | 0.12 ± 0.15 | |
DFLNH | 0.05 ± 0.11 | 0.28 ± 0.30 | |
neutral core HMOs | LNT II | 0.16 ± 0.08 | 0.03 ± 0.01 |
LNT | 0.59 ± 0.39 | 0.59 ± 0.27 | |
LNnT | 0.40 ± 0.12 | 0.34 ± 0.14 | |
sialylated HMOs | 3'-SL | 0.21 ± 0.06 | 0.10 ± 0.02 |
6'-SL | 0.33 ± 0.11 | 0.22 ± 0.09 | |
DSLNT | 0.36 ± 0.14 | 0.19 ± 0.07 | |
LSTc | 1.37 ± 0.56 | 0.23 ± 0.18 |
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
米曲霉(Aspergillus oryzae) | NagA | 乳糖 | GlcNAc | 0.21 | [ |
两歧双歧杆菌(Bifidobacterium bifidum) | BbhI-WT | 乳糖 | β-D-GlcpNAcOpNP | 16 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D714T | 乳糖 | pNP-GlcNAc | 84.7 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D746E | 乳糖 | Glc-oxa | 86.0 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D746T | 乳糖 | pNP-GlcNAc | 85.0 | [ |
光冈链状杆菌(Catenibacterium mitsuokai) | CmHex187 | 乳糖 | pNP-GlcNAc | 44.3 | [ |
居海藻黄杆菌(Flavobacterium algicola) | FlaNag2353 | 乳糖 | pNP-GlcNAc | 4.15 | [ |
Haloferula sp. | HaHex74 | 乳糖 | (GlcNAc)2 | 14.4 | [ |
Haloferula sp. | mHaHex74 | 乳糖 | (GlcNAc)2 | 28.2 | [ |
土壤宏基因组 | HEX1 | 乳糖 | (GlcNAc)2 | 16.1 | [ |
紫色链霉菌(Streptomyces violascens) | Hex(Sv)-2557(D297K) | 乳清粉 | (GlcNAc)2 | 14.85 | [ |
丁氏泰泽菌(Tyzzerella nexilis) | TnHex189 | 乳糖 | pNP-GlcNAc | 57.2 | [ |
Table 2 Comparison of LNT II synthesis by different β-N-acetylhexosaminidases
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
米曲霉(Aspergillus oryzae) | NagA | 乳糖 | GlcNAc | 0.21 | [ |
两歧双歧杆菌(Bifidobacterium bifidum) | BbhI-WT | 乳糖 | β-D-GlcpNAcOpNP | 16 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D714T | 乳糖 | pNP-GlcNAc | 84.7 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D746E | 乳糖 | Glc-oxa | 86.0 | [ |
两歧双歧杆菌(B. bifidum) | BbhI-D746T | 乳糖 | pNP-GlcNAc | 85.0 | [ |
光冈链状杆菌(Catenibacterium mitsuokai) | CmHex187 | 乳糖 | pNP-GlcNAc | 44.3 | [ |
居海藻黄杆菌(Flavobacterium algicola) | FlaNag2353 | 乳糖 | pNP-GlcNAc | 4.15 | [ |
Haloferula sp. | HaHex74 | 乳糖 | (GlcNAc)2 | 14.4 | [ |
Haloferula sp. | mHaHex74 | 乳糖 | (GlcNAc)2 | 28.2 | [ |
土壤宏基因组 | HEX1 | 乳糖 | (GlcNAc)2 | 16.1 | [ |
紫色链霉菌(Streptomyces violascens) | Hex(Sv)-2557(D297K) | 乳清粉 | (GlcNAc)2 | 14.85 | [ |
丁氏泰泽菌(Tyzzerella nexilis) | TnHex189 | 乳糖 | pNP-GlcNAc | 57.2 | [ |
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
伴放线聚集杆菌(A. Actinomycetemcomitans)NUM 4039 | Aa-β-1,4-GalT | LNT II | UDP-Gal | 65 | [ |
睡眠嗜组织菌(H.somni) | Hs-β-1,4-GalT | LNT II | UDP-Gal | 33 | [ |
环状芽孢杆菌(Bacillus circulans)ATCC 31382 | Biolacta | LNT II | 乳糖 | 19 | [ |
环状芽孢杆菌(B. circulans)ATCC 31382 | BgaD-D | LNT II | 乳糖 | 17 | [ |
芽孢杆菌属(Bacillus sp.) | mBsGal95-D | LNT II | 乳糖 | 30.1 | [ |
嗜热栖热菌(Thermus thermophilus)HB27 | Ttb-gly | LNT II | 乳糖 | 5.2 | [ |
水管致黑栖热菌(T. scotoductus) | mTsGal48 | LNT II | 乳糖 | 25.3 | [ |
激烈火球菌(Pyrococcus furiosus)DSM 3638 | CelB | LNT II | 乳糖 | 1 | [ |
南极类芽孢杆菌(Paenibacillus antarcticus) | PaBgal2A-D | LNT II | 乳糖 | 16.4 | [ |
Table 3 Summary of LNnT synthesis by β-1,4-galactosyltransferases and β-galactosidases
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
伴放线聚集杆菌(A. Actinomycetemcomitans)NUM 4039 | Aa-β-1,4-GalT | LNT II | UDP-Gal | 65 | [ |
睡眠嗜组织菌(H.somni) | Hs-β-1,4-GalT | LNT II | UDP-Gal | 33 | [ |
环状芽孢杆菌(Bacillus circulans)ATCC 31382 | Biolacta | LNT II | 乳糖 | 19 | [ |
环状芽孢杆菌(B. circulans)ATCC 31382 | BgaD-D | LNT II | 乳糖 | 17 | [ |
芽孢杆菌属(Bacillus sp.) | mBsGal95-D | LNT II | 乳糖 | 30.1 | [ |
嗜热栖热菌(Thermus thermophilus)HB27 | Ttb-gly | LNT II | 乳糖 | 5.2 | [ |
水管致黑栖热菌(T. scotoductus) | mTsGal48 | LNT II | 乳糖 | 25.3 | [ |
激烈火球菌(Pyrococcus furiosus)DSM 3638 | CelB | LNT II | 乳糖 | 1 | [ |
南极类芽孢杆菌(Paenibacillus antarcticus) | PaBgal2A-D | LNT II | 乳糖 | 16.4 | [ |
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(Escherichia coli)O55:H7 | WbgO | LNT II | UDP-Gal | 87 | [ |
紫色色杆菌(Chromobacterium violaceum) | Cvβ3GalT | LNT II | UDP-Gal | 99 | [ |
金杆菌(Aureobacterium sp.)L-101 | -- | 乳糖 | pNP-LNB | 0.6 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-D320E | 乳糖 | LNB-oxa | 30 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394F | 乳糖 | pNP-LNB | 32 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394H | 乳糖 | LNB-oxa | 72 | [ |
环状芽孢杆菌(Bacillus circulans)ATCC 31382 | β-gal-3 | LNT II | oNPG | 20,22 | [ |
玉米乳酪杆菌(Lacticaseibacillus zeae) | LzBgal35A | LNT II | oNPG | 45.4 | [ |
Table 4 Summary of LNT synthesis by β-1,3-galactosyltransferases, lacto-N-biosidase, and β-galactosidase
来源 | 酶 | 受体 | 供体 | 转化率(%) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(Escherichia coli)O55:H7 | WbgO | LNT II | UDP-Gal | 87 | [ |
紫色色杆菌(Chromobacterium violaceum) | Cvβ3GalT | LNT II | UDP-Gal | 99 | [ |
金杆菌(Aureobacterium sp.)L-101 | -- | 乳糖 | pNP-LNB | 0.6 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-D320E | 乳糖 | LNB-oxa | 30 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394F | 乳糖 | pNP-LNB | 32 | [ |
两歧双歧杆菌(B. bifidum)JCM 1254 | LnbB-W394H | 乳糖 | LNB-oxa | 72 | [ |
环状芽孢杆菌(Bacillus circulans)ATCC 31382 | β-gal-3 | LNT II | oNPG | 20,22 | [ |
玉米乳酪杆菌(Lacticaseibacillus zeae) | LzBgal35A | LNT II | oNPG | 45.4 | [ |
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli)JM109 | lacY+lacZ- pCW-NmlgtA | 乳糖、 甘油 | pH 6.8、34 ℃、0.2 mM IPTG、矿物培养基 | 6(2 L)* | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-glmM-glmU-glmS* pET-NmlgtA | 乳糖、 甘油 | pH 6.8、25 °C、0.1 mM IPTG、甘油优化培养基 | 46.2(5 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔnanE - pRSF-nagA-glmM pET-glmU pET-NmlgtA | 乳糖、GlcNAc | pH 6.9、25 °C、0.2 mM IPTG、GlcNAc优化培养基 | 15.8(3 L) | [ |
大肠杆菌(E. coli)W3110S | ΔlacZY ΔyhbJ pUAKQE-NplgtA-lacY pSTV29-setA | 乳糖、 葡萄糖 | pH 6.9、30 ℃、1 mM IPTG、葡萄糖优化培养基 | 34.2(3 L) | [ |
大肠杆菌(E. coli)Nissle 1917 | ΔendAΔwecB pET-Ptac-NmlgtA | 乳糖、 甘油 | --**、25 °C、--、-- | 2.04(3 L) | [ |
大肠杆菌(E. coli)K12 MG1655 | ΔnagBΔwecBΔlacIZ::P J23116 -lacY-GlmS* pTrc99A-Nm58lgtA(R13H/L24M/R205C)-InfB-RBST7-GlmS* | 乳糖、 甘油 | --、25 °C、M9培养基 | 57.44(3 L) | [ |
大肠杆菌(E. coli)JM109 + 酿酒酵母 (Saccharomyces cerevisiae) | E. coli JM109(DE3) pET-NahK-linker-EcglmU-lgtA | 乳糖、GlcNAc | pH 6.98、18 °C、0.2 mM IPTG、葡萄糖优化培养基 | 52.34(5L) | [ |
Table 5 Microbial cell factory for LNT II synthesis
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli)JM109 | lacY+lacZ- pCW-NmlgtA | 乳糖、 甘油 | pH 6.8、34 ℃、0.2 mM IPTG、矿物培养基 | 6(2 L)* | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-glmM-glmU-glmS* pET-NmlgtA | 乳糖、 甘油 | pH 6.8、25 °C、0.1 mM IPTG、甘油优化培养基 | 46.2(5 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔnanE - pRSF-nagA-glmM pET-glmU pET-NmlgtA | 乳糖、GlcNAc | pH 6.9、25 °C、0.2 mM IPTG、GlcNAc优化培养基 | 15.8(3 L) | [ |
大肠杆菌(E. coli)W3110S | ΔlacZY ΔyhbJ pUAKQE-NplgtA-lacY pSTV29-setA | 乳糖、 葡萄糖 | pH 6.9、30 ℃、1 mM IPTG、葡萄糖优化培养基 | 34.2(3 L) | [ |
大肠杆菌(E. coli)Nissle 1917 | ΔendAΔwecB pET-Ptac-NmlgtA | 乳糖、 甘油 | --**、25 °C、--、-- | 2.04(3 L) | [ |
大肠杆菌(E. coli)K12 MG1655 | ΔnagBΔwecBΔlacIZ::P J23116 -lacY-GlmS* pTrc99A-Nm58lgtA(R13H/L24M/R205C)-InfB-RBST7-GlmS* | 乳糖、 甘油 | --、25 °C、M9培养基 | 57.44(3 L) | [ |
大肠杆菌(E. coli)JM109 + 酿酒酵母 (Saccharomyces cerevisiae) | E. coli JM109(DE3) pET-NahK-linker-EcglmU-lgtA | 乳糖、GlcNAc | pH 6.98、18 °C、0.2 mM IPTG、葡萄糖优化培养基 | 52.34(5L) | [ |
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli) JM09 | pCW-lgtA、pBB-lgtB | 乳糖、 葡萄糖 | pH 6.8、28 ℃、0.2 mM IPTG、矿物培养基 | <5(2 L)* | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-M-US*、pET-lgtA、pAC-AagalT(源自A. actinomycetemcomitans NUM4039) | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 12.1(3 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETKM pRSF-lgtA-galE pET-HpgalT(源自Helicobacter pylori) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mM IPTG、优化培养基 | 22.07(3 L) | [ |
大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔwecBΔugdΔgloA pAC-M-US pCD-lgtA-lgtB(源自N. meningitidis) | 乳糖、甘油 | --**、25℃、0.4 mM IPTG、甘油优化培养基 | 13.25(3 L) | [ |
大肠杆菌(E. coli) BL21 MG1655 | ΔwcaJΔlacZΔP lacY ::PJ23119 pTrc99a-PQS03-lgtA pCD-luxR-PQS33-luxI-CP(源自S. agalactiae) | 乳糖、甘油 | pH 6.8、30 ℃、--、甘油优化培养基 | 20.33(5 L) | [ |
大肠杆菌(E. coli) K-12 MG1655 | ΔlacZΔnagBΔugdΔwecB gsK-ybaL:: lgtA-SH3lig- HpGalT-PDZlig-PDZ-SH3 mscK-ybaM::lgtA-SH3lig-HpGalT-PDZlig-PDZ-SH3 Phr-dtpD:: ParaBAD--dCpf1 ΔfliK::PJ23119-pfkA3-zwf P tac ::P mlc | 乳糖、葡萄糖 | pH 6.8、30 ℃、0.2 mM IPTG、0.5 mM阿拉伯糖、葡萄糖优化培养基 | 23.73(3 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔlacAΔwecBΔnagBΔugdΔgcdΔsetA pCD-lgtA-M-U-S* pET-lacY-prs pRSF-lgtB-pgm-galE-galU | 乳糖、甘油 | pH 7.2、25 ℃、0.1 mM IPTG、甘油优化培养基 | 19.4(3 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETK ΔlacA::lgtA-galE Δyjgx::lgtA ΔnagB::HpgalT Δyjiv::HpgalT Δydeu::HpgalT ΔcaiB::HpgalT ΔhlyE::CmSET ΔxylB::galE ΔP galU ::PT7 ΔP glmM ::PT7 | 乳糖、葡萄糖、甘油 | pH 6.8、29.5 ℃、0.2 mM IPTG、优化培养基 | 112.47(5 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔugdΔwecBΔsetA pCD-lgtA-AagalT pET-galE | 乳糖、甘油 | pH 6.8、25 ℃、--、甘油优化培养基 | 15.53(5 L) | [ |
大肠杆菌(E. coli)BL21 (DE3) | ΔlacZΔlacAΔnagBΔwecB ΔugdΔgcdΔsetAΔiclR pRSF-lgtB-pgm-galU-galE-Galtpm1141 pET-lgtA-M-U-S* pCD-prsA-pgi-glf | 葡萄糖 | pH 7.0、25 ℃、0.1 mM IPTG、葡萄糖优化培养基 | 25.4(3 L) | [ |
枯草芽孢杆菌(B. subtilis )168 | ΔamyE::P43-lacY P43-lgtB/pP43NMK-lgtA P43-lgtB P43-lgtB P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE ΔtuaD::lox72 | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mM木糖、优化培养基 | 4.52(3 L) | [ |
枯草芽孢杆菌(B. subtilis )168 | PxylA-comK ΔamyE::P43-lacY 3拷贝P43-lgtB, P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE pP43NMK-lgtA ΔganA::xylR-P xylA -dCas9 P veg -sgRNA-pfkA7pyk1zwf1 P veg -sgRNA-mnaA2 ΔtuaD::lox72 P43-lgtB | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mM木糖、优化培养基 | 5.41(3 L) | [ |
法夫驹形氏酵母(Komagataella phaffii)168 | HIS4::pGAP-hCas9-HIS4::pTEF1-ScRAD52- int11::pGAP-ScRAD59-Int20::pTEF1-ScMRE11 int12::lgtA-lgtB-int21::lac12-intE1::gal10 intE9::pgm-intE26::gfa-intE20-ugp-intE24::gna-intE14::qri-intE13::pcm intE10::lgtA-linker3-lgtB pfk-ɑ::X1 pfk-β::X2 | 乳糖、葡萄糖、甘油 | pH 6.5、30 ℃、--、BMGY培养基 | 1.24(3 L) | [ |
Table 6 Microbial cell factory for LNnT synthesis
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli) JM09 | pCW-lgtA、pBB-lgtB | 乳糖、 葡萄糖 | pH 6.8、28 ℃、0.2 mM IPTG、矿物培养基 | <5(2 L)* | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZ pRSF-M-US*、pET-lgtA、pAC-AagalT(源自A. actinomycetemcomitans NUM4039) | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 12.1(3 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETKM pRSF-lgtA-galE pET-HpgalT(源自Helicobacter pylori) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mM IPTG、优化培养基 | 22.07(3 L) | [ |
大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔwecBΔugdΔgloA pAC-M-US pCD-lgtA-lgtB(源自N. meningitidis) | 乳糖、甘油 | --**、25℃、0.4 mM IPTG、甘油优化培养基 | 13.25(3 L) | [ |
大肠杆菌(E. coli) BL21 MG1655 | ΔwcaJΔlacZΔP lacY ::PJ23119 pTrc99a-PQS03-lgtA pCD-luxR-PQS33-luxI-CP(源自S. agalactiae) | 乳糖、甘油 | pH 6.8、30 ℃、--、甘油优化培养基 | 20.33(5 L) | [ |
大肠杆菌(E. coli) K-12 MG1655 | ΔlacZΔnagBΔugdΔwecB gsK-ybaL:: lgtA-SH3lig- HpGalT-PDZlig-PDZ-SH3 mscK-ybaM::lgtA-SH3lig-HpGalT-PDZlig-PDZ-SH3 Phr-dtpD:: ParaBAD--dCpf1 ΔfliK::PJ23119-pfkA3-zwf P tac ::P mlc | 乳糖、葡萄糖 | pH 6.8、30 ℃、0.2 mM IPTG、0.5 mM阿拉伯糖、葡萄糖优化培养基 | 23.73(3 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔlacAΔwecBΔnagBΔugdΔgcdΔsetA pCD-lgtA-M-U-S* pET-lacY-prs pRSF-lgtB-pgm-galE-galU | 乳糖、甘油 | pH 7.2、25 ℃、0.1 mM IPTG、甘油优化培养基 | 19.4(3 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔugdΔushAΔagpΔwcaJΔotsAΔwcaCΔgalM::galETK ΔlacA::lgtA-galE Δyjgx::lgtA ΔnagB::HpgalT Δyjiv::HpgalT Δydeu::HpgalT ΔcaiB::HpgalT ΔhlyE::CmSET ΔxylB::galE ΔP galU ::PT7 ΔP glmM ::PT7 | 乳糖、葡萄糖、甘油 | pH 6.8、29.5 ℃、0.2 mM IPTG、优化培养基 | 112.47(5 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔlacZΔugdΔwecBΔsetA pCD-lgtA-AagalT pET-galE | 乳糖、甘油 | pH 6.8、25 ℃、--、甘油优化培养基 | 15.53(5 L) | [ |
大肠杆菌(E. coli)BL21 (DE3) | ΔlacZΔlacAΔnagBΔwecB ΔugdΔgcdΔsetAΔiclR pRSF-lgtB-pgm-galU-galE-Galtpm1141 pET-lgtA-M-U-S* pCD-prsA-pgi-glf | 葡萄糖 | pH 7.0、25 ℃、0.1 mM IPTG、葡萄糖优化培养基 | 25.4(3 L) | [ |
枯草芽孢杆菌(B. subtilis )168 | ΔamyE::P43-lacY P43-lgtB/pP43NMK-lgtA P43-lgtB P43-lgtB P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE ΔtuaD::lox72 | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mM木糖、优化培养基 | 4.52(3 L) | [ |
枯草芽孢杆菌(B. subtilis )168 | PxylA-comK ΔamyE::P43-lacY 3拷贝P43-lgtB, P43-pgi P43-gtaB P43-glmS P43-glmM P43-galE pP43NMK-lgtA ΔganA::xylR-P xylA -dCas9 P veg -sgRNA-pfkA7pyk1zwf1 P veg -sgRNA-mnaA2 ΔtuaD::lox72 P43-lgtB | 乳糖、葡萄糖 | pH 7.0、37 ℃、120 mM木糖、优化培养基 | 5.41(3 L) | [ |
法夫驹形氏酵母(Komagataella phaffii)168 | HIS4::pGAP-hCas9-HIS4::pTEF1-ScRAD52- int11::pGAP-ScRAD59-Int20::pTEF1-ScMRE11 int12::lgtA-lgtB-int21::lac12-intE1::gal10 intE9::pgm-intE26::gfa-intE20-ugp-intE24::gna-intE14::qri-intE13::pcm intE10::lgtA-linker3-lgtB pfk-ɑ::X1 pfk-β::X2 | 乳糖、葡萄糖、甘油 | pH 6.5、30 ℃、--、BMGY培养基 | 1.24(3 L) | [ |
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli)BL21(DE3) | ΔwecBΔnagBΔlacZ pCD-pfgalT-galE(源自Pseudogulbenkiania ferrooxidans) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mM IPTG、甘油优化培养基 | 25.49(3 L)* | [ |
大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔugd pCD-lgtA-wbgO pET-ETK(源自E. coli O55:H7) | 乳糖、甘油 | pH 6.8、25 ℃、0.4 mM IPTG、甘油优化培养基 | 31.56(3 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZΔrecA::Ptac-galE、pET-lgtA、pAC-PfgalT、pCD-udk-pyrF | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 57.5(5 L) | [ |
大肠杆菌(E. coli)BL21(DE3) | 菌株A:ΔlacZΔwecBΔnagBΔugd ΔrecA::Ptac-galE 四拷贝:ΔIS186-1::Ptac-lgtA pET-wbgO 菌株B:pET-BbhI | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 30.13(5 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔwcaJ ΔintQ::lgtA-galE ΔcaiB::wbdO | 乳糖、甘油 | pH 6.8、29.5 ℃、0.02 mM IPTG、甘油优化培养基 | 109.8(5 L) | [ |
大肠杆菌(E. coli)MG1655 | ΔlacZΔwcaJΔugd ΔP lacY ::PJ23119 P galE ::Ptac ΔarsB::lgtA ΔnagB::lgtA ΔpoxB::lgtA ΔldhA::wbgO ΔwecB::wbgO ΔmanY::wbgO ΔmanZ::wbgO ΔxylB::wbgO ΔhlyE::mdfA | 乳糖、甘油 | pH 6.8、25 ℃、--、甘油优化培养基 | 42.38(5 L) | [ |
Table 7 Microbial cell factory for LNT synthesis
菌株 | 改造情况 | 底物 | 发酵条件 | 发酵罐产量(g/L) | 参考文献 |
---|---|---|---|---|---|
大肠杆菌(E. coli)BL21(DE3) | ΔwecBΔnagBΔlacZ pCD-pfgalT-galE(源自Pseudogulbenkiania ferrooxidans) | 乳糖、甘油 | pH 6.8、28 ℃、0.2 mM IPTG、甘油优化培养基 | 25.49(3 L)* | [ |
大肠杆菌(E. coli)BL21(DE3) | ΔlacZΔugd pCD-lgtA-wbgO pET-ETK(源自E. coli O55:H7) | 乳糖、甘油 | pH 6.8、25 ℃、0.4 mM IPTG、甘油优化培养基 | 31.56(3 L) | [ |
大肠杆菌(E. coli) BL21(DE3) | ΔwecBΔnagBΔlacZΔrecA::Ptac-galE、pET-lgtA、pAC-PfgalT、pCD-udk-pyrF | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 57.5(5 L) | [ |
大肠杆菌(E. coli)BL21(DE3) | 菌株A:ΔlacZΔwecBΔnagBΔugd ΔrecA::Ptac-galE 四拷贝:ΔIS186-1::Ptac-lgtA pET-wbgO 菌株B:pET-BbhI | 乳糖、甘油 | pH 6.8、25 ℃、0.2 mM IPTG、甘油优化培养基 | 30.13(5 L) | [ |
大肠杆菌(E. coli)BL21 star (DE3) | ΔlacZΔwcaJ ΔintQ::lgtA-galE ΔcaiB::wbdO | 乳糖、甘油 | pH 6.8、29.5 ℃、0.02 mM IPTG、甘油优化培养基 | 109.8(5 L) | [ |
大肠杆菌(E. coli)MG1655 | ΔlacZΔwcaJΔugd ΔP lacY ::PJ23119 P galE ::Ptac ΔarsB::lgtA ΔnagB::lgtA ΔpoxB::lgtA ΔldhA::wbgO ΔwecB::wbgO ΔmanY::wbgO ΔmanZ::wbgO ΔxylB::wbgO ΔhlyE::mdfA | 乳糖、甘油 | pH 6.8、25 ℃、--、甘油优化培养基 | 42.38(5 L) | [ |
[1] | 史然,江正强. 2'-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学,2020,1(4):481-494. |
SHI R, JIANG Z Q. Enzymatic synthesis of 2'-fucosyllactose: advances and perspectives [J]. Synthetic Biology Journal, 2020, 1(4): 481-494. | |
[2] | SOUSA Y R F, MEDEIROS L B, PINTADO M M E, et al. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties [J]. Trends in Food Science & Technology, 2019, 92: 152-161. |
[3] | URRUTIA-BACA V H, ÁLVAREZ-BUYLLA J R, GUEIMONDE M, et al. Comparative study of the oligosaccharide profile in goat, bovine, sheep, and human milk whey [J]. Food Chemistry, 2025, 463(1): 141123. |
[4] | 马心悦,黄纯翠,赵耀,等. 人乳寡糖的结构及其分离分析[J]. 生物化学与生物物理进展,2023,50(12): 2869-2878. |
MA X Y, HUANG C C, ZHAO Y, et al. Structure and separation analysis of human milk oligosaccharides [J]. Progress in Biochemistry and Biophysis, 2023, 50(12): 2869-2878. | |
[5] | BENSIMON J, LU X N. Human milk oligosaccharides produced by synthetic biology [J]. Journal of Agriculture and Food Research, 2024, 18: 101361. |
[6] | BODE L. Human milk oligosaccharides: next-generation functions and questions [J]. Nestle Nutrition Institute Workshop Series, 2019, 90: 191-201. |
[7] | LI Y Y, DU G C, CHEN J, et al. Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design [J]. Current Opinion in Biotechnology, 2025, 93: 103315. |
[8] | ZHU Y Y, YANG L H, ZHAO C H, et al. Microbial synthesis of Lacto-N-fucopentaose I with high titer and purity by screening of specific glycosyltransferase and elimination of residual Lacto-N-triose II and Lacto- N-tetraose [J]. Journal of Agricultural and Food Chemistry, 2024, 72(8): 4317-4324. |
[9] | WANG L, ZHU Y Y, ZHAO C H, et al. Engineering Escherichia coli for highly efficient biosynthesis of Lacto-N-difucohexaose II through de novo GDP-L-fucose pathway [J]. Journal of Agricultural and Food Chemistry, 2024, 72(18): 10469-10476. |
[10] | PEI C X, PENG X L, WU Y R, et al. Characterization and application of active human α2,6-sialyltransferases ST6GalNAc V and ST6GalNAc VI recombined in Escherichia coli [J]. Enzyme and Microbial Technology, 2024, 177: 110426. |
[11] | SUGITA T, SAMPEI S, KOKETSU K. Efficient production of lacto-N-fucopentaose III in engineered Escherichia coli using α1,3-fucosyltransferase from Parabacteroides goldsteinii [J]. Journal of Biotechnology, 2023, 361: 110-118. |
[12] | 孟佳炜,朱莺莺,罗国聪,等. 乳酰-N-新四糖的生理功能、生物合成及其衍生化研究进展[J]. 中国食品学报,2022,22(3): 320-328. |
MENG J W, ZHU Y Y, LUO G C, et al. Recent advances on physiological function, biosynthesis, and derivatization of lacto-N-neotetraose [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(3): 320-328. | |
[13] | LI C C, Li M L, GAO W, et al. Biosynthesis of sialyllacto-N-tetraose c in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(46): 25836-25846. |
[14] | SPRENGER G A, BAUMGÄ R F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations [J]. Journal of Biotechnology, 2017, 258: 79-91. |
[15] | FABIO GALEOTTI, COPPA GIOVANNI V., LUCIA ZAMPINI, et al. Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone [J]. Electrophoresis, 2014, 35(6): 811-818. |
[16] | TONON KARINA M, ANTONIO MIRANDA, CRISTINA F V ABRÃ ANA, et al. Validation and application of a method for the simultaneous absolute quantification of 16 neutral and acidic human milk oligosaccharides by graphitized carbon liquid chromatography - electrospray ionization - mass spectrometry [J]. Food Chemistry, 2019, 274: 691-697. |
[17] | BYCH K, MIKS M H, MARKUS T J, et al. Production of HMOs using microbial hosts — from cell engineering to large scale production [J]. Current Opinion in Biotechnology, 2019, 56C: 130-137. |
[18] | SABRINA S, LARS B, STINA R J, et al. Systemic availability of human milk oligosaccharides in infants and adults: A narrative review [J]. Advances in Nutrition (Bethesda, Md.), 2025, 100488. |
[19] | PALUR D S K, PRESSLEY S R, ATSUMI S. Microbial production of human milk oligosaccharides [J]. Molecules, 2023, 28(3): 1491. |
[20] | GE H D, ZHU W X, ZHANG J, et al. Human milk microbiota and oligosaccharides in colostrum and mature milk: comparison and correlation[J]. Frontiers in Nutrition, 2024, 11: 1512700. |
[21] | KONG C, CHENG L, KRENNING G, et al. Human milk oligosaccharides mediate the crosstalk between intestinal epithelial caco-2 Cells and Lactobacillus Plantarum WCFS1 in an in vitro model with intestinal peristaltic shear force [J]. The Journal of Nutrition, 2020, 150(8): 2077-2088. |
[22] | LIAO J, WANG M, LI H, et al. Human milk oligosaccharide LNnT promotes intestinal epithelial growth and maturation during the early life of infant mice [J]. Journal of Agricultural and Food Chemistry, 2025, 73(11): 6678-6690. |
[23] | LI M, LU H, XUE Y, et al. An in vitro colonic fermentation study of the effects of human milk oligosaccharides on gut microbiota and short-chain fatty acid production in infants aged 0-6 months [J]. Foods, 2024, 13(6): 921. |
[24] | CHEN Y L, LUO G X, SONG F B, et al. Truncated rotavirus VP4 proteins induce stronger protective immunity compared to P2 - VP8 in animal models [J]. Antiviral Research, 2025, 238: 106156. |
[25] | SUN X M, Li D D, Qi J X, et al. Glycan binding specificity and mechanism of human and porcine P[6]/P[19] rotavirus VP8*s [J]. Journal of Virology, 2018, 92(14): e00538-18. |
[26] | EL-HAWIET A, KITOVA E N, KLASSEN J S. Recognition of human milk oligosaccharides by bacterial exotoxins [J]. Glycobiology, 2015, 25(8): 845-854. |
[27] | THOMAS P G, CARTER M R, ATOCHINA O, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism [J]. Journal of Immunology, 2003, 171(11): 5837-5841. |
[28] | IDANPAAN-HEIKKILA I, SIMON P M, ZOPF D, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia [J]. Journal of Infectious Diseases, 1997, 176(3): 704-712. |
[29] | OTTINO-GONZÁLEZ J, ADISE S, MACHLE C J, et al. Consumption of different combinations of human milk oligosaccharides in the first 6 months of infancy is positively associated with early cognition at 2 years of age in a longitudinal cohort of Latino children [J]. The American Journal of Clinical Nutrition, 2024, 120(3): 593-601. |
[30] | CHEETHAM N W, DUBE V E. Preparation of lacto-N-neotetraose from human milk by high-performance liquid chromatography [J]. Journal of Chromatography, 1983, 262: 426-430. |
[31] | ALY M R, IBRAHIM el-S I, ASHRY el-S H, et al. Synthesis of lacto-N-neotetraose and lacto-N-tetraose using the dimethylmaleoyl group as amino protective group [J]. Carbohydrate Research, 1999, 316(1-4): 121-132. |
[32] | BANDARA M D, STINE K J, DEMCHENKO A V. The chemical synthesis of human milk oligosaccharides: Lacto-N-neotetraose (Galβ1→4GlcNAcβ1→3Galβ1→4Glc) [J]. Carbohydrate Research, 2019, 483: 107743. |
[33] | BANDARA M D, STINE K J, DEMCHENKO A V. The chemical synthesis of human milk oligosaccharides: Lacto-N-tetraose (Galβ1→3GlcNAcβ1→3Galβ1→4Glc) [J]. Carbohydrate Research, 2019, 486: 107824. |
[34] | 刘丹,孙柳,赵春华,等. 母乳低聚糖LNnT和LNT的研究进展及法规市场情况概述[J]. 中国食品添加剂,2024,35(8): 230-240. |
LIU D, SUN L, ZHAO C H, et al. Research progress,regulations and market overview of human milk oligosaccharides LNnT and LNT [J]. China Food Additivies, 2024, 35(8): 230-240. | |
[35] | DOMINIQUE T, JACQUELINE C, STEFAAN De H, et al. Safety of lacto-N-neotetraose (LNnT) produced by derivative strains of E. coli BL21 as a novel food pursuant to Regulation (EU) 2015/2283 [J]. EFSA Journal, 2020, 18(11): e06305. |
[36] | DOMINIQUE T, BOHN T, CASTENMILLER J, et al. Safety of lacto-N-tetraose (LNT) produced by derivative strains of Escherichia coli BL21 (DE3) as a Novel Food pursuant to Regulation (EU) 2015/2283[J]. EFSA Journal, 2022, 20(5): e07242. |
[37] | CHEN C C, ZHANG Y, XUE M Y, et al. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives [J]. Chemical Communications, 2015, 51(36): 7689-7692. |
[38] | JENNINGS M P, HOOD D W, PEAK I R A, et al. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis [J]. Molecular Microbiology, 1995, 18(4): 729-740. |
[39] | PENG W, PRANSKEVICH J, NYCHOLAT C, et al. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans [J]. Glycobiology, 2012, 22(11): 1453-1464. |
[40] | ZEUNER B, NYFFENEGGER C, MIKKELSEN J D, et al. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides [J]. New Biotechnology, 2016, 33(3): 355-360. |
[41] | MATSUO I, KIM S, YAMAMOTO Y, et al. Cloning and overexpression of β-N-acetylglucosaminidase encoding gene nagA from Aspergillus oryzae and enzyme-catalyzed synthesis of human milk oligosaccharide [J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(3): 646-650. |
[42] | NYFFENEGGER C, NORDVANG R T, ZEUNER B, et al. Backbone structures in human milk oligosaccharides: Trans-glycosylation by metagenomic β-N-acetylhexosaminidases [J]. Applied Microbiology and Biotechnology, 2015, 99(19): 7997-8009. |
[43] | LIU Y H, WANG L, HUANG P, et al. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis [J]. Food Chemistry, 2020, 332: 127438. |
[44] | MANAS N H A, ILLIAS R M, MAHADI N M. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production [J]. Critical Reviews in Biotechnology, 2018, 38(2): 272-293. |
[45] | LIU Y H, YAN Q J, MA J W, et al. Production of Lacto-N-triose II and Lacto-N-neotetraose from chitin by a novel β-N-Acetylhexosaminidase expressed in Pichia pastoris [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15466-15474. |
[46] | LIU Y H, YAN Q J, MA J W, et al. Directed evolution of a β-N-acetylhexosaminidase from Haloferula sp. for lacto-N-triose II and lacto-N-neotetraose synthesis from chitin [J]. Enzyme & Microbial Technology, 2023, 164: 110177. |
[47] | CHEN X, JIN L, JIANG X, et al. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis [J]. Appllied Microbioogy and Biotechnology, 2020, 104(2): 661-673. |
[48] | SCHMÖLZER K, WEINGARTEN M, BALDENIUS K, et al. Glycosynthase principle transformed into biocatalytic process technology: Lacto-N-triose II production with engineered exohexosaminidase [J]. ACS Catalysis, 2019, 9(6): 5503-5514. |
[49] | CAO Z, LI C, JIANG H, et al. Molecular modification of a GH84 β-N-acetylglucosaminidase from Streptomyces violascens for synthesis of lacto-N-triose II using whey powder and chitin-derived N-acetyl chitobiose [J]. Food Chemistry, 2025, 474: 143046. |
[50] | TEZE D, ZHAO J, , WIEMANN M, et al. Rational enzyme design without structural knowledge: A sequence‐based approach for efficient generation of transglycosylases [J]. Chemistry-A European Journal, 2021, 27(40): 10323-10334. |
[51] | LIU Y H, MA J W, SHI R, et al. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II [J]. Process Biochemistry, 2021,102: 360-368. |
[52] | LI C Q, CAO Z N, JIANG H, et al. Characterization of a GH20 β-N-Acetylhexosaminidase from Flavobacterium algicola suitable to synthesize lacto-N-triose II [J]. Journal of Agricultural and Food Chemistry, 2024, 72(9): 4849-4857. |
[53] | JAMEK S B, MUSCHIOL J, HOLCK J, et al. Loop protein engineering for improved transglycosylation activity of a β-N-acetylhexosaminidase [J]. ChembioChem, 2018, 19(17): 1858-1865. |
[54] | WAKARCHUK W, MARTIN A, JENNINGS M P, et al. Functional relationships of the genetic locus encoding the glycosyltransferase enzymes involved in expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis [J]. The Journal of Biological Chemistry, 1996, 271: 19166-19173. |
[55] | ZHU Y Y, LUO G C, LI Z, et al. Efficient biosynthesis of lacto-N-neotetraose by a novel β-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039 [J]. Enzyme and Microbial Technology, 2022, 153: 109912. |
[56] | LUO G C, ZHU Y Y, MENG J, et al. A novel β-1,4-Galactosyltransferase from Histophilus somni enables efficient biosynthesis of Lacto-N-Neotetraose via both enzymatic and cell factory approaches [J]. Journal of Agricultural and Food Chemistry, 2021, 69(20): 5683-5690. |
[57] | LUO G C, HUANG Z L, ZHU Y Y, et al. Crystal structure and structure-guided tunnel engineering in a bacterial β-1,4-galactosyltransferase [J]. International Journal of Biological Macromolecule, 2024, 279(4): 135374. |
[58] | LAU K, THON V, YU H, et al. Highly efficient chemoenzymatic synthesis of β1-4-linked galactosides with promiscuous bacterial β-1-4-galactosyltransferases [J]. Chemical Communications, 2010, 46(33): 6066-6068. |
[59] | MURATA T, INUKAI T, SUZUKI M, et al. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose [J]. Glycoconjugate Journal, 1999, 16(3): 189-195. |
[60] | WANG J Y, XIANG Z X, LIU D, et al. Protein engineering of a novel β-galactosidase from Thermus scotoductus for efficient synthesis of lacto-N-neotetraose from chitin powder [J]. Journal of Agricultural and Food Chemistry, 2024, 72(16): 9289-9296. |
[61] | 王建宇,向芷璇,刘丹,等. 芽孢杆菌截短β-半乳糖苷酶的理性设计及在合成乳糖-N-新四糖中的应用[J]. 食品工业科技, 2025. |
WANG J Y, XINAG Z X, LIU D, et al. Rational design of a truncated β-galactosidase from Bacillus sp. and its application in the synthesis of lacto-N-neotetraose [J]. Science and Technology of Food Industry, 2025. | |
[62] | LI J, WANG J Y, YAN Q J, et al. Biochemical characterization of a novel C-terminally truncated β-galactosidase from Paenibacillus antarcticus with high transglycosylation activity [J]. Journal of Dairy Science, 2024, 107(12): 10141-10152. |
[63] | ZHANG Z Q, KONG H C, BAN X F, et al. C-terminal domains of β-galactosidase from Paenibacillus macquariensis modulate product distribution by altering substrate binding conformation [J]. International Journal of Biological Macromolecules, 2025, 310: 143412. |
[64] | CHOI J Y, HONG H, SEO H, et al. High galacto-oligosaccharide production and a structural model for transgalactosylation of β-galactosidase II from Bacillus circulans [J]. Journal of Agricultural and Food Chemistry, 2020, 68(47): 13806-13814. |
[65] | HE X Y, LI Y, TAO Y H, et al. Discovering and efficiently promoting the extracellular secretory expression of Thermobacillus sp. ZCTH02-B1 sucrose phosphorylase in Escherichia coli [J]. International Journal of Biological Macromolecules, 2021, 173: 532-540. |
[66] | LIU X W, XIA C, LI L, et al. Characterization and synthetic application of a novel beta1,3-galactosyltransferase from Escherichia coli O55:H7 [J]. Bioorganic and Medicinal Chemistry, 2009, 17(14): 4910-4915. |
[67] | MCARTHUR J B, YU H, CHEN X. A bacterial β1-3-Galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides [J]. ACS Catalysis, 2019, 9(12): 10721-10726. |
[68] | SCHMÖLZER K, WEINGARTEN M, BALDENIUS K, et al. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum [J]. Organic Biomolecular Chemistry, 2019, 17(23): 5661-5665. |
[69] | CASTEJÓN-VILATERSANA M, FAIJES M, PLANAS A. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis [J]. International Journal of Molecular Sciences, 2021, 22(6): 3230. |
[70] | VUILLEMIN M, HOLCK J, MATWIEJUK M, et al. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering [J]. Applied Sciences-basel, 2021, 11(23): 1-23. |
[71] | TATSUO M, TAKESHI S, KIYOSHI F, et al. Chapter twenty-four-enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori [J]. Methods in Enzymology, 2010, 480: 511-524. |
[72] | LI T, LI J, YAN Q J, et al. Biochemical characterization of a novel β-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose [J]. Journal of Dairy Science, 2023, 106(10): 6623-6634. |
[73] | WADA J, ANDO T, KIYOHARA M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure [J]. Applied and Environmental Microbiology, 2008, 74(13): 3996-4004. |
[74] | FANG J L, TSAI T W, LIANG C Y, et al. Enzymatic synthesis of human milk fucosides α1,2‐fucosyl para‐lacto‐N‐hexaose and its isomeric derivatives [J]. Advanced Synthesis & Catalysis, 2018, 360(17): 3213-3219. |
[75] | MARLENE V, MARTON L, JAN M, et al. Enzymatic lacto-N-biose elongation of human milk oligosaccharides with the GH136 lacto-N-biosidase LnbX engineered for improved transglycosylation [J]. Enzyme and Microbial Technology, 2025, 189: 110660. |
[76] | ZHU Y Y, WAN L, MENG J W, et al. Metabolic engineering of Escherichia coli for lacto-N-triose II production with high productivity [J]. Journal of Agricultural and Food Chemistry, 2021, 69(12): 3702-3711. |
[77] | PRIEM B, GILBERT M, WAKARCHUK W W, et al. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria [J]. Glycobiology, 2002, 12(4): 235-240. |
[78] | HU D D, WU H, ZHU Y Y, et al. Engineering Escherichia coli for highly efficient production of lacto-N-triose II from N-acetylglucosamine, the monomer of chitin [J]. Biotechnology of Biofuels, 2021, 14(1): 198. |
[79] | SUGITA T, KOKETSU K. Transporter engineering enables the efficient production of Lacto-N-triose II and Lacto-N-tetraose in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(16): 5106-5114. |
[80] | HU M M, ZHANG T. Metabolic engineering of the probiotic Escherichia coli Nissle 1917 for lacto-N-triose II production [J]. Food Bioscience, 2024, 59: 103959. |
[81] | LI J J, HE T Y, ZHAO J J, et al. Combination of metabolic engineering and high-throughput screening to realize high-producing lacto-N-triose II in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2025, 73(28): 17769-17775. |
[82] | WANG Z, ZHANG Z, LI Y, et al. Two-step production method for lacto-N-triose II via cell-coupled biocatalytic strategy [J]. Journal of Agricultural and Food Chemistry, 2025, 73(14): 8391-8400. |
[83] | ZHANG P, ZHU Y Y, LI Z Y, et al. Designing a highly efficient biosynthetic route for Lacto-N-Neotetraose production in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(32): 9961-9968. |
[84] | LIAO Y X, WU J Y, LI Z K, et al. Metabolic engineering of Escherichia coli for high-level production of lacto-N-neotetraose and lacto-N-tetraose [J]. Journal of Agricultural and Food Chemistry, 2023, 71(30): 11555-11566. |
[85] | HU M M, LI M L, LI C C, et al. High-level productivity of lacto-N-neotetraose in Escherichia coli by systematic metabolic engineering [J]. Journal of Agricultural and Food Chemistry, 2023, 71(9): 4051-4058. |
[86] | TAO M T, YANG L H, ZHAO C H, et al. Implementation of a quorum-sensing system for highly efficient biosynthesis of Lacto-N-neotetraose in engineered Escherichia coli MG1655 [J]. Journal of Agricultural and Food Chemistry, 2024, 72(13): 7179-7186. |
[87] | LIAO C, XU X H, HUANG H Y, et al. Construction of a plasmid-free Escherichia coli strain for lacto-N-neotetraose biosynthesis [J]. Systems Microbiology and Biomanufacturing, 2024, 4(3): 965-982. |
[88] | ZHANG M W, Zhang K, LIU T L, et al. High-level production of lacto-N-neotetraose in Escherichia coli by stepwise optimization of the biosynthetic pathway [J]. Journal of Agricultural and Food Chemistry, 2023, 71(43): 16212-16220. |
[89] | LIAO Y, LAO C W, Wu J Y, et al. High-yield synthesis of lacto-N-neotetraose from glycerol and glucose in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5325-5338. |
[90] | 刘丹,梁山泉,闫巧娟,等. 基于模块优化强化大肠杆菌合成乳糖-N-新四糖的研究[J]. 食品科学技术学报, 2024, 42(2): 75-83. |
LIU D, LIANG S Q, YAN Q J, et al. Study on enhancement of lacto-N-neotetraose synthesis in Escherichia coli based on module optimization [J]. Journal of Food Science and Technology, 2024, 42(2): 75-83. | |
[91] | LIU T L, ZHANG K, ZHANG M W, et al. De novo synthesis of lacto-N-neotetraose in Escherichia coli through metabolic engineering with glucose as the sole carbon source [J]. Journal of Agricultural and Food Chemistry, 2025, 73(22): 13736-13745. |
[92] | TAO M T, YANG L H, ZHAO C H, et al. Rational modification of Neisseria meningitidis β1,3-N-acetylglucosaminyltransferase for lacto-N-neotetraose synthesis with reduced long-chain derivatives[J]. Carbohydrate Polymers, 2024, 345: 122543. |
[93] | LIU Y F, LIU L, LI J H, et al. Synthetic biology toolbox and chassis development in Bacillus subtilis [J]. Trends in Biotechnology, 2019, 37(5): 548-562. |
[94] | DONG X M, LI N, LIU Z M, et al. Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis [J]. Biotechnology for Biofuels, 2019, 12(1): 212. |
[95] | DONG X, LI N, LIU Z M, et al. CRISPRi-Guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis [J]. Journal of Agricultural and Food Chemistry, 2020, 68(8): 2477-2484. |
[96] | LIU H, ZENG Q Q, ZHU C L, et al. High-throughput screening and directed evolution of β-1,3-N-acetylglucosaminyltransferase for enhanced LNnT production in engineered Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2025, 73(13): 7966-7974. |
[97] | YANG J, MUND N K, YANG L R, et al. Engineering glycolytic pathway for improved lacto-N-neotetraose production in Pichia pastoris [J]. Journal of Agricultural and Food Chemistry, 2025, 184: 110576. |
[98] | ZHU Y Y, LI Z Y, LUO G C, et al. Metabolic engineering of Escherichia coli for efficient biosynthesis of lacto-N-tetraose using a novel β-1,3-Galactosyltransferase from Pseudogulbenkiania ferrooxidans [J]. Journal of Agricultural and Food Chemistry, 2021, 69(38): 11342-11349. |
[99] | HU M M, LI M L, MIAO M, et al. Engineering Escherichia coli for the high-titer biosynthesis of lacto-N-tetraose [J]. Journal of Agricultural and Food Chemistry, 2022, 70(28): 8704-8712. |
[100] | LI Z Y, ZHU Y Y, ZHANG P, et al. Pathway optimization and uridine 5'-triphosphate regeneration for enhancing lacto-N-tetraose biosynthesis in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2022, 70(25): 7727-7735. |
[101] | QIAN Q Y, YANG L H, ZHAO C H, et al. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes [J]. International Journal of Biological Macromolecules, 2025, 284(Pt 1): 137987. |
[102] | WANG J, LAO C W, WU J Y, et al. Multimodular metabolic engineering strategy enables high-efficiency synthesis of lacto-N-fucopentaose I in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2025, 73(25): 15869-15879. |
[103] | YANG L H, ZHU Y Y, ZHAO C H, et al. Elimination of residual lacto-N-triose II for lacto-N-tetraose biosynthesis in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2023, 71(33): 12511-12518. |
[104] | ABRAHAMSON C H, PALMERO B J, KENNEDY N W, et al. Theoretical and practical aspects of multienzyme organization and encapsulation [J]. Annual Review of Biophysics, 2023, 52: 553-572. |
[105] | BANANI S F, LEE H O, HYMAN A A, et al. Biomolecular condensates: organizers of cellular biochemistry [J]. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298. |
[106] | LYON A S, PEEPLES W B, ROSEN M K. A framework for understanding the functions of biomolecular condensates across scales [J]. Nature Reviews Molecular Cell Biology, 2021, 22(3): 215-235. |
[107] | LAU Y H, GIESSEN T W, ALTENBURG W J, et al. Prokaryotic nanocompartments form synthetic organelles in a eukaryote [J]. Nature Communication, 2018, 9(1): 1311. |
[108] | WAN L, ZHU Y Y, KE J T, et al. Compartmentalization of pathway sequential enzymes into synthetic protein compartments for metabolic flux optimization in Escherichia coli [J]. Metababolic Engineering, 2024, 85: 167-179. |
[109] | LI Y S, LI Y, Li P F, et al. Whole-cell biosynthesis of branched human milk hexasaccharide lacto-N-neohexaose [J]. Journal of Agricultural and Food Chemistry, 2025, 73(28): 17814-17823. |
[1] | WANG Mingpeng, CHEN Lei, ZHAO Yiran, ZHANG Yimin, ZHENG Qifan, LIU Xinyang, WANG Yixue, WANG Qinhong. Halogenases in biocatalysis: advances in mechanism elucidation, directed evolution, and green manufacturing [J]. Synthetic Biology Journal, 2025, 6(4): 728-763. |
[2] | HU Die, XU Daozhu, LU Zhiyi, TANG Wei, FAN Bo, HE Yucai. Biosynthesis of xylo-oligosaccharides from wheat straw xylan through the synergistic hydrolysis by xylanase Xyn11A and arabinofuranosidase Abf62A [J]. Synthetic Biology Journal, 2025, 6(4): 972-986. |
[3] | SHENG Zhouhuang, CHEN Zhixian, ZHANG Yan. Research progress of yeast mannoproteins [J]. Synthetic Biology Journal, 2025, 6(2): 408-421. |
[4] | LU Jinchang, WU Yaokang, LV Xueqin, LIU Long, CHEN Jian, LIU Yanfeng. Green biomanufacturing of ceramide sphingolipids [J]. Synthetic Biology Journal, 2025, 6(2): 422-444. |
[5] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[6] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
[7] | TANG Chuan′gen, WANG Jing, ZHANG Shuo, ZHANG Haoning, KANG Zhen. Advances in synthesis and mining strategies for functional peptides [J]. Synthetic Biology Journal, 2025, 6(2): 461-478. |
[8] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. |
[9] | ZHU Fanghuan, CEN Xuecong, CHEN Zhen. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. |
[10] | LIU Yining, PU Wei, YANG Jinxing, WANG Yu. Recent advances in the biosynthesis of ω-amino acids and lactams [J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366. |
[11] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[12] | CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. |
[13] | LIU Zijian, MU Baiyang, DUAN Zhiqiang, WANG Xuan, LU Xiaojie. Advances in the development of DNA-compatible chemistries [J]. Synthetic Biology Journal, 2024, 5(5): 1102-1124. |
[14] | ZHANG Shouqi, WANG Tao, KONG Yao, ZOU Jiasheng, LIU Yuanning, XU Zhengren. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[15] | XIE Xiangqian, GUO Wen, WANG Huan, LI Jin. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine [J]. Synthetic Biology Journal, 2024, 5(5): 981-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||