LI Chao, ZHANG Huan, YANG Jun, WANG Ertao
Received:
2025-08-01
Revised:
2025-09-10
Published:
2025-09-11
Contact:
YANG Jun, WANG Ertao
李超, 张焕, 杨军, 王二涛
通讯作者:
杨军,王二涛
作者简介:
基金资助:
CLC Number:
LI Chao, ZHANG Huan, YANG Jun, WANG Ertao. Research advances in nitrogen fixation synthetic biology[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-081.
李超, 张焕, 杨军, 王二涛. 固氮合成生物学研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-081.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-081
Fig. 1 Main approaches to engineer or improve biological nitrogen fixation(I: Engineer nitrogen-fixing bacteria to enhance nitrogenase activity and optimize ammonium excretion efficiency; II: Strengthen crops' ability to recruit beneficial diazotrophs in the rhizosphere and regulate their nitrogen-fixing activity; III: Decipher nodulation mechanisms to achieve symbiotic nitrogen fixation in non-leguminous plants; IV: Express nitrogenase in plant organelles to enable autonomous nitrogen fixation in crops.)
Fig. 2 The glutamine-core nitrogen metabolism regulatory pathway in diazotrophs and strategies for enhancing nitrogen fixation capacity(I: Delete or regulate the glnA gene to release free NH4+; II: Modulate the expression of NifA to enhance its activation of the nitrogenase gene cluster, thereby increasing nitrogenase activity.)
[20] | Zhao Y, Zhang R, Jiang K W, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae[J]. Mol Plant, 2021,14(5):748-773. |
[21] | Andrews M, Andrews M E. Specificity in Legume-Rhizobia Symbioses[J]. Int J Mol Sci, 2017,18(4). |
[22] | Crews T E, Peoples M B. Can the Synchrony of Nitrogen Supply and Crop Demand be Improved in Legume and Fertilizer-based Agroecosystems? A Review[J]. Nutrient cycling in agroecosystems, 2005,72(2):101-120. |
[23] | Gage D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes[J]. Microbiol Mol Biol Rev, 2004,68(2):280-300. |
[24] | Bartley B A, Kim K, Medley J K, et al. Synthetic Biology: Engineering Living Systems from Biophysical Principles[J]. Biophys J, 2017,112(6):1050-1058. |
[25] | Gupta D, Sharma G, Saraswat P, et al. Synthetic Biology in Plants, a Boon for Coming Decades[J]. Molecular Biotechnology, 2021,63(12):1138-1154. |
[26] | Dai S, Feng W, Song F, et al. Review of biological algal fertilizer technology: Alleviating salinization, sequestering carbon, and improving crop productivity[J]. Bioresour Technol, 2025,429:132507. |
[27] | Sharma A, Bora P. Engineering synthetic microbial communities to restructure the phytobiome for plant health and productivity[J]. World Journal of Microbiology and Biotechnology, 2025,41(7):228. |
[28] | Rocco C, Suzuki M, Vilar R, et al. Enhancing Zinc Bioavailability in Rice Using the Novel Synthetic Siderophore Ligand Proline-2'-Deoxymugineic Acid (PDMA): Critical Insights from Metal Binding Studies and Geochemical Speciation Modeling[J]. J Agric Food Chem, 2025,73(14):8243-8253. |
[29] | Hansen A P, Choudhary D K, Agrawal P K, et al. Nitrogenase (a Key Enzyme): Structure and Function[M]. Springer International Publishing AG, 2017:293-307. |
[30] | Schmidt F V, Schulz L, Zarzycki J, et al. Structural insights into the iron nitrogenase complex[J]. Nat Struct Mol Biol, 2024,31(1):150-158. |
[31] | Shah V K, Brill W J. Isolation of an Iron-Molybdenum Cofactor from Nitrogenase[J]. Proceedings of the National Academy of Sciences, 1977,74(8):3249-3253. |
[32] | Kim J, Rees D C. Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from azotobacter vinelandii [J]. Nature, 1992,360(6404):553-560. |
[1] | Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature geoscience, 2008,1(10):636-639. |
[2] | Smil V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production[Z]. The MIT Press, 2000. |
[3] | Crews T E, Peoples M B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs[J]. Agriculture, Ecosystems & Environment, 2004,102(3):279-297. |
[4] | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008,320(5878):889-892. |
[5] | Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015,528(7580):51-59. |
[6] | Bulen W A, LeComte J R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis[J]. Proceedings of the National Academy of Sciences, 1966,56(3):979-986. |
[7] | Xu P, Wang E. Diversity and regulation of symbiotic nitrogen fixation in plants[J]. Current Biology, 2023,33(11):R543-R559. |
[8] | Dos S P, Fang Z, Mason S W, et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes[J]. BMC Genomics, 2012,13:162. |
[9] | Patriarca E J, Tate R, Iaccarino M. Key role of bacterial NH4 + metabolism in Rhizobium-plant symbiosis[J]. Microbiol Mol Biol Rev, 2002,66(2):203-222. |
[10] | Bano S A, Iqbal S M. Biological Nitrogen Fixation to Improve Plant Growth and Productivity[J]. International journal of agriculture innovations and research, 2016,4(4):596. |
[11] | Mus F, Crook M B, Garcia K, et al. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes[J]. Applied and Environmental Microbiology, 2016,82(13):3698-3710. |
[12] | Pankievicz V C S, Irving T B, Maia L G S, et al. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops[J]. BMC biology, 2019,17(1):99. |
[33] | Rees D C, Akif T F, Haynes C A, et al. Structural basis of biological nitrogen fixation[J]. Philos Trans A Math Phys Eng Sci, 2005,363(1829):971-984, 1035-1040. |
[34] | DIXON R A, POSTGATE J R. Transfer of Nitrogen-fixation Genes by Conjugation in Klebsiella pneumoniae [J]. Nature, 1971,234(5323):47-48. |
[35] | Zhan Y, Yan Y, Deng Z, et al. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Sciences, 2016,113(30):E4348-E4356. |
[36] | Wright G S A, Saeki A, Hikima T, et al. Architecture of the complete oxygen-sensing FixL-FixJ two-component signal transduction system[J]. Science Signaling, 2018,11(525):eaaq0825. |
[37] | Zhang W, Chen Y, Huang K, et al. Molecular Mechanism and Agricultural Application of the NifA-NifL System for Nitrogen Fixation[Z]. International Journal of Molecular Sciences, 2023: 24. |
[38] | Lee S, Reth A, Meletzus D, et al. Characterization of a Major Cluster of nif, fix, and Associated Genes in a Sugarcane Endophyte, Acetobacter diazotrophicus [J]. Journal of Bacteriology, 2000,182(24):7088-7091. |
[39] | Naren N, Zhang X. Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens [J]. Nucleic Acids Research, 2021,49(6):3204-3216. |
[40] | Lee C C, Gorecki K, Stang M, et al. Cofactor maturase NifEN: A prototype ancient nitrogenase?[J]. Sci Adv, 2024,10(24):eado6169. |
[41] | Xu Y Y, Jiang X L, Chai J L, et al. Synthetic models of the nitrogenase FeMo cofactor[J]. Proceedings of the National Academy of Sciences, 2025,122(24):e1875312174. |
[42] | Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca [J]. Proceedings of the National Academy of Sciences, 2012,109(18):7085-7090. |
[43] | Yang J, Xie X, Xiang N, et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proceedings of the National Academy of Sciences, 2018,115(36):E8509-E8517. |
[44] | van Heeswijk W C, Westerhoff H V, Boogerd F C. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective[J]. Microbiol Mol Biol Rev, 2013,77(4):628-695. |
[45] | Poole P, Allaway D. Carbon and nitrogen metabolism in Rhizobium[J]. Adv Microb Physiol, 2000,43:117-163. |
[46] | Ortiz-Marquez J C, Do N M, Curatti L. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories[J]. Metab Eng, 2014,23:154-164. |
[13] | Soumare A, Diedhiou A G, Thuita M, et al. Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture[Z]. Plants, 2020: 9. |
[14] | Bueno B M, Dixon R. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit[J]. Biochem Soc Trans, 2019,47(2):603-614. |
[15] | Montañez A, Blanco A R, Barlocco C, et al. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro[J]. Applied Soil Ecology, 2012,58:21-28. |
[16] | Rosenblueth M, Ormeno-Orrillo E, Lopez-Lopez A, et al. Nitrogen Fixation in Cereals[J]. Front Microbiol, 2018,9:1794. |
[17] | Van Deynze A, Zamora P, Delaux P, et al. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota[J]. PLOS Biology, 2018,16(8):e2006352. |
[18] | De Lajudie P M, Andrews M, Ardley J, et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria[J]. Int J Syst Evol Microbiol, 2019,69(7):1852-1863. |
[19] | Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses[J]. J Plant Physiol, 2022,276:153765. |
[47] | de Zamaroczy M, Paquelin A, Elmerich C. Functional organization of the glnB-glnA cluster of Azospirillum brasilense [J]. J Bacteriol, 1993,175(9):2507-2515. |
[48] | De Zamaroczy M. Structural homologues PII and Pz of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen‐dependent functions[J]. Molecular microbiology, 1998,29(2):449-463. |
[49] | Jaggi R, van Heeswijk W C, Westerhoff H V, et al. The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction[J]. The EMBO journal, 1997,16(18):5562-5571. |
[50] | Jiang P, Pioszak A A, Ninfa A J. Structure-Function Analysis of Glutamine Synthetase Adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli [J]. Biochemistry, 2007,46(13):4117-4132. |
[51] | Wang Y, Liu F, Wang W. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter[J]. Nucleic acids research, 2016,44(22):10530-10538. |
[52] | Huergo L F, Souza E M, Steffens M B R, et al. Regulation of glnB gene promoter expression in Azospirillum brasilense by the NtrC protein[J]. FEMS microbiology letters, 2003,223(1):33-40. |
[53] | HUERGO L F, PEDROSA F O, MULLER-SANTOS M, et al. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity[J]. Microbiology, 2012,158(Pt 1):176-190. |
[54] | Moure V R, Siöberg C L B, Valdameri G, et al. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense [J]. The FEBS journal, 2019,286(6):1214-1229. |
[55] | Moure V R, Danyal K, Yang Z, et al. Nitrogenase Regulatory Enzyme Dinitrogenase Reductase ADP-Ribosyltransferase (DraT) Is Activated by Direct Interaction with the Signal Transduction Protein GlnB[J]. Journal of Bacteriology, 2013,195(2):279-286. |
[56] | ZHANG Y, POHLMANN E L, ROBERTS G P. GlnD Is Essential for NifA Activation, NtrB/NtrC-Regulated Gene Expression, and Posttranslational Regulation of Nitrogenase Activity in the Photosynthetic, Nitrogen-Fixing Bacterium Rhodospirillum rubrum[J]. Journal of Bacteriology, 2005,187(4):1254-1265. |
[57] | Ambrosio R, Ortiz-Marquez J C F, Curatti L. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae[J]. Metabolic Engineering, 2017,40:59-68. |
[58] | Michel-Reydellet N, Kaminski P A. Azorhizobium caulinodans PII and GlnK Proteins Control Nitrogen Fixation and Ammonia Assimilation[J]. Journal of Bacteriology, 1999,181(8):2655-2658. |
[59] | Mus F, Tseng A, Dixon R, et al. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a glnE Deletion[J]. Applied and Environmental Microbiology, 2017,83(13):e00808-e00817. |
[60] | Schnabel T, Sattely E. Engineering Posttranslational Regulation of Glutamine Synthetase for Controllable Ammonia Production in the Plant Symbiont Azospirillum brasilense [J]. Applied and Environmental Microbiology, 2021,87(14):e00521-e00582. |
[61] | Haskett T L, Karunakaran R, Bueno Batista M, et al. Control of nitrogen fixation and ammonia excretion in Azorhizobium caulinodans [J]. PLOS Genetics, 2022,18(6):e1010276. |
[62] | Zhang T, Yan Y, He S, et al. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501[J]. Research in Microbiology, 2012,163(5):332-339. |
[63] | Bali A, Blanco G, Hill S, et al. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen[J]. Applied and Environmental Microbiology, 1992,58(5):1711-1718. |
[64] | Brewin B, Woodley P, Drummond M. The Basis of Ammonium Release in nifL Mutants of Azotobacter vinelandii [J]. Journal of Bacteriology, 1999,181(23):7356-7362. |
[65] | Li Q, Zhang H, Song Y, et al. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27[J]. Proceedings of the National Academy of Sciences, 2022,119(49):e2079112177. |
[66] | Tang Y, Qin D, Tian Z, et al. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals[J]. Nature Communications, 2023,14(1):7516. |
[67] | Brautaset T, Lale R, Valla S. Positively regulated bacterial expression systems[J]. Microbial biotechnology, 2009,2(1):15-30. |
[68] | Kent R, Dixon N. Contemporary Tools for Regulating Gene Expression in Bacteria[J]. Trends in biotechnology, 2020,38(3):316-333. |
[69] | Fray R G, Throup J P, Daykin M, et al. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria[J]. Nature Biotechnology, 1999,17(10):1017-1020. |
[70] | Murphy P J, Wexler W, Grzemski W, et al. Rhizopines—Their role in symbiosis and competition[J]. Soil biology & biochemistry, 1995,27(4):525-529. |
[71] | Murphy P J, Trenz S P, Grzemski W, et al. The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation[J]. Journal of Bacteriology, 1993,175(16):5193-5204. |
[72] | Gordon D M A N, Ryder M H, Heinrich K, et al. An experimental test of the rhizopine concept in Rhizobium meliloti [J]. Applied and Environmental Microbiology, 1996,62(11):3991-3996. |
[73] | Wexler M, Gordon D, Murphy P J. The distribution of inositol rhizopine genes in Rhizobium populations [J]. Soil biology & biochemistry, 1995,27(4):531-537. |
[74] | Murphy P J, Heycke N, Banfalvi Z, et al. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid[J]. Proceedings of the National Academy of Sciences, 1987,84(2):493-497. |
[75] | Geddes B A, Paramasivan P, Joffrin A, et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications, 2019,10(1):3430. |
[76] | Haskett T L, Paramasivan P, Mendes M D, et al. Engineered plant control of associative nitrogen fixation[J]. Proceedings of the National Academy of Sciences, 2022,119(16):e2117465119. |
[77] | Roy S, Liu W, Nandety R S, et al. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation[J]. Plant Cell, 2020,32(1):15-41. |
[78] | Yang J, Lan L, Jin Y, et al. Mechanisms underlying legume-rhizobium symbioses[J]. J Integr Plant Biol, 2022,64(2):244-267. |
[79] | Subramanian S, Stacey G, Yu O. Distinct, crucial roles of flavonoids during legume nodulation[J]. Trends Plant Sci, 2007,12(7):282-285. |
[80] | Venkateshwaran M, Volkening J D, Sussman M R, et al. Symbiosis and the social network of higher plants[J]. Curr Opin Plant Biol, 2013,16(1):118-127. |
[81] | Genre A, Russo G. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?[J]. Front Plant Sci, 2016,7:96. |
[82] | Madsen E B, Madsen L H, Radutoiu S, et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals[J]. Nature, 2003,425(6958):637-640. |
[83] | Smit P, Limpens E, Geurts R, et al. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling[J]. Plant Physiol, 2007,145(1):183-191. |
[84] | Oldroyd G E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nat Rev Microbiol, 2013,11(4):252-263. |
[85] | Martin F M, Uroz S, Barker D G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria[J]. Science, 2017,356(6340). |
[86] | Levy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004,303(5662):1361-1364. |
[87] | Gleason C, Chaudhuri S, Yang T, et al. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition[J]. Nature, 2006,441(7097):1149-1152. |
[88] | Tirichine L, Imaizumi-Anraku H, Yoshida S, et al. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development[J]. Nature, 2006,441(7097):1153-1156. |
[89] | Jin Y, Liu H, Luo D, et al. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways[J]. Nature Communications, 2016,7:12433. |
[90] | Singh S, Katzer K, Lambert J, et al. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development[J]. Cell Host Microbe, 2014,15(2):139-152. |
[91] | Yano K, Yoshida S, Muller J, et al. CYCLOPS, a mediator of symbiotic intracellular accommodation[J]. Proceedings of the National Academy of Sciences, 2008,105(51):20540-20545. |
[92] | Delwiche C F, Cooper E D. The Evolutionary Origin of a Terrestrial Flora[J]. Current Biology, 2015,25(19):R899-R910. |
[93] | Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008,6(10):763-775. |
[94] | Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020,18(11):649-660. |
[95] | Shi J, Wang X, Wang E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems[J]. Annual Review of Plant Biology, 2023,74:569-607. |
[96] | Wang W, Xie Z P, Staehelin C. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus [J]. Plant J, 2014,78(1):56-69. |
[97] | He J, Zhang C, Dai H, et al. A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice[J]. Mol Plant, 2019,12(12):1561-1576. |
[98] | Wang D, Jin R, Shi X, et al. A kinase mediator of rhizobial symbiosis and immunity in Medicago [J]. Nature, 2025. |
[99] | Gamas P, Brault M, Jardinaud M F, et al. Cytokinins in Symbiotic Nodulation: When, Where, What For?[J]. Trends Plant Sci, 2017,22(9):792-802. |
[100] | Ariel F, Brault-Hernandez M, Laffont C, et al. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula [J]. Plant Cell, 2012,24(9):3838-3852. |
[101] | Heckmann A B, Sandal N, Bek A S, et al. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex[J]. Mol Plant Microbe Interact, 2011,24(11):1385-1395. |
[102] | Hirsch A M, Fang Y, Asad S, et al. The role of phytohormones in plant-microbe symbioses[J]. Plant and Soil, 1997,194(1):171-184. |
[103] | Arora N, Skoog F, Allen O N. Kinetin-induced pseudonodules on tobacco roots[J]. American Journal of Botany, 1959,46(8):610-613. |
[104] | Rodriguez-Barrueco C, De Castro F B. Cytokinin-induced Pseudonodules on Alnus glutinosa [J]. Physiologia Plantarum, 1973,29(2):277-280. |
[105] | Soyano T, Kouchi H, Hirota A, et al. NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus [J]. PLoS genetics, 2013,9(3). |
[106] | Laloum T, Baudin M, Frances L, et al. Two CCAAT‐box‐binding transcription factors redundantly regulate early steps of the legume‐rhizobia endosymbiosis[J]. The Plant journal: for cell and molecular biology, 2014,79(5):757-768. |
[107] | Goh T, Joi S, Mimura T, et al. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins[J]. Development, 2012,139(5):883-893. |
[108] | Schiessl K, Lilley J, Lee T, et al. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula [J]. Curr Biol, 2019,29(21):3657-3668. |
[109] | Soyano T, Shimoda Y, Kawaguchi M, et al. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus [J]. Science, 2019,366(6468):1021-1023. |
[110] | Di Laurenzio L, Wysocka-Diller J, Malamy J E, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996,86(3):423-433. |
[111] | Helariutta Y, Fukaki H, Wysocka-Diller J, et al. The SHORT-ROOT Gene Controls Radial Patterning of the Arabidopsis Root through Radial Signaling[J]. Cell, 2000,101(5):555-567. |
[112] | Dong W, Zhu Y, Chang H, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021,589(7843):586-590. |
[113] | Wang L, Rubio M C, Xin X, et al. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation[J]. New Phytol, 2019,224(2):818-832. |
[114] | Zhou Y, Wang L, Rubio M C, et al. Heme catabolism mediated by heme oxygenase in uninfected interstitial cells enables efficient symbiotic nitrogen fixation in Lotus japonicus nodules[J]. New Phytol, 2023,239(5):1989-2006. |
[115] | Wang L, Tian T, Deng Y, et al. Plant glutamyl-tRNA reductases coordinate plant and rhizobial heme biosynthesis in nitrogen-fixing nodules[J]. The Plant Cell, 2025,37(5). |
[116] | Hoffman B M, Lukoyanov D, Yang Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage[J]. Chem Rev, 2014,114(8):4041-4062. |
[117] | Ribbe M W, Hu Y, Hodgson K O, et al. Biosynthesis of nitrogenase metalloclusters[J]. Chem Rev, 2014,114(8):4063-4080. |
[118] | Hu Y, Fay A W, Dos S P, et al. Characterization of Azotobacter vinelandii nifZ deletion strains. Indication of stepwise MoFe protein assembly[J]. J Biol Chem, 2004,279(52):54963-54971. |
[119] | Hu Y, Fay A W, Lee C C, et al. P-cluster maturation on nitrogenase MoFe protein[J]. Proc Natl Acad Sci U S A, 2007,104(25):10424-10429. |
[120] | Wiig J A, Hu Y, Ribbe M W. Refining the pathway of carbide insertion into the nitrogenase M-cluster[J]. Nature Communications, 2015,6:8034. |
[121] | Fay A W, Blank M A, Rebelein J G, et al. Assembly scaffold NifEN: A structural and functional homolog of the nitrogenase catalytic component[J]. Proceedings of the National Academy of Sciences, 2016,113(34):9504-9508. |
[122] | Franke P, Freiberger S, Zhang L, et al. Conformational protection of molybdenum nitrogenase by Shethna protein II[J]. Nature, 2025,637(8047):998-1004. |
[123] | Gallon J R. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms[J]. Trends in Biochemical Sciences, 1981,6:19-23. |
[124] | Narehood S M, Cook B D, Srisantitham S, et al. Structural basis for the conformational protection of nitrogenase from O2 [J]. Nature, 2025,637(8047):991-997. |
[125] | Poole R K, Hill S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii—roles of the terminal oxidases[J]. Biosci Rep, 1997,17(3):303-317. |
[126] | Robson R L, Postgate J R. Oxygen and hydrogen in biological nitrogen fixation[J]. Annu Rev Microbiol, 1980,34:183-207. |
[127] | Wittenberg J B. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules[J]. J Biol Chem, 1974,249(13):4057-4066. |
[128] | Takimoto R, Tatemichi Y, Aoki W, et al. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli [J]. Sci Rep, 2022,12(1):4182. |
[129] | Good A. Toward nitrogen-fixing plants[J]. Science, 2018,359(6378):869-870. |
[130] | Xiang N, Guo C, Liu J, et al. Using synthetic biology to overcome barriers to stable expression of nitrogenase in eukaryotic organelles[J]. Proceedings of the National Academy of Sciences, 2020,117(28):16537-16545. |
[131] | Soto G, Fox A R, Ayub N D. Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes[J]. Journal of molecular evolution, 2013,77(1-2):3-7. |
[132] | López-Torrejón G, Jiménez-Vicente E, Buesa J M, et al. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast[J]. Nature communications, 2016,7(1):11426. |
[133] | Burén S, Young E M, Sweeny E A, et al. Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae[J]. ACS synthetic biology, 2017,6(6):1043-1055. |
[134] | Allen R S, Tilbrook K, Warden A C, et al. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix [J]. Frontiers in plant science, 2017,8:287. |
[135] | He W, Burén S, Baysal C, et al. Nitrogenase Cofactor Maturase NifB Isolated from Transgenic Rice is Active in FeMo-co Synthesis[J]. ACS synthetic biology, 2022,11(9):3028-3036. |
[136] | Jiang X, Coroian D, Barahona E, et al. Functional Nitrogenase Cofactor Maturase NifB in Mitochondria and Chloroplasts of Nicotiana benthamiana [J]. mBio, 2022,13(3):e0026822. |
[137] | Yang J, Xie X, Yang M, et al. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity[J]. Proceedings of the National Academy of Sciences, 2017,114(12):E2460-E2465. |
[138] | Yang J, Xiang N, Liu Y, et al. Organelle-dependent polyprotein designs enable stoichiometric expression of nitrogen fixation components targeted to mitochondria[J]. Proceedings of the National Academy of Sciences, 2023,120(34):e1989825176. |
[139] | Yao Q, Peng R, Tian Y, et al. Endowing plants with the capacity for autogenic nitrogen fixation[M]. 2021. |
[140] | Shang Y, Shi H, Liu M, et al. Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol[J]. Trends Biotechnol, 2025,43(4):946-968. |
[141] | Schulte C, Borah K, Wheatley R M, et al. Metabolic control of nitrogen fixation in rhizobium-legume symbioses[J]. Sci Adv, 2021,7(31). |
[142] | Zhao Q, Wang J, He Q, et al. Carbon type and quantity regulate soil free-living nitrogen fixation through restructuring diazotrophic community[J]. Applied Soil Ecology, 2024,202:105586. |
[143] | Lv F, Zhan Y, Lu W, et al. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri [J]. iScience, 2022,25(12):105663. |
[144] | Witte, I P, Lampe G D, Eitzinger S., et al. Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase[J]. Science, 2025, 388:eadt5199. |
[145] | Doman J, Pandey S, Neugebauer M. Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J]. Cell. 2023, 186(18):3983-4002.e26. |
[146] | Miller S, Wang T, Liu D. Phage-assisted continuous and non-continuous evolution[J]. Nat Protoc. 2020,15(12):4101-4127 |
[147] | Beatty P, Good A. Future prospects for cereals that fix nitrogen[J]. Science. 2011, 333(6041):416-7. |
[148] | Sarah E B, Min-Hyung R, Bilge O., et al. Harnessing atmospheric nitrogen for cereal crop production[J]. Current Opinion in Biotechnology. 2020, 62: 181-8. |
[149] | 燕永亮,田长富,杨建国 等.人工高效生物固氮体系创建及其农业应用[J].生命科学,2021,33(12):1532-1543. |
[150] | Cook N M, Gobbato G, Jacott C N, et al. Autoactive CNGC15 enhances root endosymbiosis in legume and wheat[J]. Nature, 2025,638(8051):752-759. |
[151] | Gautrat P, Laffont C, Frugier F, et al. Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition[J]. Trends in Plant Science, 2021,26(4):392-406. |
[152] | Tschitschko B, Esti M, Philippi M, et al. Rhizobia–diatom symbiosis fixes missing nitrogen in the ocean[J]. Nature, 2024,630(8018):899-904. |
[153] | Coale T H, Loconte V, Turk-Kubo K A, et al. Nitrogen-fixing organelle in a marine alga[J]. Science, 2024,384(6692):217-222. |
[154] | Li J, Chen W, Lu Z, et al. Nanoengineered Azotobacter Pseudomonas stutzeri A1501 for Soil Ecology Restoration and Biological Nitrogen Fixation[J]. ACS Nano, 2025,19(19):18143-18155. |
[1] | FANG Xinyi, SUN Lichao, HUO Yixin, WANG Ying, YUE Haitao. Trends and challenges in microbial synthesis of higher alcohols [J]. Synthetic Biology Journal, 2025, 6(4): 873-898. |
[2] | WU Xiaoyan, SONG Qi, XU Rui, DING Chenjun, CHEN Fang, GUO Qing, ZHANG Bo. A comparative analysis of global research and development competition in synthetic biology [J]. Synthetic Biology Journal, 2025, 6(4): 940-955. |
[3] | ZHANG Jiankang, WANG Wenjun, GUO Hongju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and application of a high-throughput microbial clone picking workstation based on machine vision [J]. Synthetic Biology Journal, 2025, 6(4): 956-971. |
[4] | LI Quanfei, CHEN Qian, LIU Hao, HE Kundong, PAN Liang, LEI Peng, GU Yi’an, SUN Liang, LI Sha, QIU Yibin, WANG Rui, XU Hong. Synthetic biology and applications of high-adhesion protein materials [J]. Synthetic Biology Journal, 2025, 6(4): 806-828. |
[5] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
[6] | TIAN Xiao-jun, ZHANG Rixin. “Economics Paradox” with cells in synthetic gene circuits [J]. Synthetic Biology Journal, 2025, 6(3): 532-546. |
[7] | ZHANG Yiqing, LIU Gaowen. Exploration of gene functions and library construction for engineering strains from a synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(3): 685-700. |
[8] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[9] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
[10] | SONG Chengzhi, LIN Yihan. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. |
[11] | ZHANG Mengyao, CAI Peng, ZHOU Yongjin. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors [J]. Synthetic Biology Journal, 2025, 6(2): 334-356. |
[12] | ZHANG Lu’ou, XU Li, HU Xiaoxu, YANG Ying. Synthetic biology ushers cosmetic industry into the “bio-cosmetics” era [J]. Synthetic Biology Journal, 2025, 6(2): 479-491. |
[13] | YI Jinhang, TANG Yulin, LI Chunyu, WU Heyun, MA Qian, XIE Xixian. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 254-289. |
[14] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[15] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||