Synthetic Biology Journal ›› 2025, Vol. 6 ›› Issue (5): 1041-1057.DOI: 10.12211/2096-8280.2025-081
• Invited Review • Previous Articles Next Articles
LI Chao, ZHANG Huan, YANG Jun, WANG Ertao
Received:2025-08-01
Revised:2025-09-10
Online:2025-11-05
Published:2025-10-31
Contact:
YANG Jun, WANG Ertao
Supported by:李超, 张焕, 杨军, 王二涛
通讯作者:
杨军,王二涛
作者简介:基金资助:CLC Number:
LI Chao, ZHANG Huan, YANG Jun, WANG Ertao. Research advances in nitrogen fixation synthetic biology[J]. Synthetic Biology Journal, 2025, 6(5): 1041-1057.
李超, 张焕, 杨军, 王二涛. 固氮合成生物学研究进展[J]. 合成生物学, 2025, 6(5): 1041-1057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-081
| [1] | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
| [2] | SMIL V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production[M]. Cambridge, Mass.: MIT Press, 2000. |
| [3] | CREWS T E, PEOPLES M B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs[J]. Agriculture, Ecosystems & Environment, 2004, 102(3): 279-297. |
| [4] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
| [5] | ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. |
| [6] | BULEN W A, LECOMTE J R. The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(3): 979-986. |
| [7] | XU P, WANG E T. Diversity and regulation of symbiotic nitrogen fixation in plants[J]. Current Biology, 2023, 33(11): R543-R559. |
| [8] | DOS SANTOS P C, FANG Z, MASON S W, et al. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes[J]. BMC Genomics, 2012, 13(1): 162. |
| [9] | PATRIARCA E J, TATÈ R, IACCARINO M. Key role of bacterial NH4 + metabolism in Rhizobium-plant symbiosis[J]. Microbiology and Molecular Biology Reviews, 2002, 66(2): 203-222. |
| [10] | BANO S A, IQBAL S M. Biological nitrogen fixation to improve plant growth and productivity[J]. International journal of agriculture innovations and research, 2016, 4(4): 596. |
| [11] | MUS F, CROOK M B, GARCIA K, et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J]. Applied and Environmental Microbiology, 2016, 82(13): 3698-3710. |
| [12] | PANKIEVICZ V C S, IRVING T B, MAIA L G S, et al. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops[J]. BMC Biology, 2019, 17(1): 99. |
| [13] | SOUMARE A, DIEDHIOU A G, THUITA M, et al. Exploiting biological nitrogen fixation: a route towards a sustainable agriculture[J]. Plants, 2020, 9(8): 1011. |
| [14] | BUENO BATISTA M, DIXON R. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit[J]. Biochemical Society Transactions, 2019, 47(2): 603-614. |
| [15] | MONTAÑEZ A, BLANCO A R, BARLOCCO C, et al. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro [J]. Applied Soil Ecology, 2012, 58: 21-28. |
| [16] | ROSENBLUETH M, ORMEÑO-ORRILLO E, LÓPEZ-LÓPEZ A, et al. Nitrogen fixation in cereals[J]. Frontiers in Microbiology, 2018, 9: 1794. |
| [17] | VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota[J]. PLoS Biology, 2018, 16(8): e2006352. |
| [18] | DE LAJUDIE P M, ANDREWS M, ARDLEY J, et al. Minimal standards for the description of new Genera and species of rhizobia and agrobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(7): 1852-1863. |
| [19] | MATHESIUS U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses[J]. Journal of Plant Physiology, 2022, 276: 153765. |
| [20] | ZHAO Y Y, ZHANG R, JIANG K W, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae[J]. Molecular Plant, 2021, 14(5): 748-773. |
| [21] | ANDREWS M, ANDREWS M E. Specificity in legume-rhizobia symbioses[J]. International Journal of Molecular Sciences, 2017, 18(4): 705. |
| [22] | CREWS T E, PEOPLES M B. Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review[J]. Nutrient Cycling in Agroecosystems, 2005, 72(2): 101-120. |
| [23] | GAGE D J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes[J]. Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300. |
| [24] | BARTLEY B A, KIM K, MEDLEY J K, et al. Synthetic biology: engineering living systems from biophysical principles[J]. Biophysical Journal, 2017, 112(6): 1050-1058. |
| [25] | GUPTA D, SHARMA G, SARASWAT P, et al. Synthetic biology in plants, a boon for coming decades[J]. Molecular Biotechnology, 2021, 63(12): 1138-1154. |
| [26] | DAI S Y, FENG W Y, SONG F H, et al. Review of biological algal fertilizer technology: alleviating salinization, sequestering carbon, and improving crop productivity[J]. Bioresource Technology, 2025, 429: 132507. |
| [27] | SHARMA A, BORA P. Engineering synthetic microbial communities to restructure the phytobiome for plant health and productivity[J]. World Journal of Microbiology and Biotechnology, 2025, 41(7): 228. |
| [28] | ROCCO C, SUZUKI M, VILAR R, et al. Enhancing zinc bioavailability in rice using the novel synthetic siderophore ligand proline-2'-deoxymugineic acid (PDMA): critical insights from metal binding studies and geochemical speciation modeling[J]. Journal of Agricultural and Food Chemistry, 2025, 73(14): 8243-8253. |
| [29] | CHOUDHARY D K, VARMA A. Nitrogenase (a Key Enzyme): structure and function[M]//Rhizobium biology and biotechnology. Cham: Springer International Publishing, 2017: 293-307. |
| [30] | SCHMIDT F V, SCHULZ L, ZARZYCKI J, et al. Structural insights into the iron nitrogenase complex[J]. Nature Structural & Molecular Biology, 2024, 31(1): 150-158. |
| [31] | SHAH V K, BRILL W J. Isolation of an iron-molybdenum cofactor from nitrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(8): 3249-3253. |
| [32] | KIRN J S, REES D C. Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii [J]. Nature, 1992, 360(6404): 553-560. |
| [33] | REES D C, AKIF TEZCAN F, HAYNES C A, et al. Structural basis of biological nitrogen fixation[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363(1829): 971-984. |
| [34] | DIXON R A, POSTGATE J R. Transfer of nitrogen-fixation genes by conjugation in Klebsiella pneumoniae [J]. Nature, 1971, 234(5323): 47-48. |
| [35] | ZHAN Y H, YAN Y L, DENG Z P, et al. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(30): E4348-E4356. |
| [36] | WRIGHT G S A, SAEKI A, HIKIMA T, et al. Architecture of the complete oxygen-sensing FixL-FixJ two-component signal transduction system[J]. Science Signaling, 2018, 11(525): eaaq0825. |
| [37] | ZHANG W Y, CHEN Y H, HUANG K Y, et al. Molecular mechanism and agricultural application of the NifA-NifL system for nitrogen fixation[J]. International Journal of Molecular Sciences, 2023, 24(2): 907. |
| [38] | LEE S, RETH A, MELETZUS D, et al. Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus [J]. Journal of Bacteriology, 2000, 182(24): 7088-7091. |
| [39] | NAREN N, ZHANG X X. Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens [J]. Nucleic Acids Research, 2021, 49(6): 3204-3216. |
| [40] | LEE C C, GÓRECKI K, STANG M, et al. Cofactor maturase NifEN: a prototype ancient nitrogenase?[J]. Science Advances, 2024, 10(24): eado6169. |
| [41] | XU Y-Y, JIANG X-L, CHAI J-L, et al. Synthetic models of the nitrogenase FeMo cofactor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(24): e2419655122. |
| [42] | TEMME K, ZHAO D H, VOIGT C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085-7090. |
| [43] | YANG J G, XIE X Q, XIANG N, et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8509-E8517. |
| [44] | VAN HEESWIJK W C, WESTERHOFF H V, BOOGERD F C. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective[J]. Microbiology and Molecular Biology Reviews, 2013, 77(4): 628-695. |
| [45] | POOLE P, ALLAWAY D. Carbon and nitrogen metabolism in Rhizobium [J]. Advances in Microbial Physiology, 2000, 43: 117-163. |
| [46] | ORTIZ-MARQUEZ J C F, NASCIMENTO M DO, CURATTI L. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories[J]. Metabolic Engineering, 2014, 23: 154-164. |
| [47] | DE ZAMAROCZY M, PAQUELIN A, ELMERICH C. Functional organization of the glnB-glnA cluster of Azospirillum brasilense [J]. Journal of Bacteriology, 1993, 175(9): 2507-2515. |
| [48] | DE ZAMAROCZY M. Structural homologues P(Ⅱ) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions[J]. Molecular Microbiology, 1998, 29(2): 449-463. |
| [49] | JAGGI R, VAN HEESWIJK W C, WESTERHOFF H V, et al. The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction[J]. The EMBO Journal, 1997, 16(18): 5562-5571. |
| [50] | JIANG P, PIOSZAK A A, NINFA A J. Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli [J]. Biochemistry, 2007, 46(13): 4117-4132. |
| [51] | WANG Y L, LIU F, WANG W. Kinetics of transcription initiation directed by multiple cis-regulatory elements on the glnAp2 promoter[J]. Nucleic Acids Research, 2016, 44(22): 10530-10538. |
| [52] | HUERGO L F, SOUZA E M, STEFFENS M B R, et al. Regulation of glnB gene promoter expression in Azospirillum brasilense by the NtrC protein[J]. FEMS Microbiology Letters, 2003, 223(1): 33-40. |
| [53] | HUERGO L F, PEDROSA F O, MULLER-SANTOS M, et al. PⅡ signal transduction proteins: pivotal players in post-translational control of nitrogenase activity[J]. Microbiology, 2012, 158(Pt 1): 176-190. |
| [54] | MOURE V R, SIÖBERG C L B, VALDAMERI G, et al. The ammonium transporter AmtB and the PⅡ signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense [J]. The FEBS Journal, 2019, 286(6): 1214-1229. |
| [55] | MOURE V R, DANYAL K, YANG Z Y, et al. The nitrogenase regulatory enzyme dinitrogenase reductase ADP-ribosyltransferase (DraT) is activated by direct interaction with the signal transduction protein GlnB[J]. Journal of Bacteriology, 2013, 195(2): 279-286. |
| [56] | ZHANG Y P, POHLMANN E L, ROBERTS G P. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum [J]. Journal of Bacteriology, 2005, 187(4): 1254-1265. |
| [57] | AMBROSIO R, ORTIZ-MARQUEZ J C F, CURATTI L. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae[J]. Metabolic Engineering, 2017, 40: 59-68. |
| [58] | MICHEL-REYDELLET N, KAMINSKI P A. Azorhizobium caulinodans PⅡ and GlnK proteins control nitrogen fixation and ammonia assimilation[J]. Journal of Bacteriology, 1999, 181(8): 2655-2658. |
| [59] | MUS F, TSENG A, DIXON R, et al. Diazotrophic growth allows Azotobacter vinelandii to overcome the deleterious effects of a glnE deletion[J]. Applied and Environmental Microbiology, 2017, 83(13): e00808-17. |
| [60] | SCHNABEL T, SATTELY E. Engineering posttranslational regulation of glutamine synthetase for controllable ammonia production in the plant symbiont Azospirillum brasilense [J]. Applied and Environmental Microbiology, 2021, 87(14): e00582-21. |
| [61] | HASKETT T L, KARUNAKARAN R, BUENO BATISTA M, et al. Control of nitrogen fixation and ammonia excretion in Azorhizobium caulinodans [J]. PLoS Genetics, 2022, 18(6): e1010276. |
| [62] | ZHANG T, YAN Y L, HE S, et al. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501[J]. Research in Microbiology, 2012, 163(5): 332-339. |
| [63] | BALI A, BLANCO G, HILL S, et al. Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen[J]. Applied and Environmental Microbiology, 1992, 58(5): 1711-1718. |
| [64] | BREWIN B, WOODLEY P, DRUMMOND M. The basis of ammonium release in nifL mutants of Azotobacter vinelandii [J]. Journal of Bacteriology, 1999, 181(23): 7356-7362. |
| [65] | LI Q, ZHANG H W, SONG Y, et al. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(49): e2215855119. |
| [66] | TANG Y Q, QIN D B, TIAN Z X, et al. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals[J]. Nature Communications, 2023, 14: 7516. |
| [67] | BRAUTASET T, LALE R, VALLA S. Positively regulated bacterial expression systems[J]. Microbial Biotechnology, 2009, 2(1): 15-30. |
| [68] | KENT R, DIXON N. Contemporary tools for regulating gene expression in bacteria[J]. Trends in Biotechnology, 2020, 38(3): 316-333. |
| [69] | FRAY R G, THROUP J P, DAYKIN M, et al. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria[J]. Nature Biotechnology, 1999, 17(10): 1017-1020. |
| [70] | MURPHY P J, WEXLER W, GRZEMSKI W, et al. Rhizopines: their role in symbiosis and competition[J]. Soil Biology and Biochemistry, 1995, 27(4-5): 525-529. |
| [71] | MURPHY P J, TRENZ S P, GRZEMSKI W, et al. The Rhizobium meliloti rhizopine mos locus is a mosaic structure facilitating its symbiotic regulation[J]. Journal of Bacteriology, 1993, 175(16): 5193-5204. |
| [72] | GORDON D M A N, RYDER M H, HEINRICH K, et al. An experimental test of the rhizopine concept in Rhizobium meliloti [J]. Applied and Environmental Microbiology, 1996, 62(11): 3991-3996. |
| [73] | WEXLER M, GORDON D, MURPHY P J. The distribution of inositol rhizopine genes in Rhizobium populations[J]. Soil Biology and Biochemistry, 1995, 27(4-5): 531-537. |
| [74] | MURPHY P J, HEYCKE N, BANFALVI Z, et al. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym plasmid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(2): 493-497. |
| [75] | GEDDES B A, PARAMASIVAN P, JOFFRIN A, et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications, 2019, 10: 3430. |
| [76] | HASKETT T L, PARAMASIVAN P, MENDES M D, et al. Engineered plant control of associative nitrogen fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(16): e2117465119. |
| [77] | ROY S, LIU W, NANDETY R S, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation[J]. The Plant Cell, 2020, 32(1): 15-41. |
| [78] | YANG J, LAN L Y, JIN Y, et al. Mechanisms underlying legume—Rhizobium symbioses[J]. Journal of Integrative Plant Biology, 2022, 64(2): 244-267. |
| [79] | SUBRAMANIAN S, STACEY G, YU O. Distinct, crucial roles of flavonoids during legume nodulation[J]. Trends in Plant Science, 2007, 12(7): 282-285. |
| [80] | VENKATESHWARAN M, VOLKENING J D, SUSSMAN M R, et al. Symbiosis and the social network of higher plants[J]. Current Opinion in Plant Biology, 2013, 16(1): 118-127. |
| [81] | GENRE A, RUSSO G. Does a common pathway transduce symbiotic signals in plant-microbe interactions?[J]. Frontiers in Plant Science, 2016, 7: 96. |
| [82] | MADSEN E B, MADSEN L H, RADUTOIU S, et al. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals[J]. Nature, 2003, 425(6958): 637-640. |
| [83] | SMIT P, LIMPENS E, GEURTS R, et al. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling[J]. Plant Physiology, 2007, 145(1): 183-191. |
| [84] | OLDROYD G E D. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11(4): 252-263. |
| [85] | MARTIN F M, UROZ S, BARKER D G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria[J]. Science, 2017, 356(6340): eaad4501. |
| [86] | LÉVY J, BRES C, GEURTS R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J]. Science, 2004, 303(5662): 1361-1364. |
| [87] | GLEASON C, CHAUDHURI S, YANG T B, et al. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition[J]. Nature, 2006, 441(7097): 1149-1152. |
| [88] | TIRICHINE L, IMAIZUMI-ANRAKU H, YOSHIDA S, et al. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development[J]. Nature, 2006, 441(7097): 1153-1156. |
| [89] | JIN Y, LIU H, LUO D X, et al. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways[J]. Nature Communications, 2016, 7: 12433. |
| [90] | SINGH S, KATZER K, LAMBERT J, et al. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development[J]. Cell Host & Microbe, 2014, 15(2): 139-152. |
| [91] | YANO K, YOSHIDA S, MÜLLER J, et al. CYCLOPS, a mediator of symbiotic intracellular accommodation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20540-20545. |
| [92] | DELWICHE C F, COOPER E D. The evolutionary origin of a terrestrial flora[J]. Current Biology, 2015, 25(19): R899-R910. |
| [93] | PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10): 763-775. |
| [94] | GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020, 18(11): 649-660. |
| [95] | SHI J C, WANG X L, WANG E T. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569-607. |
| [96] | WANG W, XIE Z P, STAEHELIN C. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus [J]. The Plant Journal, 2014, 78(1): 56-69. |
| [97] | HE J M, ZHANG C, DAI H L, et al. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice[J]. Molecular Plant, 2019, 12(12): 1561-1576. |
| [98] | WANG D P, JIN R, SHI X B, et al. A kinase mediator of rhizobial symbiosis and immunity in Medicago [J]. Nature, 2025, 643(8072): 768-775. |
| [99] | GAMAS P, BRAULT M, JARDINAUD M F, et al. Cytokinins in symbiotic nodulation: when, where, what for?[J]. Trends in Plant Science, 2017, 22(9): 792-802. |
| [100] | ARIEL F, BRAULT-HERNANDEZ M, LAFFONT C, et al. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula [J]. The Plant Cell, 2012, 24(9): 3838-3852. |
| [101] | HECKMANN A B, SANDAL N, BEK A S, et al. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex[J]. Molecular Plant-Microbe Interactions, 2011, 24(11): 1385-1395. |
| [102] | HIRSCH A M, FANG Y, ASAD S, et al. The role of phytohormones in plant-microbe symbioses[J]. Plant and Soil, 1997, 194(1): 171-184. |
| [103] | ARORA N, SKOOG F, ALLEN O N. Kinetin-induced pseudonodules on tobacco roots[J]. American Journal of Botany, 1959, 46(8): 610-613. |
| [104] | RODRIGUEZ-BARRUECO C, DE CASTRO F B. Cytokinin-induced pseudonodules on Alnus glutinosa [J]. Physiologia Plantarum, 1973, 29(2): 277-280. |
| [105] | SOYANO T, KOUCHI H, HIROTA A, et al. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus [J]. PLoS Genetics, 2013, 9(3): e1003352. |
| [106] | LALOUM T, BAUDIN M, FRANCES L, et al. Two CCAAT-box-binding transcription factors redundantly regulate early steps of the legume-rhizobia endosymbiosis[J]. The Plant Journal, 2014, 79(5): 757-768. |
| [107] | GOH T, JOI S, MIMURA T, et al. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins[J]. Development, 2012, 139(5): 883-893. |
| [108] | SCHIESSL K, LILLEY J L S, LEE T, et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula [J]. Current Biology, 2019, 29(21): 3657-3668.e5. |
| [109] | SOYANO T, SHIMODA Y, KAWAGUCHI M, et al. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus [J]. Science, 2019, 366(6468): 1021-1023. |
| [110] | DI LAURENZIO L, WYSOCKA-DILLER J, MALAMY J E, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3): 423-433. |
| [111] | HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555-567. |
| [112] | DONG W T, ZHU Y Y, CHANG H Z, et al. An SHR-SCR module specifies legume cortical cell fate to enable nodulation[J]. Nature, 2021, 589(7843): 586-590. |
| [113] | WANG L L, RUBIO M C, XIN X, et al. CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation[J]. New Phytologist, 2019, 224(2): 818-832. |
| [114] | ZHOU Y, WANG L L, RUBIO M C, et al. Heme catabolism mediated by heme oxygenase in uninfected interstitial cells enables efficient symbiotic nitrogen fixation in Lotus japonicus nodules[J]. New Phytologist, 2023, 239(5): 1989-2006. |
| [115] | WANG L L, TIAN T, DENG Y, et al. Plant glutamyl-tRNA reductases coordinate plant and rhizobial heme biosynthesis in nitrogen-fixing nodules[J]. The Plant Cell, 2025, 37(5): koaf095. |
| [116] | HOFFMAN B M, LUKOYANOV D, YANG Z Y, et al. Mechanism of nitrogen fixation by nitrogenase: the next stage[J]. Chemical Reviews, 2014, 114(8): 4041-4062. |
| [117] | RIBBE M W, HU Y L, HODGSON K O, et al. Biosynthesis of nitrogenase metalloclusters[J]. Chemical Reviews, 2014, 114(8): 4063-4080. |
| [118] | HU Y L, FAY A W, DOS SANTOS P C, et al. Characterization of Azotobacter vinelandii nifZ deletion strains. Indication of stepwise MoFe protein assembly[J]. The Journal of Biological Chemistry, 2004, 279(52): 54963-54971. |
| [119] | HU Y L, FAY A W, LEE C C, et al. P-cluster maturation on nitrogenase MoFe protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10424-10429. |
| [120] | WIIG J A, HU Y L, RIBBE M W. Refining the pathway of carbide insertion into the nitrogenase M-cluster[J]. Nature Communications, 2015, 6: 8034. |
| [121] | FAY A W, BLANK M A, REBELEIN J G, et al. Assembly scaffold NifEN: a structural and functional homolog of the nitrogenase catalytic component[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): 9504-9508. |
| [122] | FRANKE P, FREIBERGER S, ZHANG L, et al. Conformational protection of molybdenum nitrogenase by Shethna protein Ⅱ[J]. Nature, 2025, 637(8047): 998-1004. |
| [123] | GALLON J R. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms[J]. Trends in Biochemical Sciences, 1981, 6: 19-23. |
| [124] | NAREHOOD S M, COOK B D, SRISANTITHAM S, et al. Structural basis for the conformational protection of nitrogenase from O2 [J]. Nature, 2025, 637(8047): 991-997. |
| [125] | POOLE R K, HILL S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii: roles of the terminal oxidases[J]. Bioscience Reports, 1997, 17(3): 303-317. |
| [126] | ROBSON R L, POSTGATE J R. Oxygen and hydrogen in biological nitrogen fixation[J]. Annual Review of Microbiology, 1980, 34: 183-207. |
| [127] | WITTENBERG J B. Facilitated oxygen diffusion. The role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules[J]. The Journal of Biological Chemistry, 1974, 249(13): 4057-4066. |
| [128] | TAKIMOTO R, TATEMICHI Y, AOKI W, et al. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli [J]. Scientific Reports, 2022, 12: 4182. |
| [129] | GOOD A. Toward nitrogen-fixing plants[J]. Science, 2018, 359(6378): 869-870. |
| [130] | XIANG N, GUO C Y, LIU J W, et al. Using synthetic biology to overcome barriers to stable expression of nitrogenase in eukaryotic organelles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16537-16545. |
| [131] | SOTO G, FOX A R, AYUB N D. Exploring the intrinsic limits of nitrogenase transfer from bacteria to eukaryotes[J]. Journal of Molecular Evolution, 2013, 77(1): 3-7. |
| [132] | LÓPEZ-TORREJÓN G, JIMÉNEZ-VICENTE E, BUESA J M, et al. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast[J]. Nature Communications, 2016, 7: 11426. |
| [133] | BURÉN S, YOUNG E M, SWEENY E A, et al. Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2017, 6(6): 1043-1055. |
| [134] | ALLEN R S, TILBROOK K, WARDEN A C, et al. Expression of 16 nitrogenase proteins within the plant mitochondrial matrix[J]. Frontiers in Plant Science, 2017, 8: 287. |
| [135] | HE W S, BURÉN S, BAYSAL C, et al. Nitrogenase cofactor maturase NifB isolated from transgenic rice is active in FeMo-co synthesis[J]. ACS Synthetic Biology, 2022, 11(9): 3028-3036. |
| [136] | JIANG X, COROIAN D, BARAHONA E, et al. Functional nitrogenase cofactor maturase NifB in mitochondria and chloroplasts of Nicotiana benthamiana [J]. mBio, 2022, 13(3): e00268-22 |
| [137] | YANG J G, XIE X Q, YANG M X, et al. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): E2460-E2465. |
| [138] | YANG J G, XIANG N, LIU Y H, et al. Organelle-dependent polyprotein designs enable stoichiometric expression of nitrogen fixation components targeted to mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(34): e2305142120. |
| [139] | YAO Q H, PENG R H, WANG B, et al. Endowing plants with the capacity for autogenic nitrogen fixation[EB/OL]. Research Square, 2021. (2021-05-07)[2025-09-01]. . |
| [140] | SHANG Y M, SHI H W, LIU M Z, et al. Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol[J]. Trends in Biotechnology, 2025, 43(4): 946-968. |
| [141] | SCHULTE C C M, BORAH K, WHEATLEY R M, et al. Metabolic control of nitrogen fixation in Rhizobium-legume symbioses[J]. Science Advances, 2021, 7(31): eabh2433. |
| [142] | ZHAO Q, WANG J P, HE Q Q, et al. Carbon type and quantity regulate soil free-living nitrogen fixation through restructuring diazotrophic community[J]. Applied Soil Ecology, 2024, 202: 105586. |
| [143] | LV F Y, ZHAN Y H, LU W, et al. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri [J]. iScience, 2022, 25(12): 105663. |
| [144] | WITTE I P, LAMPE G D, EITZINGER S, et al. Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase[J]. Science, 2025, 388(6748): eadt5199. |
| [145] | DOMAN J L, PANDEY S, NEUGEBAUER M E, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors[J]. Cell, 2023, 186(18): 3983-4002.e26. |
| [146] | MILLER S M, WANG T N, LIU D R. Phage-assisted continuous and non-continuous evolution[J]. Nature Protocols, 2020, 15(12): 4101-4127. |
| [147] | BEATTY P H, GOOD A G. Plant science. Future prospects for cereals that fix nitrogen[J]. Science, 2011, 333(6041): 416-417. |
| [148] | BLOCH S E, RYU M H, OZAYDIN B, et al. Harnessing atmospheric nitrogen for cereal crop production[J]. Current Opinion in Biotechnology, 2020, 62: 181-188. |
| [149] | 燕永亮, 田长富, 杨建国, 等. 人工高效生物固氮体系创建及其农业应用[J]. 生命科学, 2021, 33(12): 1532-1543. |
| YAN Y L, TIAN C F, YANG J G, et al. Establishment of artificial efficiency biological nitrogen fixation system and its agricultural application[J]. Chinese Bulletin of Life Sciences, 2021, 33(12): 1532-1543. | |
| [150] | COOK N M, GOBBATO G, JACOTT C N, et al. Autoactive CNGC15 enhances root endosymbiosis in legume and wheat[J]. Nature, 2025, 638(8051): 752-759. |
| [151] | GAUTRAT P, LAFFONT C, FRUGIER F, et al. Nitrogen systemic signaling: from symbiotic nodulation to root acquisition[J]. Trends in Plant Science, 2021, 26(4): 392-406. |
| [152] | TSCHITSCHKO B, ESTI M, PHILIPPI M, et al. Rhizobia-diatom symbiosis fixes missing nitrogen in the ocean[J]. Nature, 2024, 630(8018): 899-904. |
| [153] | COALE T H, LOCONTE V, TURK-KUBO K A, et al. Nitrogen-fixing organelle in a marine Alga [J]. Science, 2024, 384(6692): 217-222. |
| [154] | LI J J, CHEN W X, LU Z Z, et al. Nanoengineered Azotobacter Pseudomonas stutzeri A1501 for soil ecology restoration and biological nitrogen fixation[J]. ACS Nano, 2025, 19(19): 18143-18155. |
| [1] | SONG Kainan, ZHANG Liwen, WANG Chao, TIAN Pingfang, LI Guangyue, PAN Guohui, XU Yuquan. Advances in small-molecule biopesticides and their biosynthesis [J]. Synthetic Biology Journal, 2025, 6(5): 1203-1223. |
| [2] | YU Wenwen, LV Xueqin, LI Zhaofeng, LIU Long. Plant synthetic biology and bioproduction of human milk oligosaccharides [J]. Synthetic Biology Journal, 2025, 6(5): 992-997. |
| [3] | YAN Zhaotao, ZHOU Pengfei, WANG Yangzhong, ZHANG Xin, XIE Wenyan, TIAN Chenfei, WANG Yong. Plant synthetic biology: new opportunities for large-scale culture of plant cells [J]. Synthetic Biology Journal, 2025, 6(5): 1107-1125. |
| [4] | SUN Yang, CHEN Lichao, SHI Yanyun, WANG Ke, LV Dandan, XU Xiumei, ZHANG Lixin. Strategies and prospects of synthetic biology in crop photosynthesis [J]. Synthetic Biology Journal, 2025, 6(5): 1025-1040. |
| [5] | ZHAO Xinyu, SHENG Qi, LIU Kaifang, LIU Jia, LIU Liming. Construction of microbial cell factories for aspartate-family feed amino acids [J]. Synthetic Biology Journal, 2025, 6(5): 1184-1202. |
| [6] | HE Yangyu, YANG Kai, WANG Weilin, HUANG Qian, QIU Ziying, SONG Tao, HE Liushang, YAO Jinxin, GAN Lu, HE Yuchi. Design and practice of plant synthetic biology theme in the International Genetically Engineered Machine Competition [J]. Synthetic Biology Journal, 2025, 6(5): 1243-1254. |
| [7] | ZHANG Xuebo, ZHU Chengshu, CHEN Ruiyun, JIN Qingzi, LIU Xiao, XIONG Yan, CHEN Daming. Policy planning and industrial development of agricultural synthetic biology [J]. Synthetic Biology Journal, 2025, 6(5): 1224-1242. |
| [8] | LIU Jie, GAO Yu, MA Yongshuo, SHANG Yi. Progress and challenges of synthetic biology in agriculture [J]. Synthetic Biology Journal, 2025, 6(5): 998-1024. |
| [9] | ZHENG Lei, ZHENG Qiteng, ZHANG Tianjiao, DUAN Kun, ZHANG Ruifu. Engineering rhizosphere synthetic microbial communities to enhance crop nutrient use efficiency [J]. Synthetic Biology Journal, 2025, 6(5): 1058-1071. |
| [10] | WEI Jiaxiu, JI Peiyun, JIE Qingyu, HUANG Qiuyan, YE Hao, DAI Junbiao. Construction and application of plant artificial chromosomes [J]. Synthetic Biology Journal, 2025, 6(5): 1093-1106. |
| [11] | FANG Xinyi, SUN Lichao, HUO Yixin, WANG Ying, YUE Haitao. Trends and challenges in microbial synthesis of higher alcohols [J]. Synthetic Biology Journal, 2025, 6(4): 873-898. |
| [12] | WU Xiaoyan, SONG Qi, XU Rui, DING Chenjun, CHEN Fang, GUO Qing, ZHANG Bo. A comparative analysis of global research and development competition in synthetic biology [J]. Synthetic Biology Journal, 2025, 6(4): 940-955. |
| [13] | ZHANG Jiankang, WANG Wenjun, GUO Hongju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and application of a high-throughput microbial clone picking workstation based on machine vision [J]. Synthetic Biology Journal, 2025, 6(4): 956-971. |
| [14] | LI Quanfei, CHEN Qian, LIU Hao, HE Kundong, PAN Liang, LEI Peng, GU Yi’an, SUN Liang, LI Sha, QIU Yibin, WANG Rui, XU Hong. Synthetic biology and applications of high-adhesion protein materials [J]. Synthetic Biology Journal, 2025, 6(4): 806-828. |
| [15] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||