ZHANG Jiankang1,2, WANG Wenjun1,2, GUO Hong-ju1,2, BAI Beichen1,2, ZHANG Yafei1,2, YUAN Zheng1,2, LI Yanhui1,2, LI Hang1,2
Received:
2025-04-29
Revised:
2025-06-25
Published:
2025-07-03
Contact:
LI Hang
张建康1,2, 王文君1,2, 郭洪菊1,2, 白北辰1,2, 张亚飞1,2, 袁征1,2, 李彦辉1,2, 李航1,2
通讯作者:
李航
作者简介:
基金资助:
CLC Number:
ZHANG Jiankang, WANG Wenjun, GUO Hong-ju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and Application of a High-Throughput Microbial Clone Picking Workstation Based on Machine Vision[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-038.
张建康, 王文君, 郭洪菊, 白北辰, 张亚飞, 袁征, 李彦辉, 李航. 基于机器视觉的高通量微生物克隆挑选工作站研制及应用[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-038.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2025-038
数据集 Data set | 训练集 Training set | 测试集 Test set |
---|---|---|
完整菌落图像 Complete colony images | 34 | 4 |
挑选出小图像块 Small image blocks Selected | 5160 | 1466 |
Table 1 Distribution of the dataset
数据集 Data set | 训练集 Training set | 测试集 Test set |
---|---|---|
完整菌落图像 Complete colony images | 34 | 4 |
挑选出小图像块 Small image blocks Selected | 5160 | 1466 |
设备 型号 | CCD 分辨率(Pixel/mm) | (mm) | (%) | (%) | (万) | ||
---|---|---|---|---|---|---|---|
96 | 挑针 | 22 | ≥ 0.1 | ||||
单通道或8通道 | 吸头 | / | / | / | ≥ | ||
2或4 | 挑针 | / | ≥ 0.5 | / | 1 mm以上98% | ||
96 | 挑针 | 30 | ≥0.2 | ≥ | ≥ |
Table 2 A comparison of technical parameters of this device with other three cloning selection workstations
设备 型号 | CCD 分辨率(Pixel/mm) | (mm) | (%) | (%) | (万) | ||
---|---|---|---|---|---|---|---|
96 | 挑针 | 22 | ≥ 0.1 | ||||
单通道或8通道 | 吸头 | / | / | / | ≥ | ||
2或4 | 挑针 | / | ≥ 0.5 | / | 1 mm以上98% | ||
96 | 挑针 | 30 | ≥0.2 | ≥ | ≥ |
[1] | Macarrón R, Hertzberg R P. Design and Implementation of High Throughput Screening[J]. Assays.Mol Biotechnol(2011).47:270-285. |
[2] | Hughes Stephen R., Butt Tauseef R., Bartolett Scott, et al. Design and Construction of a First-Generation High-Throughput Integrated Robotic Molecular Biology Platform for Bioenergy Applications[J]. SLAS Technology, 2011,16(4) :292-307. |
[3] | 孙梦楚, 陆亮宇, 申晓林 等. 基于荧光检测的高通量筛选技术和装备助力细胞工厂构建[J]. 合成生物学, 2023, 4(5): 947-965. |
SUN Mengchu, LU Liangyu, SHEN Xiaolin, et al. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction[J]. Synthetic Biology Journal, 2023, 4(5): 947-965. | |
[4] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
LU H, ZHANG F L, HUANG L. Establishment of iBioFoundry for synthetic biology applications[J]. Synthetic Biology Journal, 2023, 4(5): 877-89. | |
[5] | Stephenson A, Lastra L, Nguyen B, et al.. Physical Laboratory Automation in Synthetic Biology[J]. ACS Synth Biol. 2023 Nov 17;12(11):3156-3169. |
[6] | Pavan M. Setting Up an Automated Biomanufacturing Laboratory[J]. Methods Mol Biol. 2021;2229:137-155. |
[7] | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7): 796-802. |
[8] | WIN M N, SMOLKE C D. Higher-order cellular information processing with synthetic RNA devices[J]. Science, 2008, 322 (5900): 456-460. |
[9] | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
[10] | CHAO R, MISHRA S, SI T, et al. Engineering biological systems using automated biofoundries[J]. Metabolic Engineering, 2017, 42: 98-108. |
[11] | 唐婷, 付立豪, 郭二鹏, 等.自动化合成生物技术与工程化设施平台[J].科学通报,2021, 66(3): 300-309. |
TANG T, FU L H, GUO E P, et al. Automation in synthetic biology using biological foundries[J]. Chinese Science Bulletin, 2021, 66(3): 300-309. | |
[12] | Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R . et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature, 2019 Jun, 570(7762): 462–467. |
[13] | Cerbini T, Luo Y, Rao MS, et al.Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe harbor[J]. J Vis Exp. 2015 Feb 1;(96):52504. |
[14] | Djatna T. and Hadi M. Z., "Implementation of an ant colony approach to solve multi-objective order picking problem in beverage warehousing with drive-in rack system[C]//2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017:137-142. |
[15] | Huang C, He K, Liu C,et al. A colny picking robot with multi-pin synchronous manipulator[C]//2018 IEEE International Conference on Information and Automation(ICIA), Wuyi Mountain, Fujian, China 2018:7-12. |
[16] | 张依朗. 基于机器视觉的高通量自动菌落挑取系统研究[D]. 北京:北京化工大学,2021. |
Zhang Yilang. Research on high throughput automatic colony picking sysetem based on machine vision[D].Beijing: Beijing University of Chemical Technology, 2021. | |
[17] | Guzman C M, et al. Automated Colony Counting System for Clonogenic Assay[J]. Cytotechnology, 2010. |
[18] | Singh T R, Chatterjee S. Morphological Analysis of Bacterial Colonies Using Image Processing[C]. IEEE ICET, 2011. |
[19] | Arteta T S, et al. A Hybrid Method for Cell Segmentation in Phase-Contrast Microscopy[J]. IEEE TIP, 2014. |
[20] | Payne G W, et al. Colonyzer: Automated Quantification of Microorganism Growth Characteristics[J]. BMC Microbiology, 2015. |
[21] | Tripathi A K, et al. Circular Hough Transform for Accurate Detection of Microbial Colonies[C]. IEEE ICIP, 2017. |
[22] | Russ J C. The Image Processing Handbook[M]. 7th ed. Boca Raton: CRC Press, 2016. |
[23] | Moen E, et al. Deep Learning for Cellular Image Analysis[J]. Nature Methods, 2019. |
[24] | Wakabayashi R,et al. Rapid counting of coliforms and Escherichia coli by deep learning based classifier[J]. Journal of Food Safety,2024. |
[25] | Zhang J, et al. Automated Bacterial Colony Counting Using Deep Learning[J]. Scientific Reports, 2020. |
[26] | Akbar S A,et al.Rapid bacterial colony classification using deep learning[J].Indonesian Journal of Electrical Engineering and Computer Science, 2022. |
[27] | Andreini P, et al.A Deep Learning Approach to Bacterial Colony Segmentation: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III[J]. 2018. |
[28] | Ronneberger O, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. MICCAI, 2015. |
[29] | Oktay O, et al. Attention U-Net: Learning Where to Look for the Pancreas[C]. MIDL, 2018. |
[30] | He K, et al. Mask R-CNN for Object Detection and Instance Segmentation[C]. ICCV, 2017. |
[31] | Jha D, et al. A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation[J]. IEEE Access, 2021. |
[32] | 曹淑艳、陈雪景、张洵洋.中国塑料行业绿色低碳发展研究报告[M].2022年11月:13 |
Cao Shuyan, Chen Xuejing, Zhangxunyang. Green and Low Carbon Development of the Plastics Industry in China[J].2022 Nov: 13 |
[1] | WU Ke, LUO Jiahao, LI Feiran. Applications of machine learning in the reconstruction and curation of genome-scale metabolic models [J]. Synthetic Biology Journal, 2025, 6(3): 566-584. |
[2] | TIAN Xiao-jun, ZHANG Rixin. “Economics Paradox” with cells in synthetic gene circuits [J]. Synthetic Biology Journal, 2025, 6(3): 532-546. |
[3] | ZHANG Yiqing, LIU Gaowen. Exploration of gene functions and library construction for engineering strains from a synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(3): 685-700. |
[4] | YANG Ying, LI Xia, LIU Lizhong. Applications of synthetic biology to stem-cell-derived modeling of early embryonic development [J]. Synthetic Biology Journal, 2025, 6(3): 669-684. |
[5] | HUANG Yi, SI Tong, LU Anjing. Standardization for biomanufacturing: global landscape, critical challenges, and pathways forward [J]. Synthetic Biology Journal, 2025, 6(3): 701-714. |
[6] | SONG Chengzhi, LIN Yihan. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. |
[7] | ZHANG Mengyao, CAI Peng, ZHOU Yongjin. Synthetic biology drives the sustainable production of terpenoid fragrances and flavors [J]. Synthetic Biology Journal, 2025, 6(2): 334-356. |
[8] | ZHANG Lu’ou, XU Li, HU Xiaoxu, YANG Ying. Synthetic biology ushers cosmetic industry into the “bio-cosmetics” era [J]. Synthetic Biology Journal, 2025, 6(2): 479-491. |
[9] | YI Jinhang, TANG Yulin, LI Chunyu, WU Heyun, MA Qian, XIE Xixian. Applications and advances in the research of biosynthesis of amino acid derivatives as key ingredients in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 254-289. |
[10] | WEI Lingzhen, WANG Jia, SUN Xinxiao, YUAN Qipeng, SHEN Xiaolin. Biosynthesis of flavonoids and their applications in cosmetics [J]. Synthetic Biology Journal, 2025, 6(2): 373-390. |
[11] | XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights [J]. Synthetic Biology Journal, 2025, 6(2): 445-460. |
[12] | WANG Qian, GUO Shiting, XIN Bo, ZHONG Cheng, WANG Yu. Advances in biosynthesis of L-arginine using engineered microorganisms [J]. Synthetic Biology Journal, 2025, 6(2): 290-305. |
[13] | ZUO Yimeng, ZHANG Jiaojiao, LIAN Jiazhang. Enabling technology for the biosynthesis of cosmetic raw materials with Saccharomyces cerevisiae [J]. Synthetic Biology Journal, 2025, 6(2): 233-253. |
[14] | TANG Chuan′gen, WANG Jing, ZHANG Shuo, ZHANG Haoning, KANG Zhen. Advances in synthesis and mining strategies for functional peptides [J]. Synthetic Biology Journal, 2025, 6(2): 461-478. |
[15] | GUO Tingting, HAN Xiangning, HUANG Xiting, ZHANG Tingting, KONG Jian. Advances in synthetic biology tools for lactic acid bacteria and their application in the development of skin beneficial products [J]. Synthetic Biology Journal, 2025, 6(2): 320-333. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||