Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 66-77.DOI: 10.12211/2096-8280.2021-100
• Invited Review • Previous Articles Next Articles
GONG Shitao, WANG Yu, CHEN Yuting
Received:2021-10-27
															
							
																	Revised:2022-02-09
															
							
															
							
																	Online:2022-03-14
															
							
																	Published:2022-02-28
															
						Contact:
								CHEN Yuting   
													龚仕涛, 王宇, 陈宇庭
通讯作者:
					陈宇庭
							作者简介:基金资助:CLC Number:
GONG Shitao, WANG Yu, CHEN Yuting. Advances in application of CRISPR/Cas9 and its derivative editors in aging research[J]. Synthetic Biology Journal, 2022, 3(1): 66-77.
龚仕涛, 王宇, 陈宇庭. CRISPR/Cas9及其衍生编辑器在衰老研究中的应用进展[J]. 合成生物学, 2022, 3(1): 66-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-100
| Name | Description of protein variant or mutations | PAM (5′ to 3′) | 
|---|---|---|
| SpCas9 | Native Streptococcus pyogenes Cas9 | NGG[ | 
| VRER SpCas9 | D1135V, G1218R, R1335E, T1337R | NGCG[ | 
| VQR SpCas9 | D1135V, R1335Q, T1337R | NGAN or NGNG[ | 
| EQR SpCas9 | D1135E, R1335Q, T1337R | NGAG[ | 
| xCas9-3.7 | A262T, R324L, S409I, E480K, E543D, M694I, E1219V | NG, GAA, GAT[ | 
| eSpCas9 (1.0) | K810A, K1003A, R1060A | NGG | 
| eSpCas9 (1.1) | K848A, K1003A, R1060A | NGG | 
| Cas9-HF1 | N497A, R661A, Q695A, Q926A | NGG | 
| HypaCas9 | N692A, M694A, Q695A, H698A | NGG | 
| evoCas9 | M495V, Y515N, K526E, R661Q | NGG | 
| HiFi Cas9 | R691A | NGG | 
| ScCas9 | Native Streptococcus canis Cas9 | NNG[ | 
| StCas9 | Native Streptococcus thermophilus Cas9 | NNAGAAW[ | 
| NmCas9 | Native Neisseria meningitidis Cas9 | NNNNGATT[ | 
| SaCas9 | Native Staphylococcus aureus Cas9 | NNGRRT[ | 
| CjCas9 | Native Campylobacter jejuni Cas9 | NNNVRYM[ | 
| CasX | Phyla Deltaproteobacteria and Planctomycetes | TTCN[ | 
| SpG | variants of Streptococcus pyogenes Cas9 | NGN[ | 
| SpRY | SpCas9 variant | NHN[ | 
| SpCas9 | R1333K, R1335 and T1337N | NRRH, NRCH and NRTH[ | 
| SpCas9 | computational models | NNNN[ | 
Tab. 1 Cas9 variants and identified PAM sequences
| Name | Description of protein variant or mutations | PAM (5′ to 3′) | 
|---|---|---|
| SpCas9 | Native Streptococcus pyogenes Cas9 | NGG[ | 
| VRER SpCas9 | D1135V, G1218R, R1335E, T1337R | NGCG[ | 
| VQR SpCas9 | D1135V, R1335Q, T1337R | NGAN or NGNG[ | 
| EQR SpCas9 | D1135E, R1335Q, T1337R | NGAG[ | 
| xCas9-3.7 | A262T, R324L, S409I, E480K, E543D, M694I, E1219V | NG, GAA, GAT[ | 
| eSpCas9 (1.0) | K810A, K1003A, R1060A | NGG | 
| eSpCas9 (1.1) | K848A, K1003A, R1060A | NGG | 
| Cas9-HF1 | N497A, R661A, Q695A, Q926A | NGG | 
| HypaCas9 | N692A, M694A, Q695A, H698A | NGG | 
| evoCas9 | M495V, Y515N, K526E, R661Q | NGG | 
| HiFi Cas9 | R691A | NGG | 
| ScCas9 | Native Streptococcus canis Cas9 | NNG[ | 
| StCas9 | Native Streptococcus thermophilus Cas9 | NNAGAAW[ | 
| NmCas9 | Native Neisseria meningitidis Cas9 | NNNNGATT[ | 
| SaCas9 | Native Staphylococcus aureus Cas9 | NNGRRT[ | 
| CjCas9 | Native Campylobacter jejuni Cas9 | NNNVRYM[ | 
| CasX | Phyla Deltaproteobacteria and Planctomycetes | TTCN[ | 
| SpG | variants of Streptococcus pyogenes Cas9 | NGN[ | 
| SpRY | SpCas9 variant | NHN[ | 
| SpCas9 | R1333K, R1335 and T1337N | NRRH, NRCH and NRTH[ | 
| SpCas9 | computational models | NNNN[ | 
| 1 | PARTRIDGE L, DEELEN J, SLAGBOOM P E. Facing up to the global challenges of ageing[J]. Nature, 2018, 561(7721): 45-56. | 
| 2 | KAPAHI P, CHEN D, ROGERS A N, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging[J]. Cell Metabolism, 2010, 11(6): 453-465. | 
| 3 | SHALEM O, SANJANA N E, ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5): 299-311. | 
| 4 | DOMINGUEZ A A, LIM W A, QI L S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nature Reviews Molecular Cell Biology, 2016, 17(1): 5-15. | 
| 5 | THAKORE P I, BLACK J B, HILTON I B, et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation[J]. Nature Methods, 2016, 13(2): 127-137. | 
| 6 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. | 
| 7 | HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259. | 
| 8 | AGARI Y, SAKAMOTO K, TAMAKOSHI M, et al. Transcription profile of thermus thermophilus CRISPR systems after phage infection[J]. Journal of Molecular Biology, 2010, 395(2): 270-281. | 
| 9 | GUIDOTTI L G, CHISARI F V. Noncytolytic control of viral infections by the innate and adaptive immune response[J]. Annual Review of Immunology, 2001, 19: 65-91. | 
| 10 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. | 
| 11 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607. | 
| 12 | OOST J VAN DER, JORE M M, WESTRA E R, et al. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends in Biochemical Sciences, 2009, 34(8): 401-407. | 
| 13 | MOUGIAKOS I, BOSMA E F, DE VOS W M, et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit[J]. Trends in Biotechnology, 2016, 34(7): 575-587. | 
| 14 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. | 
| 15 | BARRANGOU R. RNA-mediated programmable DNA cleavage[J]. Nature Biotechnology, 2012, 30(9): 836-838. | 
| 16 | JIANG F G, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46: 505-529. | 
| 17 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. | 
| 18 | KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78. | 
| 19 | SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3): 169-182. | 
| 20 | CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al. Classification and evolution of type Ⅱ CRISPR-Cas systems[J]. Nucleic Acids Research, 2014, 42(10): 6091-6105. | 
| 21 | SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. | 
| 22 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. | 
| 23 | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. | 
| 24 | JIANG F G, TAYLOR D W, CHEN J S, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science, 2016, 351(6275): 867-871. | 
| 25 | JINEK M, JIANG F G, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997. | 
| 26 | AMITAI G, SOREK R. CRISPR-Cas adaptation: insights into the mechanism of action[J]. Nature Reviews Microbiology, 2016, 14(2): 67-76. | 
| 27 | FU Y F, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 2013, 31(9): 822-826. | 
| 28 | HSU P D, SCOTT D A, WEINSTEIN J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9): 827-832. | 
| 29 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485. | 
| 30 | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. | 
| 31 | CHATTERJEE P, JAKIMO N, JACOBSON J M. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Science Advances, 2018, 4(10): eaau0766. | 
| 32 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. | 
| 33 | DEVEAU H, BARRANGOU R, GARNEAU J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. Journal of Bacteriology, 2008, 190(4): 1390-1400. | 
| 34 | ESVELT K M, MALI P, BRAFF J L, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nature Methods, 2013, 10(11): 1116-1121. | 
| 35 | HOU Z G, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15644-15649. | 
| 36 | ZHANG Y, HEIDRICH N, AMPATTU B J, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis [J]. Molecular Cell, 2013, 50(4): 488-503. | 
| 37 | RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. | 
| 38 | YAMADA M, WATANABE Y, GOOTENBERG J S, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Molecular Cell, 2017, 65(6): 1109-1121.e3. | 
| 39 | BURSTEIN D, HARRINGTON L B, STRUTT S C, et al. New CRISPR-Cas systems from uncultivated microbes[J]. Nature, 2017, 542(7640): 237-241. | 
| 40 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. | 
| 41 | MILLER S M, WANG T N, RANDOLPH P B, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nature Biotechnology, 2020, 38(4): 471-481. | 
| 42 | KIM N, KIM H K, LEE S, et al. Prediction of the sequence-specific cleavage activity of Cas9 variants[J]. Nature Biotechnology, 2020, 38(11): 1328-1336. | 
| 43 | KULCSÁR P I, TÁLAS A, HUSZÁR K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage[J]. Genome Biology, 2017, 18(1): 190. | 
| 44 | KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490-495. | 
| 45 | CHEN J S, DAGDAS Y S, KLEINSTIVER B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature, 2017, 550(7676): 407-410. | 
| 46 | CASINI A, OLIVIERI M, PETRIS G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast[J]. Nature Biotechnology, 2018, 36(3): 265-271. | 
| 47 | LEE J K, JEONG E, LEE J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9: 3048. | 
| 48 | WANG M, ZURIS J A, MENG F T, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2868-2873. | 
| 49 | VAKULSKAS C A, DEVER D P, RETTIG G R, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nature Medicine, 2018, 24(8): 1216-1224. | 
| 50 | FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32(3): 279-284. | 
| 51 | HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nature Biotechnology, 2019, 37(6): 626-631. | 
| 52 | CEBRIAN-SERRANO A, DAVIES B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools[J]. Mammalian Genome, 2017, 28(7/8): 247-261. | 
| 53 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262. | 
| 54 | CHATTERJEE P, LEE J, NIP L, et al. A Cas9 with PAM recognition for adenine dinucleotides[J]. Nature Communications, 2020, 11: 2474. | 
| 55 | CHATTERJEE P, JAKIMO N, LEE J, et al. An engineered ScCas9 with broad PAM range and high specificity and activity[J]. Nature Biotechnology, 2020, 38(10): 1154-1158. | 
| 56 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nature Biotechnology, 2015, 33(12): 1293-1298. | 
| 57 | HIRANO H, GOOTENBERG J S, HORII T, et al. Structure and engineering of Francisella novicida Cas9[J]. Cell, 2016, 164(5): 950-961. | 
| 58 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12): 770-788. | 
| 59 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. | 
| 60 | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. | 
| 61 | GEHRKE J M, CERVANTES O, CLEMENT M K, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nature Biotechnology, 2018, 36(10): 977-982. | 
| 62 | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. | 
| 63 | LAPINAITE A, KNOTT G J, PALUMBO C M, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503): 566-571. | 
| 64 | NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. | 
| 65 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. | 
| 66 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. | 
| 67 | LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 2015, 44(D1): D862-D868. | 
| 68 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. | 
| 69 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. | 
| 70 | ZAFRA M P, SCHATOFF E M, KATTI A, et al. Optimized base editors enable efficient editing in cells, organoids and mice[J]. Nature Biotechnology, 2018, 36(9): 888-893. | 
| 71 | CHEN L W, PARK J E, PAA P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins[J]. Nature Communications, 2021, 12: 1384. | 
| 72 | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. | 
| 73 | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. | 
| 74 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. | 
| 75 | SÜRÜN D, SCHNEIDER A, MIRCETIC J, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors[J]. Genes, 2020, 11(5): 511. | 
| 76 | PETRI K, ZHANG W T, MA J Y, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nature Biotechnology, 2021: 1-5. | 
| 77 | LIU Y, LI X Y, HE S T, et al. Efficient generation of mouse models with the prime editing system[J]. Cell Discovery, 2020, 6: 27. | 
| 78 | KIM H K, YU G, PARK J, et al. Predicting the efficiency of prime editing guide RNAs in human cells[J]. Nature Biotechnology, 2021, 39(2): 198-206. | 
| 79 | CHEN S P, WANG H H. An engineered cas-transposon system for programmable and site-directed DNA transpositions[J]. The CRISPR Journal, 2019, 2(6): 376-394. | 
| 80 | STRECKER J, LADHA A, GARDNER Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48-53. | 
| 81 | CHAIKIND B, BESSEN J L, THOMPSON D B, et al. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells[J]. Nucleic Acids Research, 2016, 44(20): 9758-9770. | 
| 82 | GUILINGER J P, THOMPSON D B, LIU D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology, 2014, 32(6): 577-582. | 
| 83 | MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nature Biotechnology, 2015, 33(5): 538-542. | 
| 84 | LIN S, STAAHL B T, ALLA R K, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J]. eLife, 2014, 3: e04766. | 
| 85 | WYSS-CORAY T. Ageing, neurodegeneration and brain rejuvenation[J]. Nature, 2016, 539(7628): 180-186. | 
| 86 | HERNANDEZ-SEGURA A, NEHME J, DEMARIA M. Hallmarks of cellular senescence[J]. Trends in Cell Biology, 2018, 28(6): 436-453. | 
| 87 | WANG W, ZHENG Y X, SUN S H, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence[J]. Science Translational Medicine, 2021, 13(575): eabd2655. | 
| 88 | GONZALO S, KREIENKAMP R, ASKJAER P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations[J]. Ageing Research Reviews, 2017, 33: 18-29. | 
| 89 | SANTIAGO-FERNÁNDEZ O, OSORIO F G, QUESADA V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3): 423-426. | 
| 90 | BEYRET E, LIAO H K, YAMAMOTO M, et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3): 419-422. | 
| 91 | KOBLAN L W, ERDOS M R, WILSON C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843): 608-614. | 
| 92 | CARROLL K J, MAKAREWICH C A, MCANALLY J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): 338-343. | 
| 93 | XU L, LAU Y S, GAO Y D, et al. Life-long AAV-mediated CRISPR genome editing in dystrophic heart improves cardiomyopathy without causing serious lesions in mdx mice[J]. Molecular Therapy, 2019, 27(8): 1407-1414. | 
| 94 | KIM K, PARK S W, KIM J H, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration[J]. Genome Research, 2017, 27(3): 419-426. | 
| 95 | LIM C K W, GAPINSKE M, BROOKS A K, et al. Treatment of a mouse model of ALS by in vivo base editing[J]. Molecular Therapy, 2020, 28(4): 1177-1189. | 
| 96 | ORTIZ-VIRUMBRALES M, MORENO C L, KRUGLIKOV I, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons[J]. Acta Neuropathologica Communications, 2017, 5(1): 77. | 
| 97 | PARK H, OH J, SHIM G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nano complexes alleviates deficits in mouse models of Alzheimer's disease[J]. Nature Neuroscience, 2019, 22(4): 524-528. | 
| 98 | SUN J, CARLSON-STEVERMER J, DAS U, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage[J]. Nature Communications, 2019, 10: 53. | 
| 99 | WANG X L, CAO C W, HUANG J J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6: 20620. | 
| 100 | VERMILYEA S C, BABINSKI A, TRAN N, et al. In vitro CRISPR/Cas9-directed gene editing to model LRRK2 G2019S Parkinson's disease in common marmosets[J]. Scientific Reports, 2020, 10: 3447. | 
| [1] | JIANG Chanjuan, CUI Tianqi, SUN Hongluan, JIAO Nianzhi, FU Jun, ZHANG Youming, WANG Hailong. Efficient capture and assembly of AT-rich genomic fragments using ExoCET-BAC strategy [J]. Synthetic Biology Journal, 2022, 3(1): 238-251. | 
| [2] | Zhongzheng CAO, Xinyi ZHANG, Yiyuan XU, Zhuo ZHOU, Wensheng WEI. Genome editing technology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 413-426. | 
| [3] | Rongzhen TIAN, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Progress in the regulatory tools of gene expression for model microorganisms [J]. Synthetic Biology Journal, 2020, 1(4): 454-469. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||