Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 66-77.DOI: 10.12211/2096-8280.2021-100
• Invited Review • Previous Articles Next Articles
Shitao GONG, Yu WANG, Yuting CHEN
Received:
2021-10-27
Revised:
2022-02-09
Online:
2022-03-14
Published:
2022-02-28
Contact:
Yuting CHEN
龚仕涛, 王宇, 陈宇庭
通讯作者:
陈宇庭
作者简介:
基金资助:
CLC Number:
Shitao GONG, Yu WANG, Yuting CHEN. Advances in application of CRISPR/Cas9 and its derivative editors in aging research[J]. Synthetic Biology Journal, 2022, 3(1): 66-77.
龚仕涛, 王宇, 陈宇庭. CRISPR/Cas9及其衍生编辑器在衰老研究中的应用进展[J]. 合成生物学, 2022, 3(1): 66-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-100
Name | Description of protein variant or mutations | PAM (5′ to 3′) |
---|---|---|
SpCas9 | Native Streptococcus pyogenes Cas9 | NGG[ |
VRER SpCas9 | D1135V, G1218R, R1335E, T1337R | NGCG[ |
VQR SpCas9 | D1135V, R1335Q, T1337R | NGAN or NGNG[ |
EQR SpCas9 | D1135E, R1335Q, T1337R | NGAG[ |
xCas9-3.7 | A262T, R324L, S409I, E480K, E543D, M694I, E1219V | NG, GAA, GAT[ |
eSpCas9 (1.0) | K810A, K1003A, R1060A | NGG |
eSpCas9 (1.1) | K848A, K1003A, R1060A | NGG |
Cas9-HF1 | N497A, R661A, Q695A, Q926A | NGG |
HypaCas9 | N692A, M694A, Q695A, H698A | NGG |
evoCas9 | M495V, Y515N, K526E, R661Q | NGG |
HiFi Cas9 | R691A | NGG |
ScCas9 | Native Streptococcus canis Cas9 | NNG[ |
StCas9 | Native Streptococcus thermophilus Cas9 | NNAGAAW[ |
NmCas9 | Native Neisseria meningitidis Cas9 | NNNNGATT[ |
SaCas9 | Native Staphylococcus aureus Cas9 | NNGRRT[ |
CjCas9 | Native Campylobacter jejuni Cas9 | NNNVRYM[ |
CasX | Phyla Deltaproteobacteria and Planctomycetes | TTCN[ |
SpG | variants of Streptococcus pyogenes Cas9 | NGN[ |
SpRY | SpCas9 variant | NHN[ |
SpCas9 | R1333K, R1335 and T1337N | NRRH, NRCH and NRTH[ |
SpCas9 | computational models | NNNN[ |
Tab. 1 Cas9 variants and identified PAM sequences
Name | Description of protein variant or mutations | PAM (5′ to 3′) |
---|---|---|
SpCas9 | Native Streptococcus pyogenes Cas9 | NGG[ |
VRER SpCas9 | D1135V, G1218R, R1335E, T1337R | NGCG[ |
VQR SpCas9 | D1135V, R1335Q, T1337R | NGAN or NGNG[ |
EQR SpCas9 | D1135E, R1335Q, T1337R | NGAG[ |
xCas9-3.7 | A262T, R324L, S409I, E480K, E543D, M694I, E1219V | NG, GAA, GAT[ |
eSpCas9 (1.0) | K810A, K1003A, R1060A | NGG |
eSpCas9 (1.1) | K848A, K1003A, R1060A | NGG |
Cas9-HF1 | N497A, R661A, Q695A, Q926A | NGG |
HypaCas9 | N692A, M694A, Q695A, H698A | NGG |
evoCas9 | M495V, Y515N, K526E, R661Q | NGG |
HiFi Cas9 | R691A | NGG |
ScCas9 | Native Streptococcus canis Cas9 | NNG[ |
StCas9 | Native Streptococcus thermophilus Cas9 | NNAGAAW[ |
NmCas9 | Native Neisseria meningitidis Cas9 | NNNNGATT[ |
SaCas9 | Native Staphylococcus aureus Cas9 | NNGRRT[ |
CjCas9 | Native Campylobacter jejuni Cas9 | NNNVRYM[ |
CasX | Phyla Deltaproteobacteria and Planctomycetes | TTCN[ |
SpG | variants of Streptococcus pyogenes Cas9 | NGN[ |
SpRY | SpCas9 variant | NHN[ |
SpCas9 | R1333K, R1335 and T1337N | NRRH, NRCH and NRTH[ |
SpCas9 | computational models | NNNN[ |
1 | PARTRIDGE L, DEELEN J, SLAGBOOM P E. Facing up to the global challenges of ageing[J]. Nature, 2018, 561(7721): 45-56. |
2 | KAPAHI P, CHEN D, ROGERS A N, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging[J]. Cell Metabolism, 2010, 11(6): 453-465. |
3 | SHALEM O, SANJANA N E, ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5): 299-311. |
4 | DOMINGUEZ A A, LIM W A, QI L S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nature Reviews Molecular Cell Biology, 2016, 17(1): 5-15. |
5 | THAKORE P I, BLACK J B, HILTON I B, et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation[J]. Nature Methods, 2016, 13(2): 127-137. |
6 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. |
7 | HILLE F, RICHTER H, WONG S P, et al. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6): 1239-1259. |
8 | AGARI Y, SAKAMOTO K, TAMAKOSHI M, et al. Transcription profile of thermus thermophilus CRISPR systems after phage infection[J]. Journal of Molecular Biology, 2010, 395(2): 270-281. |
9 | GUIDOTTI L G, CHISARI F V. Noncytolytic control of viral infections by the innate and adaptive immune response[J]. Annual Review of Immunology, 2001, 19: 65-91. |
10 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
11 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607. |
12 | OOST J VAN DER, JORE M M, WESTRA E R, et al. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends in Biochemical Sciences, 2009, 34(8): 401-407. |
13 | MOUGIAKOS I, BOSMA E F, DE VOS W M, et al. Next generation prokaryotic engineering: the CRISPR-Cas toolkit[J]. Trends in Biotechnology, 2016, 34(7): 575-587. |
14 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
15 | BARRANGOU R. RNA-mediated programmable DNA cleavage[J]. Nature Biotechnology, 2012, 30(9): 836-838. |
16 | JIANG F G, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics, 2017, 46: 505-529. |
17 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
18 | KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78. |
19 | SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3): 169-182. |
20 | CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al. Classification and evolution of type Ⅱ CRISPR-Cas systems[J]. Nucleic Acids Research, 2014, 42(10): 6091-6105. |
21 | SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. |
22 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. |
23 | MALI P, YANG L H, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
24 | JIANG F G, TAYLOR D W, CHEN J S, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science, 2016, 351(6275): 867-871. |
25 | JINEK M, JIANG F G, TAYLOR D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J]. Science, 2014, 343(6176): 1247997. |
26 | AMITAI G, SOREK R. CRISPR-Cas adaptation: insights into the mechanism of action[J]. Nature Reviews Microbiology, 2016, 14(2): 67-76. |
27 | FU Y F, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 2013, 31(9): 822-826. |
28 | HSU P D, SCOTT D A, WEINSTEIN J A, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9): 827-832. |
29 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485. |
30 | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. |
31 | CHATTERJEE P, JAKIMO N, JACOBSON J M. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Science Advances, 2018, 4(10): eaau0766. |
32 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
33 | DEVEAU H, BARRANGOU R, GARNEAU J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. Journal of Bacteriology, 2008, 190(4): 1390-1400. |
34 | ESVELT K M, MALI P, BRAFF J L, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nature Methods, 2013, 10(11): 1116-1121. |
35 | HOU Z G, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15644-15649. |
36 | ZHANG Y, HEIDRICH N, AMPATTU B J, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis [J]. Molecular Cell, 2013, 50(4): 488-503. |
37 | RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. |
38 | YAMADA M, WATANABE Y, GOOTENBERG J S, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Molecular Cell, 2017, 65(6): 1109-1121.e3. |
39 | BURSTEIN D, HARRINGTON L B, STRUTT S C, et al. New CRISPR-Cas systems from uncultivated microbes[J]. Nature, 2017, 542(7640): 237-241. |
40 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. |
41 | MILLER S M, WANG T N, RANDOLPH P B, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nature Biotechnology, 2020, 38(4): 471-481. |
42 | KIM N, KIM H K, LEE S, et al. Prediction of the sequence-specific cleavage activity of Cas9 variants[J]. Nature Biotechnology, 2020, 38(11): 1328-1336. |
43 | KULCSÁR P I, TÁLAS A, HUSZÁR K, et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage[J]. Genome Biology, 2017, 18(1): 190. |
44 | KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490-495. |
45 | CHEN J S, DAGDAS Y S, KLEINSTIVER B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature, 2017, 550(7676): 407-410. |
46 | CASINI A, OLIVIERI M, PETRIS G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast[J]. Nature Biotechnology, 2018, 36(3): 265-271. |
47 | LEE J K, JEONG E, LEE J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9: 3048. |
48 | WANG M, ZURIS J A, MENG F T, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2868-2873. |
49 | VAKULSKAS C A, DEVER D P, RETTIG G R, et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells[J]. Nature Medicine, 2018, 24(8): 1216-1224. |
50 | FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32(3): 279-284. |
51 | HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nature Biotechnology, 2019, 37(6): 626-631. |
52 | CEBRIAN-SERRANO A, DAVIES B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools[J]. Mammalian Genome, 2017, 28(7/8): 247-261. |
53 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262. |
54 | CHATTERJEE P, LEE J, NIP L, et al. A Cas9 with PAM recognition for adenine dinucleotides[J]. Nature Communications, 2020, 11: 2474. |
55 | CHATTERJEE P, JAKIMO N, LEE J, et al. An engineered ScCas9 with broad PAM range and high specificity and activity[J]. Nature Biotechnology, 2020, 38(10): 1154-1158. |
56 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nature Biotechnology, 2015, 33(12): 1293-1298. |
57 | HIRANO H, GOOTENBERG J S, HORII T, et al. Structure and engineering of Francisella novicida Cas9[J]. Cell, 2016, 164(5): 950-961. |
58 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12): 770-788. |
59 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nature Biotechnology, 2020, 38(7): 824-844. |
60 | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. |
61 | GEHRKE J M, CERVANTES O, CLEMENT M K, et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J]. Nature Biotechnology, 2018, 36(10): 977-982. |
62 | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. |
63 | LAPINAITE A, KNOTT G J, PALUMBO C M, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503): 566-571. |
64 | NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. |
65 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
66 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
67 | LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 2015, 44(D1): D862-D868. |
68 | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. |
69 | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471. |
70 | ZAFRA M P, SCHATOFF E M, KATTI A, et al. Optimized base editors enable efficient editing in cells, organoids and mice[J]. Nature Biotechnology, 2018, 36(9): 888-893. |
71 | CHEN L W, PARK J E, PAA P, et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins[J]. Nature Communications, 2021, 12: 1384. |
72 | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nature Biotechnology, 2020, 38(7): 856-860. |
73 | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nature Biotechnology, 2020, 38(7): 861-864. |
74 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. |
75 | SÜRÜN D, SCHNEIDER A, MIRCETIC J, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors[J]. Genes, 2020, 11(5): 511. |
76 | PETRI K, ZHANG W T, MA J Y, et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nature Biotechnology, 2021: 1-5. |
77 | LIU Y, LI X Y, HE S T, et al. Efficient generation of mouse models with the prime editing system[J]. Cell Discovery, 2020, 6: 27. |
78 | KIM H K, YU G, PARK J, et al. Predicting the efficiency of prime editing guide RNAs in human cells[J]. Nature Biotechnology, 2021, 39(2): 198-206. |
79 | CHEN S P, WANG H H. An engineered cas-transposon system for programmable and site-directed DNA transpositions[J]. The CRISPR Journal, 2019, 2(6): 376-394. |
80 | STRECKER J, LADHA A, GARDNER Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48-53. |
81 | CHAIKIND B, BESSEN J L, THOMPSON D B, et al. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells[J]. Nucleic Acids Research, 2016, 44(20): 9758-9770. |
82 | GUILINGER J P, THOMPSON D B, LIU D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification[J]. Nature Biotechnology, 2014, 32(6): 577-582. |
83 | MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nature Biotechnology, 2015, 33(5): 538-542. |
84 | LIN S, STAAHL B T, ALLA R K, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J]. eLife, 2014, 3: e04766. |
85 | WYSS-CORAY T. Ageing, neurodegeneration and brain rejuvenation[J]. Nature, 2016, 539(7628): 180-186. |
86 | HERNANDEZ-SEGURA A, NEHME J, DEMARIA M. Hallmarks of cellular senescence[J]. Trends in Cell Biology, 2018, 28(6): 436-453. |
87 | WANG W, ZHENG Y X, SUN S H, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence[J]. Science Translational Medicine, 2021, 13(575): eabd2655. |
88 | GONZALO S, KREIENKAMP R, ASKJAER P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations[J]. Ageing Research Reviews, 2017, 33: 18-29. |
89 | SANTIAGO-FERNÁNDEZ O, OSORIO F G, QUESADA V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3): 423-426. |
90 | BEYRET E, LIAO H K, YAMAMOTO M, et al. Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome[J]. Nature Medicine, 2019, 25(3): 419-422. |
91 | KOBLAN L W, ERDOS M R, WILSON C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843): 608-614. |
92 | CARROLL K J, MAKAREWICH C A, MCANALLY J, et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): 338-343. |
93 | XU L, LAU Y S, GAO Y D, et al. Life-long AAV-mediated CRISPR genome editing in dystrophic heart improves cardiomyopathy without causing serious lesions in mdx mice[J]. Molecular Therapy, 2019, 27(8): 1407-1414. |
94 | KIM K, PARK S W, KIM J H, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration[J]. Genome Research, 2017, 27(3): 419-426. |
95 | LIM C K W, GAPINSKE M, BROOKS A K, et al. Treatment of a mouse model of ALS by in vivo base editing[J]. Molecular Therapy, 2020, 28(4): 1177-1189. |
96 | ORTIZ-VIRUMBRALES M, MORENO C L, KRUGLIKOV I, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons[J]. Acta Neuropathologica Communications, 2017, 5(1): 77. |
97 | PARK H, OH J, SHIM G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nano complexes alleviates deficits in mouse models of Alzheimer's disease[J]. Nature Neuroscience, 2019, 22(4): 524-528. |
98 | SUN J, CARLSON-STEVERMER J, DAS U, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage[J]. Nature Communications, 2019, 10: 53. |
99 | WANG X L, CAO C W, HUANG J J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Scientific Reports, 2016, 6: 20620. |
100 | VERMILYEA S C, BABINSKI A, TRAN N, et al. In vitro CRISPR/Cas9-directed gene editing to model LRRK2 G2019S Parkinson's disease in common marmosets[J]. Scientific Reports, 2020, 10: 3447. |
[1] | Chanjuan JIANG, Tianqi CUI, Hongluan SUN, Nianzhi JIAO, Jun FU, Youming ZHANG, Hailong WANG. Efficient capture and assembly of AT-rich genomic fragments using ExoCET-BAC strategy [J]. Synthetic Biology Journal, 2022, 3(1): 238-251. |
[2] | Zhongzheng CAO, Xinyi ZHANG, Yiyuan XU, Zhuo ZHOU, Wensheng WEI. Genome editing technology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 413-426. |
[3] | Rongzhen TIAN, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Progress in the regulatory tools of gene expression for model microorganisms [J]. Synthetic Biology Journal, 2020, 1(4): 454-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||