Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (6): 1235-1249.DOI: 10.12211/2096-8280.2022-028
• Invited Review • Previous Articles Next Articles
Mingyuan LAI, Jian WEI, Jianhe XU, Huilei YU
Received:
2022-05-16
Revised:
2022-07-07
Online:
2023-01-17
Published:
2022-12-31
Contact:
Huilei YU
赖铭元, 韦健, 许建和, 郁惠蕾
通讯作者:
郁惠蕾
作者简介:
基金资助:
CLC Number:
Mingyuan LAI, Jian WEI, Jianhe XU, Huilei YU. Review of research on unspecific peroxygenases (UPOs)[J]. Synthetic Biology Journal, 2022, 3(6): 1235-1249.
赖铭元, 韦健, 许建和, 郁惠蕾. 非特异性过加氧酶(UPO)的研究综述[J]. 合成生物学, 2022, 3(6): 1235-1249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-028
名称 | 编号 | 辅因子 | 电子受体 | 催化作用 |
---|---|---|---|---|
氧化酶 | EC 1.x.3.x | 金属离子(Cu等) | O2 | 将电子从底物或辅因子转移到分子氧上 |
黄素 | O2、Fe3+、醌-等 | |||
过氧化物酶 | EC 1.11.1.x | 血红素 | H2O2 | 催化两个电子从底物转移到H2O2 |
过加氧酶 | EC 1.11.2.1 | 血红素 | H2O2 | 催化氧原子从H2O2转移到底物上 |
单加氧酶 | EC 1.13.12.x | 血红素、黄素等 | O2 | 催化1个氧原子从O2转移到底物中 |
双加氧酶 | EC 1.13.11.x EC 1.14.11.x EC 1.14.12.x | 黄素、金属离子等 | O2 | 催化2个氧原子从O2转移到底物中 |
Tab. 1 Classification of oxidoreductases (according to the webpage Enzyme Nomenclature of the NC-IUBMB https://iubmb.qmul.ac.uk/enzyme/EC1/)
名称 | 编号 | 辅因子 | 电子受体 | 催化作用 |
---|---|---|---|---|
氧化酶 | EC 1.x.3.x | 金属离子(Cu等) | O2 | 将电子从底物或辅因子转移到分子氧上 |
黄素 | O2、Fe3+、醌-等 | |||
过氧化物酶 | EC 1.11.1.x | 血红素 | H2O2 | 催化两个电子从底物转移到H2O2 |
过加氧酶 | EC 1.11.2.1 | 血红素 | H2O2 | 催化氧原子从H2O2转移到底物上 |
单加氧酶 | EC 1.13.12.x | 血红素、黄素等 | O2 | 催化1个氧原子从O2转移到底物中 |
双加氧酶 | EC 1.13.11.x EC 1.14.11.x EC 1.14.12.x | 黄素、金属离子等 | O2 | 催化2个氧原子从O2转移到底物中 |
UPO | 来源 | 异源表达宿主 | 方法 |
---|---|---|---|
MroUPO | M. rotula | E. coli | 原序列,自诱导培养基[ |
DcaUPO | D. caldariorum | E. coli | 原序列[ |
CviUPO | C. virescens | E. coli | 原序列[ |
HinUPO | H. insolens | Aspergillus oryzae | 原序列[ |
CciUPO | C. cinerea | Aspergillus oryzae | 原序列[ |
PviUPO | P.virgatula | Aspergillus oryzae | 原序列[ |
ThyUPO | T.hyrcaniae | Aspergillus oryzae | 原序列[ |
LfuUPO | C. fumago | Aspergillus niger | 原序列[ |
AaeUPO (wild-type) | A. aegerita | 无细胞 | 无细胞蛋白表达系统[ |
AaeUPO (PADAⅠ) | A. aegerita | S. cerevisiae & P. pastoris | 信号肽改造[ |
MroUPO | M. rotula | S. cerevisiae & P. pastoris | 更换信号肽[ |
CglUPO | C. globosum | S. cerevisiae & P. pastoris | 更换信号肽[ |
MthUPO | M. thermophila | S. cerevisiae & P. pastoris | 更换信号肽[ |
TteUPO | T. terrestris | S. cerevisiae & P. pastoris | 更换信号肽[ |
PabUPO | P. aberdarensis | S. Cerevisiae & P. pastoris | 更换信号肽[ |
MfeUPO | M. fergusii | P. pastoris | 更换信号肽[ |
MhiUPO | M. hinnulea | P. pastoris | 更换信号肽[ |
DcaUPO | D. caldariorum | P. pastoris | 更换信号肽[ |
HspUPO | Hypoxylon sp | P. pastoris | 原序列[ |
AniUPO | Aspergillus niger | P. pastoris | 信号肽预测[ |
CabUPO 1 | C. aberdarensis | P. pastoris | 信号肽预测[ |
CabUPO 2 | C. aberdarensis | P. pastoris | 信号肽预测[ |
Tab. 2 UPO that have been successfully heterologously expressed
UPO | 来源 | 异源表达宿主 | 方法 |
---|---|---|---|
MroUPO | M. rotula | E. coli | 原序列,自诱导培养基[ |
DcaUPO | D. caldariorum | E. coli | 原序列[ |
CviUPO | C. virescens | E. coli | 原序列[ |
HinUPO | H. insolens | Aspergillus oryzae | 原序列[ |
CciUPO | C. cinerea | Aspergillus oryzae | 原序列[ |
PviUPO | P.virgatula | Aspergillus oryzae | 原序列[ |
ThyUPO | T.hyrcaniae | Aspergillus oryzae | 原序列[ |
LfuUPO | C. fumago | Aspergillus niger | 原序列[ |
AaeUPO (wild-type) | A. aegerita | 无细胞 | 无细胞蛋白表达系统[ |
AaeUPO (PADAⅠ) | A. aegerita | S. cerevisiae & P. pastoris | 信号肽改造[ |
MroUPO | M. rotula | S. cerevisiae & P. pastoris | 更换信号肽[ |
CglUPO | C. globosum | S. cerevisiae & P. pastoris | 更换信号肽[ |
MthUPO | M. thermophila | S. cerevisiae & P. pastoris | 更换信号肽[ |
TteUPO | T. terrestris | S. cerevisiae & P. pastoris | 更换信号肽[ |
PabUPO | P. aberdarensis | S. Cerevisiae & P. pastoris | 更换信号肽[ |
MfeUPO | M. fergusii | P. pastoris | 更换信号肽[ |
MhiUPO | M. hinnulea | P. pastoris | 更换信号肽[ |
DcaUPO | D. caldariorum | P. pastoris | 更换信号肽[ |
HspUPO | Hypoxylon sp | P. pastoris | 原序列[ |
AniUPO | Aspergillus niger | P. pastoris | 信号肽预测[ |
CabUPO 1 | C. aberdarensis | P. pastoris | 信号肽预测[ |
CabUPO 2 | C. aberdarensis | P. pastoris | 信号肽预测[ |
Fig. 1 Mechanism of thioheme-catalyzed oxidation[The process of cytochrome P450 monooxygenase catalyzation consists of six steps and requires the participation of NAD(P)H and O2(Steps 1-6). The catalytic oxidation of UPO is indicated by red lines(Steps a-d). UPO do not catalyze the reduction and activation of molecular oxygen, but directly use hydrogen peroxide to form catalytically active ferric oxide groups, so it does not rely on the expensive NAD(P)H and has a more concise electron transport chain.]
Fig. 3 Oxidation of alkanes and fatty acids by UPO(a)~(d) AaeUPO oxidizes linear (branched) alkanes and cycloalkanes; (e) AaeUPO hydroxylates fatty acids; (f) MroUPO oxidizes fatty acids for decarboxylation; (g) AaeUPO/CciUPO catalyze fatty acid carbon chain shortening (removal of two carbon atom)
Fig. 5 Oxidation of Olefins by UPO(a)~(d) AaeUPO oxidizes different olefins, and the difference in olefin structure will affect the ratio of hydroxylation products to epoxidation products
Fig. 7 Oxidation of aromatic hydrocarbons by UPO(a) AaeUPO oxidized benzene[56]; (b) AaeUPO oxidized naphthalene[55]; (c) AaeUPO oxidized flavonoids[57]
Fig. 10 UPO catalyzes the cleavage reaction(a) AaeUPO catalyzed the ring-opening reaction of tetrahydrofuran; (b) 5-nitro-1,3-benzodioxole (NBD) was dealkylated under the action of UPO to form formic acid and 4-nitrocatechol; (c) AaeUPO selectively catalyzes the N-dealkylation of the N-methylpiperazine ring of the drug sildenafil
1 | GYGLI G, VAN BERKEL W J H. Oxizymes for biotechnology[J]. Current Biotechnology, 2015, 4(2): 100-110. |
2 | MARTÍNEZ A T, RUIZ-DUEÑAS F J, CAMARERO S, et al. Oxidoreductases on their way to industrial biotransformations[J]. Biotechnology Advances, 2017, 35(6): 815-831. |
3 | YAMAGUCHI J, YAMAGUCHI A D, ITAMI K. C—H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals[J]. Angewandte Chemie (International Ed in English), 2012, 51(36): 8960-9009. |
4 | ZHANG R K, HUANG X Y, ARNOLD F H. Selective C-H bond functionalization with engineered heme proteins: new tools to generate complexity [J]. Current Opinion in Chemical Biology, 2019, 49: 67-75. |
5 | BATHE U, TISSIER A. Cytochrome P450 enzymes: a driving force of plant diterpene diversity[J]. Phytochemistry, 2019, 161: 149-162. |
6 | HOLTMANN D, HOLLMANN F. The oxygen dilemma: a severe challenge for the application of monooxygenases? [J]. ChemBioChem, 2016, 17(15): 1391-1398. |
7 | WANG Y H, LAN D M, DURRANI R, et al. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? [J]. Current Opinion in Chemical Biology, 2017, 37: 1-9. |
8 | HOFRICHTER M, ULLRICH R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance[J]. Applied Microbiology and Biotechnology, 2006, 71(3): 276-288. |
9 | KLEBANOFF S J. Myeloperoxidase: friend and foe[J]. Journal of Leukocyte Biology, 2005, 77(5): 598-625. |
10 | LEE D S, YAMADA A, SUGIMOTO H, et al. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis: crystallographic, spectroscopic, and mutational studies[J]. The Journal of Biological Chemistry, 2003, 278(11): 9761-9767. |
11 | HANANO A, BURCKLEN M, FLENET M, et al. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif[J]. The Journal of Biological Chemistry, 2006, 281(44): 33140-33151. |
12 | TANG M C, FU C Y, TANG G L. Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-methyltyrosine to 3-hydroxy-5-methyltyrosine in saframycin A biosynthesis[J]. The Journal of Biological Chemistry, 2012, 287(7): 5112-5121. |
13 | CONNOR K L, COLABROY K L, GERRATANA B. A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin[J]. Biochemistry, 2011, 50(41): 8926-8936. |
14 | ULLRICH R, NÜSKE J, SCHEIBNER K, et al. Novel haloperoxidase from the Agrocybe aegerita oxidizes aryl alcohols and aldehydes[J]. Applied & Environmental Microbiology, 2004, 70(8): 4575-4581. |
15 | MORRIS D R, HAGER L P. Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein[J]. The Journal of Biological Chemistry, 1966, 241(8): 1763-1768. |
16 | MANOJ K M, HAGER L P. Chloroperoxidase, a janus enzyme[J]. Biochemistry, 2008, 47(9): 2997-3003. |
17 | SANFILIPPO C, NICOLOSI G. Catalytic behaviour of chloroperoxidase from Caldariomyces fumago in the oxidation of cyclic conjugated dienes[J]. Cheminform, 2003, 13(17): 1889-1892. |
18 | KLUGE M G, ULLRICH R, SCHEIBNER K, et al. Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase-peroxygenase[J]. Applied Microbiology and Biotechnology, 2007, 75(6): 1473-1478. |
19 | ULLRICH R, HOFRICHTER M. The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene[J]. FEBS Letters, 2005, 579(27): 6247-6250. |
20 | HOFRICHTER M, ULLRICH R. Oxidations catalyzed by fungal peroxygenases[J]. Current Opinion in Chemical Biology, 2014, 19: 116-125. |
21 | FAIZA M, LAN D M, HUANG S F, et al. UPObase: an online database of unspecific peroxygenases[J]. Database-the Journal of Biological Databases and Curation, 2019, 2019(8): baz122. |
22 | KELLNER H, LUIS P, PECYNA M J, et al. Widespread occurrence of expressed fungal secretory peroxidases in forest soils[J]. PLoS One, 2014, 9(4): e95557. |
23 | HOFRICHTER M, KELLNER H, PECYNA M J, et al. Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome p450 properties[J]. Advances in Experimental Medicine and Biology, 2015, 851: 341-368. |
24 | KENIGSBERG P, FANG G H, HAGER L P. Post-translational modifications of chloroperoxidase from Caldariomyces fumago [J]. Archives of Biochemistry and Biophysics, 1987, 254(2): 409-415. |
25 | ZONG Q, OSMULSKI P A, HAGER L P. High-pressure-assisted reconstitution of recombinant chloroperoxidase[J]. Biochemistry, 1995, 34(38): 12420-12425. |
26 | CARRO J, GONZÁLEZ-BENJUMEA A, FERNÁNDEZ-FUEYO E, et al. Modulating fatty acid epoxidation vs hydroxylation in a fungal peroxygenase[J]. ACS Catalysis, 2019, 9(7): 6234-6242. |
27 | LINDE D, OLMEDO A, GONZÁLEZ-BENJUMEA A, et al. Two new unspecific peroxygenases from heterologous expression of fungal genes in Escherichia coli [J]. Applied and Environmental Microbiology, 2020, 86(7): e02899-e02819. |
28 | GONZÁLEZ-BENJUMEA A, CARRO J, RENAU-MÍNGUEZ C, et al. Fatty acid epoxidation by Collariella virescensperoxygenase and heme-channel variants[J]. Catalysis Science & Technology, 2020, 10(3): 717-725. |
29 | PÜLLMANN P, KNORRSCHEIDT A, MÜNCH J, et al. A modular two yeast species secretion system for the production and preparative application of unspecific peroxygenases[J]. Communications Biology, 2021, 4: 562. |
30 | MOLINA-ESPEJA P, GARCIA-RUIZ E, GONZALEZ-PEREZ D, et al. Directed evolution of unspecific peroxygenase from Agrocybe aegerita [J]. Applied & Environmental Microbiology, 2014, 80(11): 3496-3507. |
31 | MOLINA-ESPEJA P, MA S, MATE D M, et al. Tandem-yeast expression system for engineering and producing unspecific peroxygenase[J]. Enzyme and Microbial Technology, 2015, 73/74: 29-33. |
32 | PECYNA M, SCHNORR K M, ULLRICH R, et al. Fungal peroxygenases and methords of application. WO/2008/119780[P]. 2008-09-10. |
33 | BABOT E D, DEL RÍO J C, KALUM L, et al. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea [J]. Biotechnology & Bioengineering, 2013, 110(9): 2323-2332. |
34 | LUND H, KALUM L, HOFRICHTER M. US Pat.,9908860B2 [P], 2018. |
35 | ARANDA C, MUNICOY M, GUALLAR V, et al. Selective synthesis of 4-hydroxyisophorone and 4-ketoisophorone by fungal peroxygenases[J]. Catalysis Science & Technology, 2019, 9(6): 1398-1405. |
36 | PÜLLMANN P, WEISSENBORN M J. Improving the heterologous production of fungal peroxygenases through an episomal pichia pastoris promoter and signal peptide shuffling system[J]. ACS Synthetic Biology, 2021, 10(6): 1360-1372. |
37 | GOMEZ DE SANTOS P, HOANG M D, KIEBIST J, et al. Functional expression of two unusual acidic peroxygenases from Candolleomyces aberdarensis in yeasts by adopting evolved secretion mutations[J]. Applied and Environmental Microbiology, 2021, 87(19): e0087821. |
38 | SCHRAMM M, FRIEDRICH S, SCHMIDTKE K U, et al. Cell-free protein synthesis with fungal lysates for the rapid production of unspecific peroxygenases[J]. Antioxidants, 2022, 11(2): 284. |
39 | CONESA A, VAN DE VELDE F, VAN RANTWIJK F, et al. Expression of the Caldariomyces fumagochloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme[J]. Journal of Biological Chemistry, 2001, 276(21): 17635-17640. |
40 | ROTILIO L, SWOBODA A, EBNER K, et al. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst[J]. ACS Catalysis, 2021, 11(18): 11511-11525. |
41 | BORMANN S, KELLNER H, HERMES J, et al. Broadening the biocatalytic toolbox-screening and expression of new unspecific peroxygenases[J]. Antioxidants, 2022, 11(2): 223. |
42 | PIONTEK K, STRITTMATTER E, ULLRICH R, et al. Structural basis of substrate conversion in a new aromatic peroxygenase: Cytochrome P450 functionality with benefits[J]. The Journal of Biological Chemistry, 2013, 288(48): 34767-34776. |
43 | PECYNA M J, ULLRICH R, BITTNER B, et al. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita [J]. Applied Microbiology and Biotechnology, 2009, 84(5): 885-897. |
44 | LEWIS D F V, ITO Y. Cytochrome P450 structure and function: an evolutionary perspective[M]//Issues in Toxicology. Cambridge: Royal Society of Chemistry, 2008: 3-45. |
45 | PIONTEK K, ULLRICH R, LIERS C, et al. Crystallization of a 45 kDa peroxygenase/peroxidase from the mushroom Agrocybe aegerita and structure determination by SAD utilizing only the haem iron[J]. Acta Crystallographica Section F, 2010, 66(6): 693-698. |
46 | HOFRICHTER M, KELLNER H, HERZOG R, et al. Fungal peroxygenases: a phylogenetically old superfamily of heme enzymes with promiscuity for oxygen transfer reactions[M]. Grand Challenges in Fungal Biotechnology, 2020, 369-403. |
47 | RAMIREZ-ESCUDERO M, MOLINA-ESPEJA P, GOMEZ DE SANTOS P, et al. Structural insights into the substrate promiscuity of a laboratory-evolved peroxygenase[J]. ACS Chemical Biology, 2018, 13(12): 3259-3268. |
48 | LECINA D, GILABERT J F, GUALLAR V. Adaptive simulations, towards interactive protein-ligand modeling[J]. Scientific Reports, 2017, 7: 8466. |
49 | PETER S, KINNE M, WANG X S, et al. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase[J]. The FEBS Journal, 2011, 278(19): 3667-3675. |
50 | PETER S, KARICH A, ULLRICH R, et al. Enzymatic one-pot conversion of cyclohexane into cyclohexanone: comparison of four fungal peroxygenases[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 103: 47-51. |
51 | GUTIÉRREZ A, BABOT E D, ULLRICH R, et al. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase[J]. Archives of Biochemistry and Biophysics, 2011, 514(1/2): 33-43. |
52 | OLMEDO A, RÍO J C D, KIEBIST J, et al. Fatty acid chain shortening by a fungal peroxygenase[J]. Chemistry, 2017, 23(67): 16985-16989. |
53 | OLMEDO A, ULLRICH R, HOFRICHTER M, et al. Novel fatty acid chain-shortening by fungal peroxygenases yielding 2C-shorter dicarboxylic acids[J]. Antioxidants, 2022, 11(4): 744. |
54 | PETER S, KINNE M, ULLRICH R, et al. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase[J]. Enzyme & Microbial Technology, 2013, 52(6/7): 370-376. |
55 | KLUGE M, ULLRICH R, DOLGE C, et al. Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation[J]. Applied Microbiology and Biotechnology, 2009, 81(6): 1071-1076. |
56 | KARICH A, KLUGE M, ULLRICH R, et al. Benzene oxygenation and oxidation by the peroxygenase of Agrocybe aegerita [J]. AMB Express, 2013, 3(1): 5. |
57 | BARKOVÁ K, KINNE M, ULLRICH R, et al. Regioselective hydroxylation of diverse flavonoids by an aromatic peroxygenase[J]. Tetrahedron, 2011, 67(26): 4874-4878. |
58 | BASSANINI I, FERRANDI E E, VANONI M, et al. Peroxygenase-catalyzed enantioselective sulfoxidations[J]. European Journal of Organic Chemistry, 2017, 2017(47): 7186-7189. |
59 | KINNE M, PORAJ-KOBIELSKA M, RALPH S A, et al. Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase[J]. Journal of Biological Chemistry, 2009, 284(43): 29343-29349. |
60 | PORAJ-KOBIELSKA M, KINNE M, ULLRICH R, et al. A spectrophotometric assay for the detection of fungal peroxygenases[J]. Analytical Biochemistry, 2012, 421(1): 327-329. |
61 | PORAJ-KOBIELSKA M, KINNE M, ULLRICH R, et al. Preparation of human drug metabolites using fungal peroxygenases[J]. Biochemical Pharmacology, 2011, 82(7): 789-796. |
62 | HYLAND R, ROE E G H, JONES B C, et al. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil[J]. British Journal of Clinical Pharmacology, 2001, 51(3): 239-248. |
63 | ARANDA E, KINNE M, KLUGE M, et al. Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases[J]. Applied Microbiology and Biotechnology, 2009, 82(6): 1057-1066. |
64 | CARRO J, FERREIRA P, RODRÍGUEZ L, et al. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase[J]. The FEBS Journal, 2015, 282(16): 3218-3229. |
65 | KLUGE M, ULLRICH R, SCHEIBNER K, et al. Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita [J]. Green Chemistry, 2012, 14(2): 440-446. |
66 | ULLRICH R, HOFRICHTER M. Enzymatic hydroxylation of aromatic compounds[J]. Cellular and Molecular Life Sciences, 2007, 64(3): 271-293. |
67 | LUCAS F, BABOT E D, CAÑELLAS M, et al. Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases[J]. Catalysis Science & Technology, 2016, 6(1): 288-295. |
68 | BORMANN S, GOMEZ BARAIBAR A, NI Y, et al. Specific oxyfunctionalisations catalysed by peroxygenases: Opportunities, challenges and solutions[J]. Catalysis Science & Technology, 2015, 5(4): 2038-2052. |
69 | ZHANG W Y, FERNÁNDEZ-FUEYO E, NI Y, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations[J]. Nature Catalysis, 2018, 1(1): 55-62. |
70 | WILLOT S J P, FERNÁNDEZ-FUEYO E, TIEVES F, et al. Expanding the spectrum of light-driven peroxygenase reactions[J]. ACS Catalysis, 2019, 9(2): 890-894. |
71 | YUAN B, MAHOR D, FEI Q, et al. Water-soluble anthraquinone photocatalysts enable methanol-driven enzymatic halogenation and hydroxylation reactions[J]. ACS Catalysis, 2020, 10(15): 8277-8284. |
72 | WAPSHOTT-STEHLI H L, GRUNDEN A M. In situ H2O2 generation methods in the context of enzyme biocatalysis[J]. Enzyme and Microbial Technology, 2021, 145: 109744. |
73 | HOLTMANN D, KRIEG T, GETREY L, et al. Electroenzymatic process to overcome enzyme instabilities[J]. Catalysis Communications, 2014, 51: 82-85. |
74 | GUILLET N, ROUÉ L, MARCOTTE S, et al. Electrogeneration of hydrogen peroxide in acid medium using pyrolyzed cobalt-based catalysts: Influence of the cobalt content on the electrode performance[J]. Journal of Applied Electrochemistry, 2006, 36(8): 863-870. |
75 | SAHA M S, NISHIKI Y, FURUTA T, et al. Electrolytic synthesis of peroxyacetic acid using in situ generated hydrogen peroxide on gas diffusion electrodes[J]. Journal of the Electrochemical Society, 2004, 151(9): D93. |
76 | CHOI D S, NI Y, FERNÁNDEZ-FUEYO E, et al. Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform[J]. ACS Catalysis, 2017, 7(3): 1563-1567. |
77 | BORMANN S, VAN SCHIE M M C H, DE ALMEIDA T P, et al. H2O2 production at low overpotentials for electroenzymatic halogenation reactions[J]. ChemSusChem, 2019, 12(21): 4759-4763. |
78 | NGUYEN L T, YANG K L. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions[J]. Enzyme & Microbial Technology, 2017, 100: 52-59. |
79 | NI Y, FERNÁNDEZ-FUEYO E, BARAIBAR A G, et al. Peroxygenase-catalyzed oxyfunctionalization reactions promoted by the complete oxidation of methanol[J]. Angewandte Chemie International Edition, 2016, 55(2): 798-801. |
80 | TIEVES F, WILLOT S J P, VAN SCHIE M M C H, et al. Formate oxidase (FOx) from Aspergillus oryzae: one catalyst enables diverse H2O2-dependent biocatalytic oxidation reactions[J]. Angewandte Chemie International Edition, 2019, 58(23): 7873-7877. |
81 | VAITHYANATHAN V K, RAVI S, LEDUC R, et al. Utilization of biosolids for glucose oxidase production: a potential bio-fenton reagent for advanced oxidation process for removal of pharmaceutically active compounds[J]. Journal of Environmental Management, 2020, 271: 110995. |
82 | KARICH A, ULLRICH R, SCHEIBNER K, et al. Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants[J]. Frontiers in Microbiology, 2017, 8: 1463. |
83 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
84 | 卞佳豪, 杨广宇. 人工智能辅助的蛋白质工程[J]. 合成生物学, 2022, 3(3): 429-444. |
BIAN J H, YANG G Y. Artificial intelligence-assisted protein engineering[J]. Synthetic Biology Journal, 2022, 3(3): 429-444. |
[1] | Jicong LIN, Gen ZOU, Hongmin LIU, Yongjun WEI. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi [J]. Synthetic Biology Journal, 2023, 4(4): 738-755. |
[2] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[3] | Yujiao LOU, Jian XU, Qi WU. Progress of biocatalytic deuteration of inert carbon-hydrogen bonds [J]. Synthetic Biology Journal, 2022, 3(3): 530-544. |
[4] | Wentao SUN, Xinzhe ZHANG, Shengtong WAN, Ruwen WANG, Chun LI. Regulation on oxidation selectivity for β-amyrin by Class Ⅱ cytochrome P450 enzymes [J]. Synthetic Biology Journal, 2021, 2(5): 804-814. |
[5] | Haibo ZHOU, Qiyao SHEN, Hanna CHEN, Zongjie WANG, Yuezhong LI, Youming ZHANG, Xiaoying BIAN. Genome mining for novel natural products in Sorangium cellulosum So0157-2 by heterologous expression [J]. Synthetic Biology Journal, 2021, 2(5): 837-849. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||