Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (3): 507-523.DOI: 10.12211/2096-8280.2022-079
• Invited Review • Previous Articles Next Articles
He HUANG1, Tong WU1, Wenda WANG1, Jiashan LI1, Daiwen SUN1, Qiwei YE2, Xinqi GONG1,2
Received:
2022-12-31
Revised:
2023-03-20
Online:
2023-07-05
Published:
2023-06-30
Contact:
Xinqi GONG
黄鹤1, 吴桐1, 王闻达1, 李佳珊1, 孙黛雯1, 叶启威2, 龚新奇1,2
通讯作者:
龚新奇
作者简介:
CLC Number:
He HUANG, Tong WU, Wenda WANG, Jiashan LI, Daiwen SUN, Qiwei YE, Xinqi GONG. Prediction of protein complex structure: methods and progress[J]. Synthetic Biology Journal, 2023, 4(3): 507-523.
黄鹤, 吴桐, 王闻达, 李佳珊, 孙黛雯, 叶启威, 龚新奇. 蛋白质复合物结构预测:方法与进展[J]. 合成生物学, 2023, 4(3): 507-523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-079
方法 | 输入特征 | 网络架构 | 任务 | ||||
---|---|---|---|---|---|---|---|
共进化 | 单体距离图 | 单体结构 | 蛋白语言模型 | 残差网络 | 同源 | 异源 | |
ComplexContact[ | √ | √ | √ | ||||
Glinter[ | √ | √ | √ | √ + 图学习 | √ | √ | |
DeepHomo[ | √ | √ | √ | √ | |||
DeepHomo2[ | √ | √ | √ | √ | √ | ||
DRcon[ | √ | √ | √ + 空洞卷积 | √ | |||
DeepInteract[ | √ | 几何深度学习 | √ | ||||
CDPred[ | √ | √ | √ | √ + 注意力机制 | √ | √ | |
PDII[ | √ | 图像修复 | √ | √ | |||
PGT[ | √ | √ | √ + 图注意力+三角更新 | √ |
Table 1 Overview of methods for predicting interactions between the inter-chains of proteins[48,61-67,69]
方法 | 输入特征 | 网络架构 | 任务 | ||||
---|---|---|---|---|---|---|---|
共进化 | 单体距离图 | 单体结构 | 蛋白语言模型 | 残差网络 | 同源 | 异源 | |
ComplexContact[ | √ | √ | √ | ||||
Glinter[ | √ | √ | √ | √ + 图学习 | √ | √ | |
DeepHomo[ | √ | √ | √ | √ | |||
DeepHomo2[ | √ | √ | √ | √ | √ | ||
DRcon[ | √ | √ | √ + 空洞卷积 | √ | |||
DeepInteract[ | √ | 几何深度学习 | √ | ||||
CDPred[ | √ | √ | √ | √ + 注意力机制 | √ | √ | |
PDII[ | √ | 图像修复 | √ | √ | |||
PGT[ | √ | √ | √ + 图注意力+三角更新 | √ |
1 | LENSINK M F, BRYSBAERT G, MAURI T, et al. Prediction of protein assemblies, the next frontier: the CASP14-CAPRI experiment[J]. Proteins: Structure, Function and Bioinformatics, 2021, 89(12): 1800-1823. |
2 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
3 | BADAL V D, KUNDROTAS P J, VAKSER I A. Text mining for protein docking[J]. PLoS Computational Biology, 2015, 11(12): e1004630. |
4 | MARKOWETZ F, SPANG R. Inferring cellular networks-a review[J]. BMC Bioinformatics, 2007, 8(): S5. |
5 | MORCOS F, PAGNANI A, LUNT B, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): E1293-E1301. |
6 | BALAKRISHNAN S, KAMISETTY H, CARBONELL J G, et al. Learning generative models for protein fold families[J]. Proteins: Structure, Function, and Bioinformatics, 2011, 79(4): 1061-1078. |
7 | HUANG H, GONG X Q. A review of protein inter-residue distance prediction[J]. Current Bioinformatics, 2020, 15(8): 821-830. |
8 | 张海仓, 高玉娟, 邓明华, 等. 蛋白质中残基远程相互作用预测算法研究综述[J]. 计算机研究与发展, 2017, 54(1): 1-19. |
ZHANG H C, GAO Y J, DENG M H, et al. A survey on algorithms for protein contact prediction[J]. Journal of Computer Research and Development, 2017, 54(1): 1-19. | |
9 | 於东军, 李阳. 蛋白质残基接触图预测[J]. 南京理工大学学报, 2019, 43(1): 1-12. |
YU D J, LI Y. Protein residue-residue contact map prediction[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 1-12. | |
10 | WEIGT M, WHITE R A, SZURMANT H, et al. Identification of direct residue contacts in protein-protein interaction by message passing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 67-72. |
11 | JONES D T, BUCHAN D W A, COZZETTO D, et al. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments[J]. Bioinformatics, 2012, 28(2): 184-190. |
12 | EKEBERG M, LÖVKVIST C, LAN Y H, et al. Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(1): 012707. |
13 | ZHANG H C, ZHANG Q, JU F S, et al. Predicting protein inter-residue contacts using composite likelihood maximization and deep learning[J]. BMC Bioinformatics, 2019, 20(1): 537. |
14 | KAMISETTY H, OVCHINNIKOV S, BAKER D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15674-15679. |
15 | OVCHINNIKOV S, KAMISETTY H, BAKER D. Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information[J]. eLife, 2014, 3: e02030. |
16 | WANG S, SUN S Q, LI Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS Computational Biology, 2017, 13(1): e1005324. |
17 | YANG J Y, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences, 2020, 117(3): 1496-1503. |
18 | SEEMAYER S, GRUBER M, SÖDING J. CCMpred—fast and precise prediction of protein residue-residue contacts from correlated mutations[J]. Bioinformatics, 2014, 30(21): 3128-3130. |
19 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C/OL]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), VegasLas, NV, USA, 2016, 770-778 [2022-12-10]. . |
20 | SENIOR A W, EVANS R, JUMPER J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. |
21 | MAO W, DING W, GONG H. AmoebaContact and GDFold: a new pipeline for rapid prediction of protein structures[EB/OL]. arXiv, 2019: 1905.11640[2022-12-10]. . |
22 | JU F S, ZHU J W, SHAO B, et al. CopulaNet: learning residue co-evolution directly from multiple sequence alignment for protein structure prediction[J]. Nature Communications, 2021, 12: 2535. |
23 | ZHENG W, ZHANG C, LI Y, et al. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations[J]. Cell Reports Methods, 2021, 1(3): 100014. |
24 | MORTUZA S M, ZHENG W, ZHANG C X, et al. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions[J]. Nature Communications, 2021, 12: 5011. |
25 | DING W Z, GONG H P. Predicting the real-valued inter-residue distances for proteins[J]. Advanced Science, 2020, 7(19): 2001314. |
26 | WU T Q, GUO Z Y, HOU J, et al. DeepDist: real-value inter-residue distance prediction with deep residual convolutional network[J]. BMC Bioinformatics, 2021, 22(1): 30. |
27 | CHAUDHURY S, LYSKOV S, GRAY J J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta[J]. Bioinformatics, 2010, 26(5): 689-691. |
28 | BRUNGER A T. Version 1.2 of the crystallography and NMR system[J]. Nature Protocols, 2007, 2(11): 2728-2733. |
29 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. arXiv, 2017: 1706.03762[2022-12-10]. . |
30 | ALQURAISHI M. End-to-end differentiable learning of protein structure[J]. Cell Systems, 2019, 8(4): 292-301.e3. |
31 | VARADI M, ANYANGO S, DESHPANDE M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models[J]. Nucleic Acids Research, 2022, 50(D1): D439-D444. |
32 | LIN Z, AKIN H, RAO R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model[J]. Science, 2023, 379(6637): 1123-1130. |
33 | DEVLIN J, CHANG M, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. arXiv, 2018: 1810.04805[2022-12-10]. . |
34 | RAO R, MEIER J, SERCU T, et al. Transformer protein language models are unsupervised structure learners[EB/OL].bioRxiv, 2020[2022-12-10]. . |
35 | RIVES A, MEIER J, SERCU T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2016239118 |
36 | RAO R, LIU J, VERKUIL R, et al. MSA Transformer[EB/OL]. 2021[2022-12-10]. . |
37 | FANG X, WANG F, LIU L, et al. HelixFold-single: MSA-free protein structure prediction by using protein language model as an alternative[EB/OL]. arXiv, 2022: 2207.13921[2022-12-10]. . |
38 | WU R D, DING F, WANG R, et al. High-resolution de novo structure prediction from primary sequence[EB/OL]. bioRxiv, 2022[2022-12-10] . |
39 | WANG W K, PENG Z L, YANG J Y. Single-sequence protein structure prediction using supervised transformer protein language models[J]. Nature Computational Science, 2022, 2(12): 804-814. |
40 | CHOWDHURY R, BOUATTA N, BISWAS S, et al. Single-sequence protein structure prediction using a language model and deep learning[J]. Nature Biotechnology, 2022, 40(11): 1617-1623. |
41 | HSU C, VERKUIL R, LIU J, et al. Learning inverse folding from millions of predicted structures[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
42 | ELNAGGAR A, HEINZINGER M, DALLAGO C, et al. ProtTrans: towards cracking the language of life's code through self-supervised learning[EB/OL]//IEEE Trans Pattern Analysis & Machine Intelligence, 2021, 4[2022-12-10]. . |
43 | BRANDES N, GOLDMAN G, WANG C H, et al. Genome-wide prediction of disease variants with a deep protein language model[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
44 | GUO Y Z, WU J X, MA H H, et al. Self-supervised pre-training for protein embeddings using tertiary structures[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6): 6801-6809. |
45 | ZHANG Z, XU M, JAMASB A, et al. Protein representation learning by geometric structure pretraining[EB/OL]. arXiv, 2022: 2203.06125[2023-02-01]. . |
46 | ZHOU G, GAO Z, DING Q, et al. Uni-Mol: a universal 3D molecular representation learning framework[EB/OL][2022-12-10]. . |
47 | HOPF T A, SCHÄRFE C P I, RODRIGUES J P G L M, et al. Sequence co-evolution gives 3D contacts and structures of protein complexes[J]. eLife, 2014, 3: e03430. |
48 | ZENG H, WANG S, ZHOU T M, et al. ComplexContact: a web server for inter-protein contact prediction using deep learning[J]. Nucleic Acids Research, 2018, 46(W1): W432-W437. |
49 | CHEN B, XIE Z W, XU J B, et al. Improve the protein complex prediction with protein language models[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
50 | ZHENG W, LI Y, ZHANG C X, et al. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14[J]. Proteins: Structure, Function, and Bioinformatics, 2021, 89(12): 1734-1751. |
51 | EVANS R, O'NEILL M, PRITZEL A, et al. Protein complex prediction with AlphaFold-Multimer[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
52 | SUN D W, LIU S J, GONG X Q. Review of multimer protein-protein interaction complex topology and structure prediction[J]. Chinese Physics B, 2020, 29(10): 57-66. |
53 | YANG Y X, GONG X Q. A new probability method to understand protein-protein interface formation mechanism at amino acid level[J]. Journal of Theoretical Biology, 2018, 436: 18-25. |
54 | YANG Y X, WANG W, LOU Y, et al. Geometric and amino acid type determinants for protein-protein interaction interfaces[J]. Quantitative Biology, 2018, 6(2): 163-174. |
55 | WANG W, YANG Y X, YIN J X, et al. Different protein-protein interface patterns predicted by different machine learning methods[J]. Scientific Reports, 2017, 7: 16023. |
56 | ZHAO Z N, GONG X Q. Trimer protein-protein complex interface interacting residue pairs prediction using deep learning approach[C]//Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. September 7-10, 2019, Niagara Falls, NY, USA. New York: ACM, 2019: 580-585. |
57 | SUN D W, GONG X Q. Tetramer protein complex interface residue pairs prediction with LSTM combined with graph representations[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2020, 1868(11): 140504. |
58 | LIU J L, GONG X Q. Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction[J]. BMC Bioinformatics, 2019, 20(1): 609. |
59 | ZHAO Z N, GONG X Q. Protein-protein interaction interface residue pair prediction based on deep learning architecture[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(5): 1753-1759. |
60 | LYU Y F, HE R N, HU J J, et al. Prediction of the tetramer protein complex interaction based on CNN and SVM[J]. Frontiers in Genetics, 2023, 14: 1076904. |
61 | XIE Z W, XU J B. Deep graph learning of inter-protein contacts[J]. Bioinformatics, 2022, 38(4): 947-953. |
62 | MOREHEAD A, CHEN C, CHENG J. Geometric transformers for protein interface contact prediction[EB/OL]. arXiv, 2021: 2110.02423[2022-12-10]. . |
63 | GUO Z, LIU J, SKOLNICK J, et al. Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks[J]. Nature Communications, 2022, 13: 6963. |
64 | YAN Y M, HUANG S Y. Accurate prediction of inter-protein residue-residue contacts for homo-oligomeric protein complexes[J]. Briefings in Bioinformatics, 2021, 22(5): bbab038. |
65 | LIN P C, YAN Y M, HUANG S Y. DeepHomo2.0: improved protein-protein contact prediction of homodimers by transformer-enhanced deep learning[J]. Briefings in Bioinformatics, 2022, 24(1), bbac499. |
66 | ROY R S, QUADIR F, SOLTANIKAZEMI E, et al. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers[J]. Bioinformatics, 2022, 38(7): 1904-1910. |
67 | WU T, HUANG H, LI J S, et al. Inter-chain contact map prediction for protein complex based on graph attention network and triangular multiplication update[C]//2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). December 6-8, 2022, Las Vegas, NV, USA. IEEE, 2023: 2143-2148. |
68 | GAO M, AN D N, PARKS J M, et al. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning[J]. Nature Communications, 2022, 13: 1744. |
69 | HUANG H, ZENG C S, GONG X Q. Inter-protein contact map generated only from intra-monomer by image inpainting[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). December 9-12, 2021. Houston, TX, USA. IEEE, 2021: 131-136. |
70 | CHEN Y, WANG W, LIU J L, et al. Protein interface complementarity and gene duplication improve link prediction of protein-protein interaction network[J]. Frontiers in Genetics, 2020, 11: 291. |
71 | WEN J, CHAN R H F, YAU S C, et al. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences[J]. Gene, 2014, 546(1): 25-34. |
72 | ZHAO N, ZHUO M J, TIAN K, et al. Protein-protein interaction and non-interaction predictions using gene sequence natural vector[J]. Communications Biology, 2022, 5: 652. |
73 | GE F Q, PENG C X, CUI X Y, et al. Inter-domain distance prediction based on deep learning for domain assembly[J]. Briefings in Bioinformatics, 2023: bbad100. |
74 | SEN N, MADHUSUDHAN M S. A structural database of chain-chain and domain-domain interfaces of proteins[J]. Protein Science, 2022, 31(9): e4406. |
75 | 谢腾宇, 周晓根, 胡俊, 等. 基于接触图残基对距离约束的蛋白质结构预测算法[J]. 计算机科学, 2020, 47(1): 59-65. |
XIE T Y, ZHOU X G, HU J, et al. Contact map-based residue-pair distances restrained protein structure prediction algorithm[J]. Computer Science, 2020, 47(1): 59-65. | |
76 | QUADIR F, ROY R S, SOLTANIKAZEMI E, et al. Deep Complex: a web server of predicting protein complex structures by deep learning inter-chain contact prediction and distance-based modelling[J]. Frontiers in Molecular Biosciences, 2021, 8: 716973. |
77 | SOLTANIKAZEMI E, ROY R S, QUADIR F, et al. DRL Complex: reconstruction of protein quaternary structures using deep reinforcement learning[EB/OL]. arXiv, 2022: 2205.13594[2022-12-10]. . |
78 | BAEK M, ANISHCHENKO I, PARK H, et al. Protein oligomer modeling guided by predicted interchain contacts in CASP14[J]. Proteins: Structure, Function, and Bioinformatics, 2021, 89(12): 1824-1833. |
79 | DE VRIES S J, VAN DIJK M, BONVIN A M J J. The HADDOCK web server for data-driven biomolecular docking[J]. Nature Protocols, 2010, 5(5): 883-897. |
80 | ESQUIVEL-RODRÍGUEZ J, YANG Y D, KIHARA D. Multi-LZerD: multiple protein docking for asymmetric complexes[J]. Proteins: Structure, Function, and Bioinformatics, 2012, 80(7): 1818-1833. |
81 | RITCHIE D W, GRUDININ S. Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry[J]. Journal of Applied Crystallography, 2016, 49(1): 158-167. |
82 | YAN Y M, TAO H Y, HUANG S Y. HSYMDOCK: a docking web server for predicting the structure of protein homo-oligomers with C n or D n symmetry[J]. Nucleic Acids Research, 2018, 46(W1): W423-W431. |
83 | PARK T, WOO H, YANG J, et al. Protein oligomer structure prediction using GALAXY in CASP14[J]. Proteins: Structure, Function, and Bioinformatics, 2021, 89(12): 1844-1851. |
84 | ROY BURMAN S S, YOVANNO R A, GRAY J J. Flexible backbone assembly and refinement of symmetrical homomeric complexes[J]. Structure, 2019, 27(6): 1041-1051.e8. |
85 | PIERCE B, TONG W W, WENG Z P. M-ZDOCK: a grid-based approach for C n symmetric multimer docking[J]. Bioinformatics, 2005, 21(8): 1472-1478. |
86 | PIERCE B G, WIEHE K, HWANG H, et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers[J]. Bioinformatics, 2014, 30(12): 1771-1773. |
87 | JIMÉNEZ-GARCÍA B, PONS C, FERNÁNDEZ-RECIO J. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring[J]. Bioinformatics, 2013, 29(13): 1698-1699. |
88 | KOZAKOV D, HALL D R, XIA B, et al. The ClusPro web server for protein-protein docking[J]. Nature Protocols, 2017, 12(2): 255-278. |
89 | XU X J, QIU L M, YAN C F, et al. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions[J]. Proteins: Structure, Function, and Bioinformatics, 2017, 85(3): 424-434. |
90 | KONG R, LIU R R, XU X M, et al. Template-based modeling and ab-initio docking using CoDock in CAPRI[J]. Proteins: Structure, Function, and Bioinformatics, 2020, 88(8): 1100-1109. |
91 | MARZE N A, ROY BURMAN S S, SHEFFLER W, et al. Efficient flexible backbone protein-protein docking for challenging targets[J]. Bioinformatics, 2018, 34(20): 3461-3469. |
92 | TORCHALA M, MOAL I H, CHALEIL R A G, et al. SwarmDock: a server for flexible protein-protein docking[J]. Bioinformatics, 2013, 29(6): 807-809. |
93 | QUIGNOT C, REY J, YU J C, et al. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[J]. Nucleic Acids Research, 2018, 46(W1): W408-W416. |
94 | BAEK M, PARK T, HEO L, et al. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure[J]. Nucleic Acids Research, 2017, 45(W1): W320-W324. |
95 | GANEA O E, HUANG X, ZURICH E, et al. Independent SE(3)- equivariant models for end-to-end rigid protein docking[EB/OL]. arXiv, 2022: 2111.07786[2022-12-10]. . |
96 | VREVEN T, MOAL I H, VANGONE A, et al. Updates to the integrated protein-protein interaction benchmarks: Docking benchmark version 5 and affinity benchmark version 2[J]. Journal of Molecular Biology, 2015, 427(19): 3031-3041. |
97 | YU J C, GUEROIS R. PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[J]. Bioinformatics, 2016, 32(24): 3760-3767. |
98 | YAN Y M, HUANG S Y. A non-redundant benchmark for symmetric protein docking[J]. Big Data Mining and Analytics, 2019, 2(2): 92-99. |
99 | MIRDITA M, SCHÜTZE K, MORIWAKI Y, et al. ColabFold: making protein folding accessible to all[J]. Nature Methods, 2022, 19(6): 679-682. |
100 | BRYANT P, POZZATI G, ELOFSSON A. Improved prediction of protein-protein interactions using AlphaFold2[J]. Nature Communications, 2022, 13: 1265. |
101 | ZHU W, SHENOY A, KUNDROTAS P, et al. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes[EB/OL]. 2022[2022-12-29]. . |
102 | TSUCHIYA Y, YAMAMORI Y, TOMII K. Protein-protein interaction prediction methods: from docking-based to AI-based approaches[J].Biophysical Reviews, 2022, 14(6): 1341-1348. |
103 | LI Z Y, LIU X Y, CHEN W J, et al. Uni-fold: an open-source platform for developing protein folding models beyond AlphaFold[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
104 | LI Z Y, YANG S W, LIU X Y, et al. Uni-fold symmetry: harnessing symmetry in folding large protein complexes[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
105 | BRYANT P, POZZATI G, ZHU W S, et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search[J]. Nature Communications, 2022, 13: 6028. |
106 | GHANI U, DESTA I, JINDAL A, et al. Improved docking of protein models by a combination of AlphaFold2 and ClusPro[EB/OL]. bioRxiv, 2022[2022-12-10]. . |
107 | HUMPHREYS I R, PEI J M, BAEK M, et al. Computed structures of core eukaryotic protein complexes[J]. Science, 2021, 374(6573): eabm4805. |
108 | JOHANSSON-ÅKHE I, WALLNER B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling[J]. Frontiers in Bioinformatics, 2022, 2: 959160. |
109 | LEE C E, SU B H, TSENG Y J. Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors[J]. Briefings in Bioinformatics, 2022, 23(5): bbac308. |
110 | YIN R, FENG B Y, VARSHNEY A, et al. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants[J]. Protein Science, 2022, 31(8): e4379. |
111 | BRYANT P. Deep learning for protein complex structure prediction[J]. Current Opinion in Structural Biology, 2023, 79: 102529. |
112 | HAN B Q, REN C J, WANG W D, et al. Computational prediction of protein intrinsically disordered region related interactions and functions[J]. Genes, 2023, 14(2): 432. |
[1] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[2] | Yiming TANG, Yifei YAO, Zhongyuan YANG, Yun ZHOU, Zichao WANG, Guanghong WEI. Pathological aggregation and liquid-liquid phase separation of proteins associated with neurodegenerative diseases [J]. Synthetic Biology Journal, 2023, 4(3): 590-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||