Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (3): 571-589.DOI: 10.12211/2096-8280.2023-011
• Invited Review • Previous Articles Next Articles
MENG Qiaozhen1, GUO Fei2
Received:
2023-02-06
Revised:
2023-03-28
Online:
2023-07-05
Published:
2023-06-30
Contact:
GUO Fei
孟巧珍1, 郭菲2
通讯作者:
郭菲
作者简介:
基金资助:
CLC Number:
MENG Qiaozhen, GUO Fei. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example[J]. Synthetic Biology Journal, 2023, 4(3): 571-589.
孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-011
方法名称/ 作者 | 类型 | 模型框架 | 输入 | 输出 | 训练集 | 应用 | 特点 | 网页/GitHub |
---|---|---|---|---|---|---|---|---|
SCUBA[ | 骨架设计 | NC-NN | 二级 结构motifs | 骨架 | PDB | 两层α/β蛋白; 四螺旋束蛋白;EXTD | 突破之前方法仅限于已有模式的限制,基于核密度估计构造神经网络形式的能量函数 | https://doi.org/10.5281/zenodo.4533424 |
Namrata Anand[ | 骨架设计 | DCGAN | — | 距离图 | distance maps | 补齐完整 的结构 | Cα原子之间的相对距离作为约束并优化 | — |
Mire Zloh[ | 序列生成 | LSTM | — | 序列 | CAMP+DBAASP+DRAMP+YADAMP | — | 设计对大肠杆菌具有潜在抗菌活性的短肽,并通过结构和表面性能与典型的AMP结构进行比较 | — |
Gisbert Schneider[ | 序列生成 | RNN | — | 序列 | ADAM/APD/DADP | 设计具有抗 菌功能的肽 | 设计出的肽相比随机生成的肽具有抗菌活性的较高 | https://github.com/alexarnimueller/LSTM_peptides |
ProteinGAN[ | 序列生成 | GAN | — | 序列 | MDH序列 | MDH酶 | 设计与苹果酸脱氢酶同样功能的酶,可同时出现100多个位点 | https://github.com/Biomatter-Designs/ProteinGAN |
Mostafa Karimi[ | 序列生成,给定折叠方式 | gcWGAN | — | 序列 | SCOPe v. 2.07 | — | 设计了一个从序列到折叠的预测器作为“oracle”,监督序列折叠成给定的折叠类型 | https://github.com/Shen-Lab/gcWGAN |
ProteinMPNN[ | 序列设计,结构约束 | 结构编码-序列解码的自回归模型 | 3D 结构 | 序列 | CATH 4.2 | 单体、 环状低聚物、 蛋白质纳米颗粒 | 从结构中学习残基类型,将原子配对距离势融入到边的特征表示中,使序列恢复率直接提高约7.8% | https://github.com/dauparas/ProteinMPNN |
ABACUS-R[ | 序列设计,结构约束 | 结构编码-序列解码 | 3D 结构 | 序列 | CATH 4.2 | PDB ID: 1r26, 1cy5 and 1ubq 3个骨架结构 | 从结构中学习残基类型,多任务学习 | https://github.com/liuyf020419/ABACUS-R |
Transformer | ||||||||
David T. Jones[ | 序列设计,结构约束 | 贪婪的半随机游走,逐步突变起始序列进行迭代的端到端设计 | 序列 | 序列 | — | Top7;Peak6;Foldit1;Ferredog-Diesel | 利用AlphaFold2预测生成序列的结构以及pLDDT打分,判断突变位点以及用距离图约束结构符合给定结构;对于最初始的序列,通过生成模型以及AlphaFold2结构约束产生初始序列 | |
AlphaDesign[ | 序列设计,结构约束 | 基于进化的遗传算法迭代生成序列 | 随机序列 | 序列 | — | 设计稳定的 单体,二聚体 直到六聚体 | 利用AlphaFold2预测的结构与要设计的骨架结构的差异来调整序列的优化 | — |
trDesign[ | 序列设计,结构约束 | trRosetta | 随机序列 | 序列 | — | — | 二维距离直方图的损失来更新梯度,更新被表示为PSSM的序列,可以理解为“折叠”的逆问题 | https://github.com/gjoni/trDesign |
Hallucination[ | 序列设计,结构约束,不固定骨架结构 | trRosetta | 随机序列 | 序列/结构 | PDB训练背景分布概率 | 设计2000条新的幻觉序列,聚类后129条表达后,62个蛋白 可溶,高稳定 | 随机出发设计一条序列,通过最大化与随机背景序列的结构差异,约束该序列具有一个典型的2维结构特性 | https://github.com/gjoni/trDesign |
Constrained hallucination2[ | 序列设计,结构约束 | RoseTTAFold | 序列/结构 | 序列/结构 | RoseTTAFold训练集 | 设计具有给定motif的序列,通过神经网络不断迭代推理以及反向传播来设计序列 | https://github.com/RosettaCommons/RFDesign | |
RFjoint[ | 序列设计,结构约束 | 训练RoseTTAFold | 序列/结构 | 序列/结构 | 微调,其中25%:PDB (2020-02-17); 75%:AF2预测结构 | 免疫原;金属结合;新酶;特定结合的蛋白 | 添加同时恢复序列和结构信息的损失,直接训练全新的模型 | |
PiFold[ | 序列设计 | GNN | 3D 结构 | 序列 | CATH | 序列恢复率:51.66%(CATH4.2),58.72%(TS50),60.42%(TS500) | 设计了新的残基特征器,PiGNN层学习多尺度(节点,边,全局)的残基相互作用信息 | https://github.com/A4Bio/PiFold |
ProDESIGN-LE[ | 序列设计 | Transformer+MLP | 3D 结构 | 序列 | PDB40 | 设计CATⅢ酶新序列,3/5可表达且可溶;GFP | 通过Transformer学习当前残基在局部结构环境中的依赖性,使设计序列中的残基类型适配于当前的局部环境 | http://81.70.37.223/; https://github.com/bigict/ProDESIGN-LE |
Table 1 Summary of protein design tools
方法名称/ 作者 | 类型 | 模型框架 | 输入 | 输出 | 训练集 | 应用 | 特点 | 网页/GitHub |
---|---|---|---|---|---|---|---|---|
SCUBA[ | 骨架设计 | NC-NN | 二级 结构motifs | 骨架 | PDB | 两层α/β蛋白; 四螺旋束蛋白;EXTD | 突破之前方法仅限于已有模式的限制,基于核密度估计构造神经网络形式的能量函数 | https://doi.org/10.5281/zenodo.4533424 |
Namrata Anand[ | 骨架设计 | DCGAN | — | 距离图 | distance maps | 补齐完整 的结构 | Cα原子之间的相对距离作为约束并优化 | — |
Mire Zloh[ | 序列生成 | LSTM | — | 序列 | CAMP+DBAASP+DRAMP+YADAMP | — | 设计对大肠杆菌具有潜在抗菌活性的短肽,并通过结构和表面性能与典型的AMP结构进行比较 | — |
Gisbert Schneider[ | 序列生成 | RNN | — | 序列 | ADAM/APD/DADP | 设计具有抗 菌功能的肽 | 设计出的肽相比随机生成的肽具有抗菌活性的较高 | https://github.com/alexarnimueller/LSTM_peptides |
ProteinGAN[ | 序列生成 | GAN | — | 序列 | MDH序列 | MDH酶 | 设计与苹果酸脱氢酶同样功能的酶,可同时出现100多个位点 | https://github.com/Biomatter-Designs/ProteinGAN |
Mostafa Karimi[ | 序列生成,给定折叠方式 | gcWGAN | — | 序列 | SCOPe v. 2.07 | — | 设计了一个从序列到折叠的预测器作为“oracle”,监督序列折叠成给定的折叠类型 | https://github.com/Shen-Lab/gcWGAN |
ProteinMPNN[ | 序列设计,结构约束 | 结构编码-序列解码的自回归模型 | 3D 结构 | 序列 | CATH 4.2 | 单体、 环状低聚物、 蛋白质纳米颗粒 | 从结构中学习残基类型,将原子配对距离势融入到边的特征表示中,使序列恢复率直接提高约7.8% | https://github.com/dauparas/ProteinMPNN |
ABACUS-R[ | 序列设计,结构约束 | 结构编码-序列解码 | 3D 结构 | 序列 | CATH 4.2 | PDB ID: 1r26, 1cy5 and 1ubq 3个骨架结构 | 从结构中学习残基类型,多任务学习 | https://github.com/liuyf020419/ABACUS-R |
Transformer | ||||||||
David T. Jones[ | 序列设计,结构约束 | 贪婪的半随机游走,逐步突变起始序列进行迭代的端到端设计 | 序列 | 序列 | — | Top7;Peak6;Foldit1;Ferredog-Diesel | 利用AlphaFold2预测生成序列的结构以及pLDDT打分,判断突变位点以及用距离图约束结构符合给定结构;对于最初始的序列,通过生成模型以及AlphaFold2结构约束产生初始序列 | |
AlphaDesign[ | 序列设计,结构约束 | 基于进化的遗传算法迭代生成序列 | 随机序列 | 序列 | — | 设计稳定的 单体,二聚体 直到六聚体 | 利用AlphaFold2预测的结构与要设计的骨架结构的差异来调整序列的优化 | — |
trDesign[ | 序列设计,结构约束 | trRosetta | 随机序列 | 序列 | — | — | 二维距离直方图的损失来更新梯度,更新被表示为PSSM的序列,可以理解为“折叠”的逆问题 | https://github.com/gjoni/trDesign |
Hallucination[ | 序列设计,结构约束,不固定骨架结构 | trRosetta | 随机序列 | 序列/结构 | PDB训练背景分布概率 | 设计2000条新的幻觉序列,聚类后129条表达后,62个蛋白 可溶,高稳定 | 随机出发设计一条序列,通过最大化与随机背景序列的结构差异,约束该序列具有一个典型的2维结构特性 | https://github.com/gjoni/trDesign |
Constrained hallucination2[ | 序列设计,结构约束 | RoseTTAFold | 序列/结构 | 序列/结构 | RoseTTAFold训练集 | 设计具有给定motif的序列,通过神经网络不断迭代推理以及反向传播来设计序列 | https://github.com/RosettaCommons/RFDesign | |
RFjoint[ | 序列设计,结构约束 | 训练RoseTTAFold | 序列/结构 | 序列/结构 | 微调,其中25%:PDB (2020-02-17); 75%:AF2预测结构 | 免疫原;金属结合;新酶;特定结合的蛋白 | 添加同时恢复序列和结构信息的损失,直接训练全新的模型 | |
PiFold[ | 序列设计 | GNN | 3D 结构 | 序列 | CATH | 序列恢复率:51.66%(CATH4.2),58.72%(TS50),60.42%(TS500) | 设计了新的残基特征器,PiGNN层学习多尺度(节点,边,全局)的残基相互作用信息 | https://github.com/A4Bio/PiFold |
ProDESIGN-LE[ | 序列设计 | Transformer+MLP | 3D 结构 | 序列 | PDB40 | 设计CATⅢ酶新序列,3/5可表达且可溶;GFP | 通过Transformer学习当前残基在局部结构环境中的依赖性,使设计序列中的残基类型适配于当前的局部环境 | http://81.70.37.223/; https://github.com/bigict/ProDESIGN-LE |
1 | FERRER S, RUIZ-PERNÍA J, MARTÍ S, et al. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives[J]. Advances in Protein Chemistry and Structural Biology, 2011, 85: 81-142. |
2 | MAZURENKO S, PROKOP Z, DAMBORSKY J. Machine learning in enzyme engineering[J]. ACS Catalysis, 2020, 10(2): 1210-1223. |
3 | DINMUKHAMED T, HUANG Z Y, LIU Y F, et al. Current advances in design and engineering strategies of industrial enzymes[J]. Systems Microbiology and Biomanufacturing, 2021, 1(1): 15-23. |
4 | YANG H Q, LI J H, SHIN H D, et al. Molecular engineering of industrial enzymes: recent advances and future prospects[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 23-29. |
5 | SHELDON R A, PEREIRA P C. Biocatalysis engineering: the big picture[J]. Chemical Society Reviews, 2017, 46(10): 2678-2691. |
6 | LI G Y, DONG Y J, REETZ M T. Can machine learning revolutionize directed evolution of selective enzymes?[J]. Advanced Synthesis & Catalysis, 2019, 361(11): 2377-2386. |
7 | JIANG L, ALTHOFF E A, CLEMENTE F R, et al. De novo computational design of retro-aldol enzymes[J]. Science, 2008, 319(5868): 1387-1391. |
8 | RÖTHLISBERGER D, KHERSONSKY O, WOLLACOTT A M, et al. Kemp elimination catalysts by computational enzyme design[J]. Nature, 2008, 453(7192): 190-195. |
9 | SIEGEL J B, ZANGHELLINI A, LOVICK H M, et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction[J]. Science, 2010, 329(5989): 309-313. |
10 | YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering[J]. Nature Methods, 2019, 16(8): 687-694. |
11 | SUN J Y, CUI Y L, WU B. GRAPE, a greedy accumulated strategy for computational protein engineering[J]. Methods in Enzymology, 2021, 648: 207-230. |
12 | PEARCE R, HUANG X, OMENN G S, et al. De novo protein fold design through sequence-independent fragment assembly simulations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(4): e2208275120. |
13 | LISTOV D, LIPSH-SOKOLIK R, ROSSET S, et al. Assessing and enhancing foldability in designed proteins[J]. Protein Science, 2022, 31(9): e4400. |
14 | TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Highly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596. |
15 | SENIOR A W, EVANS R, JUMPER J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. |
16 | YANG J Y, ANISHCHENKO I, PARK H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(3): 1496-1503. |
17 | KAWASHIMA S, KANEHISA M. AAindex: amino acid index database[J]. Nucleic Acids Research, 2000, 28(1): 374. |
18 | SANDBERG M, ERIKSSON L, JONSSON J, et al. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids[J]. Journal of Medicinal Chemistry, 1998, 41(14): 2481-2491. |
19 | KULIKOVA A V, DIAZ D J, LOY J M, et al. Learning the local landscape of protein structures with convolutional neural networks[J]. Journal of Biological Physics, 2021, 47(4): 435-454. |
20 | ASGARI E, MOFRAD M R. Continuous distributed representation of biological sequences for deep proteomics and genomics[J]. PLoS One, 2015, 10(11): e0141287. |
21 | MEIER J, RAO R S, VERKUIL R, et al. Language models enable zero-shot prediction of the effects of mutations on protein function[C/OL]// Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021. 34: 29287-29303 [2023-02-01]. . |
22 | RAO R, BHATTACHARYA N, THOMAS N, et al. Evaluating protein transfer learning with TAPE[J]. Advances in Neural Information Processing Systems, 2019, 32: 9689-9701. |
23 | SVERRISSON F, FEYDY J, CORREIA B E, et al. Fast end-to-end learning on protein surfaces[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021, Nashville, Tennessee, USA. IEEE, 2021: 15267-15276. |
24 | JIANG Y, RAN X, YANG Z J. Data-driven enzyme engineering to identify function-enhancing enzymes[J]. Protein Engineering, Design & Selection, 2023, 36: gzac009. |
25 | WU Z, KAN S B J, LEWIS R D, et al. Machine learning-assisted directed protein evolution with combinatorial libraries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(18): 8852-8858. |
26 | BISWAS S, KHIMULYA G, ALLEY E C, et al. Low-N protein engineering with data-efficient deep learning[J]. Nature Methods, 2021, 18(4): 389-396. |
27 | SHASHKOVA T I, UMERENKOV D, SALNIKOV M, et al. SEMA: antigen B-cell conformational epitope prediction using deep transfer learning[J]. Frontiers in Immunology, 2022, 13: 960985. |
28 | LU H Y, DIAZ D J, CZARNECKI N J, et al. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667. |
29 | SHROFF R, COLE A W, DIAZ D J, et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning[J]. ACS Synthetic Biology, 2020, 9(11): 2927-2935. |
30 | RIVES A, MEIER J, SERCU T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2016239118. |
31 | PERTUSI D A, MOURA M E, JEFFRYES J G, et al. Predicting novel substrates for enzymes with minimal experimental effort with active learning[J]. Metabolic Engineering, 2017, 44: 171-181. |
32 | HUANG B, XU Y, HU X H, et al. A backbone-centred energy function of neural networks for protein design[J]. Nature, 2022, 602(7897): 523-528. |
33 | ANAND N, HUANG P S. Generative modeling for protein structures[EB/OL]. Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018, 31[2023-02-01]. . |
34 | ANAND N, EGUCHI R R, HUANG P S. Fully differentiable full-atom protein backbone generation[C/OL]//Deep Generative Models for Highly Structured Data, New Orleans, Louisiana, USA, May 6-9, 2019, ICLR 2019 Workshop, 2019[2023-02-01]. . |
35 | WANG C, GARLICK S, ZLOH M. Deep learning for novel antimicrobial peptide design[J]. Biomolecules, 2021, 11(3): 471. |
36 | MÜLLER A T, HISS J A, SCHNEIDER G. Recurrent neural network model for constructive peptide design[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 472-479. |
37 | REPECKA D, JAUNISKIS V, KARPUS L, et al. Expanding functional protein sequence spaces using generative adversarial networks[J]. Nature Machine Intelligence, 2021, 3(4): 324-333. |
38 | KARIMI M, ZHU S W, CAO Y, et al. De novo protein design for novel folds using guided conditional Wasserstein generative adversarial networks[J]. Journal of Chemical Information and Modeling, 2020, 60(12): 5667-5681. |
39 | DAUPARAS J, ANISHCHENKO I, BENNETT N, et al. Robust deep learning-based protein sequence design using ProteinMPNN[J]. Science, 2022, 378(6615): 49-56. |
40 | LIU Y F, ZHANG L, WANG W L, et al. Rotamer-free protein sequence design based on deep learning and self-consistency[J]. Nature Computational Science, 2022, 2(7): 451-462. |
41 | MOFFAT L, GREENER J G, JONES D T. Using AlphaFold for rapid and accurate fixed backbone protein design[EB/OL]. bioRxiv, 2021: 2021.08. 24.457549[2023-02-01]. . |
42 | JENDRUSCH M, KORBEL J, SADIQ S. AlphaDesign: a de novo protein design framework based on AlphaFold[EB/OL]. bioRxiv, 2021: 2021.10. 11.463937[2023-02-01]. . |
43 | NORN C, WICKY B I M, JUERGENS D, et al. Protein sequence design by explicit energy landscape optimization[EB/OL]. bioRxiv, 2020: 10.1101/2020.07.23.218917[2023-02-01]. . |
44 | ANISHCHENKO I, PELLOCK S J, CHIDYAUSIKU T M, et al. De novo protein design by deep network hallucination[J]. Nature, 2021, 600(7889): 547-552. |
45 | WANG J, LISANZA S, JUERGENS D, et al. Scaffolding protein functional sites using deep learning[J]. Science, 2022, 377(6604): 387-394. |
46 | GAO Z, TAN C, LI S Z. PiFold: toward effective and efficient protein inverse folding[EB/OL]. arXiv, 2022: 2209.12643[2023-02-01]. . |
47 | HUANG B, FAN T W, WANG K Y, et al. Accurate and efficient protein sequence design through learning concise local environment of residues[J]. Bioinformatics, 2023, 39(3): btad122. |
48 | XIONG P, WANG M, ZHOU X Q, et al. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability[J]. Nature Communications, 2014, 5: 5330. |
49 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
50 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. arXiv, 2015: 1511.06434[2023-02-01]. . |
51 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
52 | KINGMA D P, WELLING M. Auto-encoding variational bayes[EB/OL]. arXiv, 2013: 1312.6114[2023-02-01]. . |
53 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4-9, 2017, Long Beach, California, USA. New York: ACM, 2017: 6000-6010. |
54 | INGRAHAM J, GARG V K, BARZILAY R, et al. Generative models for graph-based protein design[C/OL]// Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019, 32[2023-02-01]. . |
55 | MCPARTLON M, LAI B, XU J B. A deep SE(3)-equivariant model for learning inverse protein folding[EB/OL]. bioRxiv, 2022[2023-02-01]. . |
56 | HOU J, ADHIKARI B, CHENG J L. DeepSF: deep convolutional neural network for mapping protein sequences to folds[J]. Bioinformatics, 2018, 34(8): 1295-1303. |
57 | ANAND N, EGUCHI R, MATHEWS I I, et al. Protein sequence design with a learned potential[J]. Nature Communications, 2022, 13: 746. |
58 | SUH D, LEE J W, CHOI S, et al. Recent applications of deep learning methods on evolution- and contact-based protein structure prediction[J]. International Journal of Molecular Sciences, 2021, 22(11): 6032. |
59 | BROOKS B R, BRUCCOLERI R E, OLAFSON B D, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry, 1983, 4(2): 187-217. |
60 | Klepeis J L, Floudas C A. ASTRO-FOLD: a combinatorial and global optimization framework for Ab initio prediction of three-dimensional structures of proteins from the amino acid sequence[J]. Biophysical Journal, 2003, 85(4): 2119-2146. |
61 | SUBRAMANI A, WEI Y, FLOUDAS C A. ASTRO-FOLD 2.0: an enhanced framework for protein structure prediction[J]. AIChE Journal, 2012, 58(5): 1619-1637. |
62 | BURLEY S K, BERMAN H M, KLEYWEGT G J, et al. Protein data bank (PDB): the single global macromolecular structure archive[J]. Methods in Molecular Biology, 2017, 1607: 627-641. |
63 | XU D, ZHANG Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field[J]. Proteins: Structure, Function, and Bioinformatics, 2012, 80(7): 1715-1735. |
64 | YANG J Y, ZHANG Y. I-TASSER server: new development for protein structure and function predictions[J]. Nucleic Acids Research, 2015, 43(W1): W174-W181. |
65 | YANG J Y, YAN R X, ROY A, et al. The I-TASSER Suite: protein structure and function prediction[J]. Nature Methods, 2015, 12(1): 7-8. |
66 | LEAVER-FAY A, TYKA M, LEWIS S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[M]//Computer Methods, Part C-Methods in Enzymology. Amsterdam: Elsevier, 2011: 545-574. |
67 | JONES D T, BUCHAN D W A, COZZETTO D, et al. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments[J]. Bioinformatics, 2012, 28(2): 184-190. |
68 | BITBOL A F, DWYER R S, COLWELL L J, et al. Inferring interaction partners from protein sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12180-12185. |
69 | MORCOS F, PAGNANI A, LUNT B, et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): E1293-E1301. |
70 | SEEMAYER S, GRUBER M, SÖDING J. CCMpred—fast and precise prediction of protein residue-residue contacts from correlated mutations[J]. Bioinformatics, 2014, 30(21): 3128-3130. |
71 | WEIGT M, WHITE R A, SZURMANT H, et al. Identification of direct residue contacts in protein-protein interaction by message passing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 67-72. |
72 | KAMISETTY H, OVCHINNIKOV S, BAKER D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15674-15679. |
73 | WANG S, SUN S Q, LI Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS Computational Biology, 2017, 13(1): e1005324. |
74 | XU J B. Distance-based protein folding powered by deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 16856-16865. |
75 | GREENER J G, KANDATHIL S M, JONES D T. Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints[J]. Nature Communications, 2019, 10: 3977. |
76 | BRUNGER A T. Version 1.2 of the crystallography and NMR system[J]. Nature Protocols, 2007, 2(11): 2728-2733. |
77 | Zheng W, WUYUN Q Q G, Zhou X G, et al. Integrating deep neural network models with I-TASSER for accurate protein structure prediction[EB/OL]. 2022[2023-02-01]. . |
78 | LI Y, ZHANG C X, YU D J, et al. Deep learning geometrical potential for high-accuracy ab initio protein structure prediction[J]. iScience, 2022, 25(6): 104425. |
79 | ALQURAISHI M. End-to-end differentiable learning of protein structure[J]. Cell Systems, 2019, 8(4): 292-301.e3. |
80 | LIN Z M, AKIN H, RAO R, et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction[EB/OL]. bioRxiv, 2022: 10.1101/2022.07.20.500902[2023-02-01]. . |
81 | WANG W K, PENG Z L, YANG J Y. Single-sequence protein structure prediction using supervised transformer protein language models[J]. Nature Computational Science, 2022, 2(12): 804-814. |
82 | WU R D, DING F, WANG R, et al. High-resolution de novo structure prediction from primary sequence[EB/OL]. bioRxiv, 2022[2023-02-01]. . |
83 | CHOWDHURY R, BOUATTA N, BISWAS S, et al. Single-sequence protein structure prediction using a language model and deep learning[J]. Nature Biotechnology, 2022, 40(11): 1617-1623. |
84 | BAEK M, DIMAIO F, ANISHCHENKO I, et al. Accurate prediction of protein structures and interactions using a three-track neural network[J]. Science, 2021, 373(6557): 871-876. |
85 | LIPSH-SOKOLIK R, KHERSONSKY O, SCHRÖDER S P, et al. Combinatorial assembly and design of enzymes[J]. Science, 2023, 379(6628): 195-201. |
86 | MOFFAT L, KANDATHIL S M, JONES D T. Design in the DARK: learning deep generative models for de novo protein design[EB/OL]. bioRxiv, 2022: 2022.01. 27.478087[2023-02-01]. . |
87 | ZHANG Y, SKOLNICK J. TM-align: a protein structure alignment algorithm based on the TM-score[J]. Nucleic Acids Research, 2005, 33(7): 2302-2309. |
88 | BENNETT N, COVENTRY B, GORESHNIK I, et al. Improving de novo protein binder design with deep learning[EB/OL]. bioRxiv, 2022: 2022.06. 15.495993[2023-02-01]. . |
89 | STEIN R A, MCHAOURAB H S. Modeling alternate conformations with Alphafold2 via modification of the multiple sequence alignment[EB/OL]. bioRxiv, 2021: 2021.11.29.470469[2023-02-01]. . |
90 | CASADEVALL G, DURAN C, ESTÉVEZ-GAY M, et al. Estimating conformational heterogeneity of tryptophan synthase with a template-based Alphafold2 approach[J]. Protein Science, 2022, 31(10): e4426. |
91 | GOULET A, CAMBILLAU C, ROUSSEL A, et al. Structure prediction and analysis of hepatitis E virus non-structural proteins from the replication and transcription machinery by AlphaFold2[J]. Viruses, 2022, 14(7): 1537. |
92 | LI H, BAO Q Q, ZHAO J F, et al. Directed evolution engineering to improve activity of glucose dehydrogenase by increasing pocket hydrophobicity[J]. Frontiers in Microbiology, 2022, 13: 1044226. |
93 | BURNIM A A, XU D, SPENCE M A, et al. Analysis of insertions and extensions in the functional evolution of the ribonucleotide reductase family[J]. Protein Science, 2022, 31(12): e4483. |
94 | WU Y T, LIU J Q, HAN X, et al. Eliminating host-guest incompatibility via enzyme mining enables the high-temperature production of N-acetylglucosamine[J]. iScience, 2023, 26(1): 105774. |
95 | BARTAS M, SLYCHKO K, BRÁZDA V, et al. Searching for new Z-DNA/Z-RNA binding proteins based on structural similarity to experimentally validated zα domain[J]. International Journal of Molecular Sciences, 2022, 23(2): 768. |
96 | SHEN Y, WANG Y L, WEI X, et al. Engineering the active site pocket to enhance the catalytic efficiency of a novel feruloyl esterase derived from human intestinal bacteria Dorea formicigenerans [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 936914. |
97 | TSABAN T, VARGA J K, AVRAHAM O, et al. Harnessing protein folding neural networks for peptide-protein docking[J]. Nature Communications, 2022, 13(1): 176. |
98 | LI G, BURIC F, ZRIMEC J, et al. Learning deep representations of enzyme thermal adaptation[J]. Protein Science, 2022, 31(12): e4480. |
[1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. |
[2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. |
[3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. |
[4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. |
[5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. |
[6] | WEN Yanhua, LIU Hedong, CAO Chunlai, WU Ruibo. Applications of protein engineering in pharmaceutical industry [J]. Synthetic Biology Journal, 2025, 6(1): 65-86. |
[7] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[8] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[9] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[10] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[11] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[12] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[13] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[14] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[15] | XI Mengyu, HU Yiling, GU Yucheng, GE Huiming. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||