Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (6): 1259-1280.DOI: 10.12211/2096-8280.2023-039
• Invited Review • Previous Articles Next Articles
Huawei ZHU, Yin LI
Received:
2023-06-13
Revised:
2023-08-10
Online:
2024-01-19
Published:
2023-12-31
Contact:
Yin LI
朱华伟, 李寅
通讯作者:
李寅
作者简介:
基金资助:
CLC Number:
Huawei ZHU, Yin LI. Biophotovoltaics: an environmentally friendly technology for solar energy utilization[J]. Synthetic Biology Journal, 2023, 4(6): 1259-1280.
朱华伟, 李寅. 生物光伏:环境友好的新型太阳能利用技术[J]. 合成生物学, 2023, 4(6): 1259-1280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-039
Fig. 1 Schematic diagram for BPV systems(The photosynthetic electrons, generated by photolysis of water at PSⅡ, pass through photosynthetic electron transfer and extracellular electron transfer, finally flow towards the cathode, thus forming electrical current. Theoretically, the photosynthetic electrons generated at PSⅡ can be directly exported outside from PSⅡ or PSⅠ in the form of excited electrons, or indirectly exported outside from the reduced energy carriers such as PQ/PQH2, NADPH or organics.)
传递策略 | 基本原理 | 优势 | 劣势 |
---|---|---|---|
基于外源电子载体 的间接电子传递 | 电子载体在细胞与电极之间通过可逆的氧化还原反应实现电子传递 | 操作简便、体系易放大、理论能量效率高(37%) | 电子载体易发生猝灭,有细胞毒性,系统不稳定 |
基于内在外电活性 的直接电子传递 | 由细胞组分或内源电子载体传递电子,具体分子机制尚不清楚 | 操作简便、系统稳定、理论能量效率高(37%) | 电子传递速率慢 |
基于导电纳米材料 的杂合电子传递 | 导电纳米材料与光合细胞杂合,通过纳米材料介导跨膜电子传递 | 电子传递速率快、理论能量效率高(37%) | 操作复杂,材料成本高,系统不稳定 |
基于合成微生物组 的定向电子传递 | 光合微生物将光能储存在有机碳中,异养产电微生物通过氧化有机碳产电 | 操作简便、系统稳定 | 理论能量效率低(4.6%~6.0%) |
Table 1 Different strategies of extracellular electron transfer used in BPV systems
传递策略 | 基本原理 | 优势 | 劣势 |
---|---|---|---|
基于外源电子载体 的间接电子传递 | 电子载体在细胞与电极之间通过可逆的氧化还原反应实现电子传递 | 操作简便、体系易放大、理论能量效率高(37%) | 电子载体易发生猝灭,有细胞毒性,系统不稳定 |
基于内在外电活性 的直接电子传递 | 由细胞组分或内源电子载体传递电子,具体分子机制尚不清楚 | 操作简便、系统稳定、理论能量效率高(37%) | 电子传递速率慢 |
基于导电纳米材料 的杂合电子传递 | 导电纳米材料与光合细胞杂合,通过纳米材料介导跨膜电子传递 | 电子传递速率快、理论能量效率高(37%) | 操作复杂,材料成本高,系统不稳定 |
基于合成微生物组 的定向电子传递 | 光合微生物将光能储存在有机碳中,异养产电微生物通过氧化有机碳产电 | 操作简便、系统稳定 | 理论能量效率低(4.6%~6.0%) |
1 | HEATH G A, SILVERMAN T J, KEMPE M, et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy[J]. Nature Energy, 2020, 5(7): 502-510. |
2 | KAVLAK G, MCNERNEY J, JAFFE R L, et al. Metal production requirements for rapid photovoltaics deployment[J]. Energy & Environmental Science, 2015, 8(6): 1651-1659. |
3 | POLMAN A, KNIGHT M, GARNETT E C, et al. Photovoltaic materials: present efficiencies and future challenges[J]. Science, 2016, 352(6283): aad4424. |
4 | ZHU H W, WANG H W, ZHANG Y P, et al. Biophotovoltaics: recent advances and perspectives[J]. Biotechnology Advances, 2023, 64: 108101. |
5 | 赵雪桐, 朱华伟, 张延平, 等. 基于类囊体膜的光能利用和光动力学治疗[J]. 科学通报, 2023, 68(10): 1203-1216. |
ZHAO X T, ZHU H W, ZHANG Y P, et al. Utilization of light energy and photodynamic therapy based on thylakoid membranes[J]. Chinese Science Bulletin, 2023, 68(10): 1203-1216. | |
6 | TANG C W, ALBRECHT A C. Chlorophyll—a photovoltaic cells[J]. Nature, 1975, 254(5500): 507-509. |
7 | GROSS E L, YOUNGMAN D R, WINEMILLER S L. An FMN-photosystem Ⅰ photovoltaic cell[J]. Photochemistry and Photobiology, 1978, 28(2): 249-256. |
8 | ALLEN M J, CRANE A E. Null potential voltammetry—an approach to the study of plant photosystems[J]. Bioelectrochemistry and Bioenergetics, 1976, 3(1): 84-91. |
9 | HAEHNEL W, HOCHHEIMER H J. 303 - On the current generated by a galvanic cell driven by photosynthetic electron transport[J]. Bioelectrochemistry and Bioenergetics, 1979, 6(4): 563-574. |
10 | JANZEN A F, SEIBERT M. Photoelectrochemical conversion using reaction-centre electrodes[J]. Nature, 1980, 286(5773): 584-585. |
11 | OCHIAI H, SHIBATA H, FUJISHIMA A, et al. Photocurrent by immobilized chloroplast film electrode[J]. Agricultural and Biological Chemistry, 1979, 43(4): 881-883. |
12 | BHARDWAJ R, PAN R L, GROSS E L. Solar energy conversion by chloroplast photoelectrochemical cells[J]. Nature, 1981, 289(5796): 396-398. |
13 | OCHIAI H, SHIBATA H, SAWA Y, et al. "Living electrode" as a long-lived photoconverter for biophotolysis of water[J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(5): 2442-2444. |
14 | OCHIAI H, SHIBATA H, SAWA Y, et al. Properties of semiconductor electrodes coated with living films of cyanobacteria[J]. Applied Biochemistry and Biotechnology, 1983, 8(4): 289-303. |
15 | TANAKA K, TAMAMUSHI R, OGAWA T. Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis [J]. Journal of Chemical Technology and Biotechnology, 1985, 35(3): 191-197. |
16 | YAGISHITA T, HORIGOME T, TANAKA K. Effects of light, CO2 and inhibitors on the current output of biofuel cells containing the photosynthetic organism Synechococcus sp[J]. Journal of Chemical Technology and Biotechnology, 1993, 56(4): 393-399. |
17 | MARTENS N, HALL E A H. Diaminodurene as a mediator of a photocurrent using intact cells of cyanobacteria[J]. Photochemistry and Photobiology, 1994, 59(1): 91-98. |
18 | TORIMURA M, MIKI A, WADANO A, et al. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water[J]. Journal of Electroanalytical Chemistry, 2001, 496(1/2): 21-28. |
19 | TSUJIMURA S, WADANO A, KANO K, et al. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase[J]. Enzyme and Microbial Technology, 2001, 29(4/5): 225-231. |
20 | BOMBELLI P, BRADLEY R W, SCOTT A M, et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices[J]. Energy & Environmental Science, 2011, 4(11): 4690-4698. |
21 | MCCORMICK A J, BOMBELLI P, SCOTT A M, et al. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system[J]. Energy & Environmental Science, 2011, 4(11): 4699-4709. |
22 | PISCIOTTA J M, ZOU Y J, BASKAKOV I V. Light-dependent electrogenic activity of cyanobacteria[J]. PLoS One, 2010, 5(5): e10821. |
23 | PISCIOTTA J M, ZOU Y J, BASKAKOV I V. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria[J].Applied Microbiology and Biotechnology, 2011, 91(2): 377-385. |
24 | MCCORMICK A J, BOMBELLI P, BRADLEY R W, et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(4): 1092-1109. |
25 | RYU W, BAI S J, PARK J S, et al. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system[J]. Nano Letters, 2010, 10(4): 1137-1143. |
26 | JIANG X C, HU J S, PETERSEN E R, et al. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1[J]. Nature Communications, 2013, 4: 2751. |
27 | LIU L, CHOI S H. Enhanced biophotoelectricity generation in cyanobacterial biophotovoltaics with intracellularly biosynthesized gold nanoparticles[J]. Journal of Power Sources, 2021, 506: 230251. |
28 | BOMBELLI P, MÜLLER T, HERLING T W, et al. A high power-density, mediator-free, microfluidic biophotovoltaic device for cyanobacterial cells[J]. Advanced Energy Materials, 2015, 5(2): 1401299. |
29 | LIU L, CHOI S. Self-sustainable, high-power-density bio-solar cells for lab-on-a-chip applications[J]. Lab on a Chip, 2017, 17(22): 3817-3825. |
30 | SAAR K L, BOMBELLI P, LEA-SMITH D J, et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery[J]. Nature Energy, 2018, 3(1): 75-81. |
31 | KUSAMA S, KOJIMA S, KIMURA K, et al. Order-of-magnitude enhancement in photocurrent generation of Synechocystis sp. PCC 6803 by outer membrane deprivation[J]. Nature Communications, 2022, 13: 3067. |
32 | CHEN X L, LAWRENCE J M, WEY L T, et al. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis[J]. Nature Materials, 2022, 21(7): 811-818. |
33 | ZHU H W, MENG H K, ZHANG W, et al. Development of a longevous two-species biophotovoltaics with constrained electron flow[J]. Nature Communications, 2019, 10: 4282. |
34 | ZHU H W, XU L R, LUAN G D, et al. A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems[J]. Nature Communications, 2022, 13: 5608. |
35 | FISCHER W W, HEMP J, JOHNSON J E. Evolution of oxygenic photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 647-683. |
36 | FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. |
37 | ZHU X G, LONG S P, ORT D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?[J]. Current Opinion in Biotechnology, 2008, 19(2): 153-159. |
38 | WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
39 | TANAKA K, KASHIWAGI N, OGAWA T. Effects of light on the electrical output of bioelectrochemical fuel-cells containing Anabaena variabilis M-2: mechanism of the post-illumination burst[J]. Journal of Chemical Technology and Biotechnology, 1988, 42(3): 235-240. |
40 | YAGISHITA T, SAWAYAMA S, TSUKAHARA K I, et al. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell[J]. Solar Energy, 1997, 61(5): 347-353. |
41 | YAGISHITA T, SAWAYAMA S, TSUKAHARA K I, et al. Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles[J]. Journal of Fermentation and Bioengineering, 1998, 85(5): 546-549. |
42 | YAGISHITA T, SAWAYAMA S, TSUKAHARA K, et al. Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp. PCC6714[J]. Journal of Bioscience and Bioengineering, 1999, 88(2): 210-214. |
43 | YAGISHITA T, SAWAYAMA S, TSUKAHARA K, et al. Behavior of bioelectrocatalytic currents in electrolysis cells using immobilized Synechocystsis sp. PCC6714 within poly-ion complex on glassy carbon electrodes[J]. Electrochemistry, 2000, 68(11): 878-881. |
44 | COETZEE W F, STEVENS S E JR. Photo-induction of electrical current with the cyanobacterium Agmenellum quadruplicatum PR-6[J]. Journal of Applied Phycology, 1993, 5(3): 363-368. |
45 | ERABI T, MATSUMOTO K, OKAMOTO T, et al. Role of bipyridinium salts in generation of photocurrent by Rhodospirillum rubrum cells[J]. Bulletin of the Chemical Society of Japan, 1995, 68(6): 1545-1550. |
46 | TSCHÖRTNER J, LAI B, KRÖMER J O. Biophotovoltaics: green power generation from sunlight and water[J]. Frontiers in Microbiology, 2019, 10: 866. |
47 | SEKAR N, UMASANKAR Y, RAMASAMY R P. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photo-bioelectrochemical cells[J]. Physical Chemistry Chemical Physics, 2014, 16(17): 7862-7871. |
48 | LONGATTE G, FU H Y, BURIEZ O, et al. Evaluation of photosynthetic electrons derivation by exogenous redox mediators[J]. Biophysical Chemistry, 2015, 205: 1-8. |
49 | LONGATTE G, RAPPAPORT F, WOLLMAN F A, et al. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones—what makes a good extraction pathway?[J]. Photochemical & Photobiological Sciences, 2016, 15(8): 969-979. |
50 | LONGATTE G, SAYEGH A, DELACOTTE J, et al. Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time[J]. Chemical Science, 2018, 9(43): 8271-8281. |
51 | BEAUZAMY L, LEMAÎTRE F, DERR J. Underlying mechanisms in microbial solar cells: how modeling can help[J]. Sustainable Energy & Fuels, 2020, 4(12): 6004-6010. |
52 | FU H Y, PICOT D, CHOQUET Y, et al. Redesigning the QA binding site of photosystem Ⅱ allows reduction of exogenous quinones[J]. Nature Communications, 2017, 8: 15274. |
53 | THORNE R, HU H N, SCHNEIDER K, et al. Porous ceramic anode materials for photo-microbial fuel cells[J]. Journal of Materials Chemistry, 2011, 21(44): 18055-18060. |
54 | BRADLEY R W, BOMBELLI P, LEA-SMITH D J, et al. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems[J]. Physical Chemistry Chemical Physics, 2013, 15(32): 13611. |
55 | THORNE R J, HU H N, SCHNEIDER K, et al. Trapping of redox-mediators at the surface of Chlorella vulgaris leads to error in measurements of cell reducing power[J]. Physical Chemistry Chemical Physics, 2014, 16(12): 5810. |
56 | ANDERSON A, LAOHAVISIT A, BLABY I K, et al. Exploiting algal NADPH oxidase for biophotovoltaic energy[J]. Plant Biotechnology Journal, 2016, 14(1): 22-28. |
57 | HASAN K, YILDIZ H B, SPERLING E, et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes[J]. Physical Chemistry Chemical Physics, 2014, 16(45): 24676-24680. |
58 | HASAN K, ÇEVIK E, SPERLING E, et al. Photoelectrochemical wiring of Paulschulzia pseudovolvox (algae) to osmium polymer modified electrodes for harnessing solar energy[J]. Advanced Energy Materials, 2015, 5(22): 1501100. |
59 | LAOHAVISIT A, ANDERSON A, BOMBELLI P, et al. Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices[J]. Algal Research, 2015, 12: 91-98. |
60 | LAI B, SCHNEIDER H, TSCHÖRTNER J, et al. Technical-scale biophotovoltaics for long-term photo-current generation from Synechocystis sp. PCC6803[J]. Biotechnology and Bioengineering, 2021, 118(7): 2637-2648. |
61 | KIM Y J, HONG H, YUN J, et al. Photosynthetic nanomaterial hybrids for bioelectricity and renewable energy systems[J]. Advanced Materials, 2021, 33(47): 2005919. |
62 | AŠPERGĚR S. Kinetics of the decomposition of potassium ferrocyanide in ultra-violet light[J]. Transactions of the Faraday Society, 1952, 48: 617-624. |
63 | CLIFFORD E R, BRADLEY R W, WEY L T, et al. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems[J]. Chemical Science, 2021, 12(9): 3328-3338. |
64 | XIE X H, LI E L, TANG Z K. Mediator toxicity and dual effect of glucose on the lifespan for current generation by cyanobacterium Synechocystis PCC 6714 based photoelectrochemical cells[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(1): 109-114. |
65 | SCHUERGERS N, WERLANG C, AJO-FRANKLIN C M, et al. A synthetic biology approach to engineering living photovoltaics[J]. Energy & Environmental Science, 2017, 10(5): 1102-1115. |
66 | KUMAR A, HSU L H H, KAVANAGH P, et al. The ins and outs of microorganism-electrode electron transfer reactions[J]. Nature Reviews Chemistry, 2017, 1: 24. |
67 | EDWARDS M J, WHITE G F, BUTT J N, et al. The crystal structure of a biological insulated transmembrane molecular wire[J]. Cell, 2020, 181(3): 665-673.e10. |
68 | BEBLAWY S, BURSAC T, PAQUETE C, et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis [J]. Molecular Microbiology, 2018, 109(5): 571-583. |
69 | WANG F B, GU Y Q, O'BRIEN J P, et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers[J]. Cell, 2019, 177(2): 361-369.e10. |
70 | YE Y, LIU X, NEALSON K H, et al. Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms[J]. mBio, 2022, 13(1): e03822-21. |
71 | GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358-11363. |
72 | SURE S, TORRIERO A A J, GAUR A, et al. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling[J]. Antonie Van Leeuwenhoek, 2015, 108(5): 1213-1225. |
73 | THIRUMURTHY M A, HITCHCOCK A, CEREDA A, et al. Type Ⅳ pili-independent photocurrent production by the cyanobacterium Synechocystis sp. PCC 6803[J]. Frontiers in Microbiology, 2020, 11: 1344. |
74 | WEY L T, LAWRENCE J M, CHEN X L, et al. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis[J]. Electrochimica Acta, 2021, 395: 139214. |
75 | SAPER G, KALLMANN D, CONZUELO F, et al. Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems[J]. Nature Communications, 2018, 9: 2168. |
76 | ZHANG J Z, BOMBELLI P, SOKOL K P, et al. Photoelectrochemistry of photosystem Ⅱ in vitro vs in vivo [J]. Journal of the American Chemical Society, 2018, 140(1): 6-9. |
77 | SHLOSBERG Y, EICHENBAUM B, TÓTH T N, et al. NADPH performs mediated electron transfer in cyanobacterial-driven bio-photoelectrochemical cells[J]. iScience, 2021, 24(1): 101892. |
78 | SHLOSBERG Y, TÓTH T N, EICHENBAUM B, et al. Electron mediation and photocurrent enhancement in Dunalliela salina driven bio-photo electrochemical cells[J]. Catalysts, 2021, 11(10): 1220. |
79 | SHLOSBERG Y, KRUPNIK N, TÓTH T N, et al. Bioelectricity generation from live marine photosynthetic macroalgae[J]. Biosensors & Bioelectronics, 2022, 198: 113824. |
80 | HATANO J, KUSAMA S, TANAKA K, et al. NADPH production in dark stages is critical for cyanobacterial photocurrent generation: a study using mutants deficient in oxidative pentose phosphate pathway[J]. Photosynthesis Research, 2022, 153(1): 113-120. |
81 | ZOU Y J, PISCIOTTA J, BILLMYRE R B, et al. Photosynthetic microbial fuel cells with positive light response[J]. Biotechnology and Bioengineering, 2009, 104(5): 939-946. |
82 | ZOU Y J, PISCIOTTA J, BASKAKOV I V. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells[J]. Bioelectrochemistry, 2010, 79(1): 50-56. |
83 | DARUS L, SADAKANE T, LEDEZMA P, et al. Redox-polymers enable uninterrupted day/night photo-driven electricity generation in biophotovoltaic devices[J]. Journal of the Electrochemical Society, 2017, 164(3): H3037-H3040. |
84 | REGGENTE M, POLITI S, ANTONUCCI A, et al. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria[J]. Advanced Materials Technologies, 2020, 5(3): 1900931. |
85 | ÇEVIK E, TITIZ M, ŞENEL M. Light-dependent photocurrent generation: novel electrochemical communication between biofilm and electrode by ferrocene cored poly(amidoamine) dendrimers[J]. Electrochimica Acta, 2018, 291: 41-48. |
86 | GIRALDO J P, LANDRY M P, FALTERMEIER S M, et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing[J]. Nature Materials, 2014, 13(4): 400-408. |
87 | ANTONUCCI A, REGGENTE M, ROULLIER C, et al. Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics[J]. Nature Nanotechnology, 2022, 17(10): 1111-1119. |
88 | KURUVINASHETTI K, PAKKIRISWAMI S, PACKIRISAMY M. Gold nanoparticle interaction in algae enhancing quantum efficiency and power generation in microphotosynthetic power cells[J]. Advanced Energy and Sustainability Research, 2022, 3(1): 2100135. |
89 | KIM L H, KIM Y J, HONG H, et al. Patterned nanowire electrode array for direct extraction of photosynthetic electrons from multiple living algal cells[J]. Advanced Functional Materials, 2016, 26(42): 7679-7689. |
90 | HA J G, SONG Y S, JUNG S, et al. Novel microbial photobioelectrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber[J]. Biotechnology Letters, 2017, 39(6): 849-855. |
91 | KIM Y J, YUN J H, KIM S I, et al. Scalable long-term extraction of photosynthetic electrons by simple sandwiching of nanoelectrode array with densely-packed algal cell film[J]. Biosensors and Bioelectronics, 2018, 117: 15-22. |
92 | NISHIO K, HASHIMOTO K, WATANABE K. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter [J]. Journal of Bioscience and Bioengineering, 2013, 115(4): 412-417. |
93 | LIU L, CHOI S H. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria[J]. Journal of Power Sources, 2017, 348: 138-144. |
94 | LIU L, MOHAMMADIFAR M, ELHADAD A, et al. Spatial engineering of microbial consortium for long-lasting, self-sustaining, and high-power generation in a bacteria-powered biobattery[J]. Advanced Energy Materials, 2021, 11(22): 2100713. |
95 | CEREDA A, HITCHCOCK A, SYMES M D, et al. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803[J]. PLoS One, 2014, 9(3): e91484. |
96 | LIU L, CHOI S H. A self-charging cyanobacterial supercapacitor[J]. Biosensors and Bioelectronics, 2019, 140: 111354. |
97 | WEI X J, LEE H K, CHOI S H. Biopower generation in a microfluidic bio-solar panel[J]. Sensors and Actuators B: Chemical, 2016, 228: 151-155. |
98 | MADIRAJU K S, LYEW D, KOK R, et al. Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell[J]. Bioresource Technology, 2012, 110: 214-218. |
99 | CINICIATO G P M K, NG F L, PHANG S M, et al. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells[J]. Scientific Reports, 2016, 6: 31193. |
100 | GONZALEZ-ARAVENA A C, YUNUS K, ZHANG L, et al. Tapping into cyanobacteria electron transfer for higher exoelectrogenic activity by imposing iron limited growth[J]. RSC Advances, 2018, 8(36): 20263-20274. |
101 | NG F L, PHANG S M, PERIASAMY V, et al. Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta)[J]. Journal of Applied Phycology, 2018, 30(6): 2981-2988. |
102 | PANKAN A O, YUNUS K, SACHYANI E, et al. A multi-walled carbon nanotubes coated 3D printed anode developed for biophotovotaic applications[J]. Journal of Electroanalytical Chemistry, 2020, 872: 114397. |
103 | FU C C, SU C H, HUNG T C, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis [J]. Bioresource Technology, 2009, 100(18): 4183-4186. |
104 | LIN C C, WEI C H, CHEN C I, et al. Characteristics of the photosynthesis microbial fuel cell with a Spirulina platensis biofilm[J]. Bioresource Technology, 2013, 135: 640-643. |
105 | LONGTIN N, OLIVEIRA D, MAHADEVAN A, et al. Analysis of Spirulina platensis microalgal fuel cell[J]. Journal of Power Sources, 2021, 486: 229290. |
106 | FU C C, HUNG T C, WU W T, et al. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis [J]. Biochemical Engineering Journal, 2010, 52(2/3): 175-180. |
107 | WENZEL T, HÄRTTER D, BOMBELLI P, et al. Porous translucent electrodes enhance current generation from photosynthetic biofilms[J]. Nature Communications, 2018, 9: 1299. |
108 | MA M R, CAO L M, CHEN L, et al. A carbon-neutral photosynthetic microbial fuel cell powered by Microcystis aeruginosa [J]. Water Environment Research, 2015, 87(7): 644-649. |
109 | HASAN K, GRIPPO V, SPERLING E, et al. Evaluation of photocurrent generation from different photosynthetic organisms[J]. ChemElectroChem, 2017, 4(2): 412-417. |
110 | LAN J C W, RAMAN K, HUANG C M, et al. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst[J]. Biochemical Engineering Journal, 2013, 78: 39-43. |
111 | SAYEGH A, LONGATTE G, BURIEZ O, et al. Diverting photosynthetic electrons from suspensions of Chlamydomonas reinhardtii algae—new insights using an electrochemical well device[J]. Electrochimica Acta, 2019, 304: 465-473. |
112 | KARTHIKEYAN C, KUMAR T RAJ, PANNIPARA M, et al. Ruthenium oxide/tungsten oxide composite nanofibers as anode catalysts for the green energy generation of Chlorella vulgaris mediated biophotovoltaic cells[J]. Environmental Progress & Sustainable Energy, 2019, 38(6): e13262. |
113 | NG F L, PHANG S M, IWAMOTO M, et al. Algal biophotovoltaic devices: surface potential studies[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10511-10520. |
114 | NG F L, PHANG S M, LAN B L, et al. Optimised spectral effects of programmable LED arrays (PLA)s on bioelectricity generation from algal-biophotovoltaic devices[J]. Scientific Reports, 2020, 10: 16105. |
115 | PAN K L, ZHOU P J. A hermetic self-sustained microbial solar cell based on Chlorella vulgaris and a versatile charge transfer chain[J]. Journal of Power Sources, 2015, 293: 467-474. |
116 | PAN K L, ZHOU P J. Performance enhancement with a hydrophilic self-immobilized redox mediator modified anode in Chlorella vulgaris-based microbial solar cell[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1974-1981. |
117 | MALIK S, DROTT E, GRISDELA P, et al. A self-assembling self-repairing microbial photoelectrochemical solar cell[J]. Energy & Environmental Science, 2009, 2(3): 292-298. |
118 | DARUS L, LU Y, LEDEZMA P, et al. Fully reversible current driven by a dual marine photosynthetic microbial community[J]. Bioresource Technology, 2015, 195: 248-253. |
119 | HE Z, KAN J J, MANSFELD F, et al. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria[J]. Environmental Science & Technology, 2009, 43(5): 1648-1654. |
120 | BADALAMENTI J P, TORRES C I, KRAJMALNIK-BROWN R. Light-responsive current generation by phototrophically enriched anode biofilms dominated by green sulfur bacteria[J]. Biotechnology and Bioengineering, 2013, 110(4): 1020-1027. |
121 | DARUS L, LEDEZMA P, KELLER J, et al. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture[J]. Environmental Science & Technology, 2014, 48(23): 14000-14006. |
122 | NIKKANEN L, SANTANA SÁNCHEZ A, ERMAKOVA M, et al. Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803[J]. The Plant Journal, 2020, 103(4): 1460-1476. |
123 | KRACKE F, VASSILEV I, KRÖMER J O. Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems[J]. Frontiers in Microbiology, 2015, 6: 575. |
124 | SEKAR N, JAIN R, YAN Y J, et al. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria[J]. Biotechnology and Bioengineering, 2016, 113(3): 675-679. |
125 | DONG F Y, LEE Y S, GAFFNEY E M, et al. Engineering cyanobacterium with transmembrane electron transfer ability for bioelectrochemical nitrogen fixation[J]. ACS Catalysis, 2021, 11(21): 13169-13179. |
126 | MENG H K, ZHANG W, ZHU H W, et al. Over-expression of an electron transport protein OmcS provides sufficient NADH for D-lactate production in cyanobacterium[J]. Biotechnology for Biofuels, 2021, 14(1): 109. |
127 | WEY L T, BOMBELLI P, CHEN X L, et al. The development of biophotovoltaic systems for power generation and biological analysis[J]. ChemElectroChem, 2019, 6(21): 5375-5386. |
128 | NG F L, JAAFAR M M, PHANG S M, et al. Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms[J]. Scientific Reports, 2014, 4: 7562. |
129 | CHIAO M, LAM K B, LIN L W. Micromachined microbial and photosynthetic fuel cells[J]. Journal of Micromechanics and Microengineering, 2006, 16(12): 2547-2553. |
130 | YOON S, LEE H, FRAIWAN A, et al. A microsized microbial solar cell: a demonstration of photosynthetic bacterial electrogenic capabilities[J]. IEEE Nanotechnology Magazine, 2014, 8(1): 24-29. |
131 | LEE H, CHOI S. A micro-sized bio-solar cell for self-sustaining power generation[J]. Lab on a Chip, 2015, 15(2): 391-398. |
132 | WEI X, MOHAMMADIFAR M, YANG W, et al. A microscale biophotovoltaic device[C/OL]//2016 IEEE SENSORS. October 30 - November 3, 2016, Orlando, FL, USA. IEEE, 2017: 1-3 [2023-05-01]. . |
133 | MOHAMMADIFAR M, TAHERNIA M, CHOI S. A miniaturized, self-sustaining, and integrable bio-solar power system[J]. Nano Energy, 2020, 72: 104668. |
134 | NG F L, PHANG S M, PERIASAMY V, et al. Enhancement of power output by using alginate immobilized algae in biophotovoltaic devices[J]. Scientific Reports, 2017, 7: 16237. |
135 | SAWA M, FANTUZZI A, BOMBELLI P, et al. Electricity generation from digitally printed cyanobacteria[J]. Nature Communications, 2017, 8: 1327. |
136 | LIU L, CHOI S H. A paper-based biological solar cell[J]. SLAS Technology, 2020, 25(1): 75-81. |
137 | KIM M J, LEE S, MOON C K, et al. A broadband multiplex living solar cell[J]. Nano Letters, 2020, 20(6): 4286-4291. |
138 | ROXBY D N, YUAN Z Y, KRISHNAMOORTHY S, et al. Enhanced biophotocurrent generation in living photosynthetic optical resonator[J]. Advanced Science, 2020, 7(11): 1903707. |
139 | LIU L, CHOI S H. Miniature microbial solar cells to power wireless sensor networks[J]. Biosensors and Bioelectronics, 2021, 177: 112970. |
140 | CHOULER J, MONTI M D, MORGAN W J, et al. A photosynthetic toxicity biosensor for water[J]. Electrochimica Acta, 2019, 309: 392-401. |
141 | TUCCI M, GRATTIERI M, SCHIEVANO A, et al. Microbial amperometric biosensor for online herbicide detection: photocurrent inhibition of Anabaena variabilis [J]. Electrochimica Acta, 2019, 302: 102-108. |
142 | TUCCI M, BOMBELLI P, HOWE C J, et al. A storable mediatorless electrochemical biosensor for herbicide detection[J]. Microorganisms, 2019, 7(12): 630. |
143 | KAUSHIK S, GOSWAMI P. Bacterial membrane depolarization-linked fuel cell potential burst as signal for selective detection of alcohol[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18630-18640. |
144 | ROXBY D N, RIVY H, GONG C Y, et al. Microalgae living sensor for metal ion detection with nanocavity-enhanced photoelectrochemistry[J]. Biosensors and Bioelectronics, 2020, 165: 112420. |
145 | LABRO J, CRAIG T, WOOD S A, et al. Demonstration of the use of a photosynthetic microbial fuel cell as an environmental biosensor[J]. International Journal of Nanotechnology, 2017, 14(1/2/3/4/5/6): 213. |
146 | TOKUNOU Y, VIEIRA LEMOS R, TSUJIMURA S, et al. Synechococcus and other bloom-forming cyanobacteria exhibit unique redox signatures[J]. ChemElectroChem, 2021, 8(2): 360-364. |
147 | JEON H J, CHOI Y K, SONG K G, et al. Development of a photoelectrochemical sensor for monitoring algal biomass (Chlorella vulgaris)[J]. Sensors and Actuators B: Chemical, 2013, 185: 405-410. |
148 | KURUVINASHETTI K, GENG G Q, JIANG H B, et al. Perspective—application of micro photosynthetic power cells for IoT in automotive industry[J]. Journal of the Electrochemical Society, 2020, 167(3): 037545. |
149 | TANNERU H K, KURUVINASHETTI K, PILLAY P, et al. Feasibility studies of micro photosynthetic power cells as a competitor of photovoltaic cells for low and ultra-low power IoT applications[J]. Energies, 2019, 12(9): 1595. |
150 | CURRY J, HARRIS N. Powering the environmental Internet of Things[J]. Sensors, 2019, 19(8): 1940. |
151 | BOMBELLI P, SAVANTH A, SCARAMPI A, et al. Powering a microprocessor by photosynthesis[J]. Energy & Environmental Science, 2022, 15(6): 2529-2536. |
152 | HOWE C J, BOMBELLI P. Is it realistic to use microbial photosynthesis to produce electricity directly?[J]. PLoS Biology, 2023, 21(3): e3001970. |
153 | LU Y, NISHIO K, MATSUDA S, et al. Regulation of the cyanobacterial circadian clock by electrochemically controlled extracellular electron transfer[J]. Angewandte Chemie International Edition, 2014, 53(8): 2208-2211. |
154 | GUL M M, AHMAD K S. Bioelectrochemical systems: sustainable bio-energy powerhouses[J]. Biosensors and Bioelectronics, 2019, 142: 111576. |
155 | FIGUEREDO F, CORTÓN E, ABREVAYA X C. In situ search for extraterrestrial life: a microbial fuel cell-based sensor for the detection of photosynthetic metabolism[J]. Astrobiology, 2015, 15(9): 717-727. |
[1] | Yaru CHEN, Yingxiu CAO, Hao SONG. Advances and applications of gene editing and transcriptional regulation in electroactive microorganisms [J]. Synthetic Biology Journal, 2023, 4(6): 1281-1299. |
[2] | Xiujuan QIAN, Lin CHEN, Wenming ZHANG, Jie ZHOU, Weiliang DONG, Fengxue XIN, Min JIANG. Recent research progress in the design and construction of synthetic microbial consortia [J]. Synthetic Biology Journal, 2020, 1(3): 267-284. |
[3] | Mingzhu DING, Bingzhi LI, Ying WANG, Zexiong XIE, Duo LIU, Yingjin YUAN. Significant research progress in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(1): 7-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||