Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (5): 1050-1071.DOI: 10.12211/2096-8280.2024-006
• Invited Review • Previous Articles Next Articles
Xiaolei CHENG, Tiangang LIU, Hui TAO
Received:
2024-01-10
Revised:
2024-04-09
Online:
2024-11-20
Published:
2024-10-31
Contact:
Tiangang LIU, Hui TAO
程晓雷, 刘天罡, 陶慧
通讯作者:
刘天罡,陶慧
作者简介:
基金资助:
CLC Number:
Xiaolei CHENG, Tiangang LIU, Hui TAO. Recent research progress in non-canonical biosynthesis of terpenoids[J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071.
程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, 5(5): 1050-1071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-006
酶家族 | 成员 | GenBank/UniProt ID | 生物合成途径 | 富含 Asp 的基序 | PDB ID | 参考文献 |
---|---|---|---|---|---|---|
TypeⅠsubunit | VenA | AAB81504.1 | venezuelaene A | DxxxxD | 7Y9H | [ |
Chimeric typeⅠTS | TvTS | P9WER5.1 | talaropentaene | DDxxD NSE | 7VTB | [ |
UbiA-type cyclase | Tps1A | KAI0942648.1 | (+)-(S,Z)-α-bisabolene | Nxxx(G/A)xxxD QDxxDxxxD | — | [ |
Cytochrome P450 | SdnB | A0A1B4XBJ9.1 | sordarinane | — | — | [ |
AriF | WP_092528764.1 | aridacins A-C | — | — | [ | |
Methyltransferase | SodC | A0A7U3Z1M0 | sodorifen | — | — | [ |
PchlO6_6045 | EIM17055.1 | chlororaphen | — | — | [ | |
Vanadium haloperoxidase | LoVBPO2a | BCK50960.1 | snyderol | — | — | [ |
Haloacid dehalogenase | AncA | THU99223.1 | monocyclofarnesol | — | — | [ |
AncC | THU99223.1 | antrocin | — | — |
Table 1 Non-canonical terpene synthases
酶家族 | 成员 | GenBank/UniProt ID | 生物合成途径 | 富含 Asp 的基序 | PDB ID | 参考文献 |
---|---|---|---|---|---|---|
TypeⅠsubunit | VenA | AAB81504.1 | venezuelaene A | DxxxxD | 7Y9H | [ |
Chimeric typeⅠTS | TvTS | P9WER5.1 | talaropentaene | DDxxD NSE | 7VTB | [ |
UbiA-type cyclase | Tps1A | KAI0942648.1 | (+)-(S,Z)-α-bisabolene | Nxxx(G/A)xxxD QDxxDxxxD | — | [ |
Cytochrome P450 | SdnB | A0A1B4XBJ9.1 | sordarinane | — | — | [ |
AriF | WP_092528764.1 | aridacins A-C | — | — | [ | |
Methyltransferase | SodC | A0A7U3Z1M0 | sodorifen | — | — | [ |
PchlO6_6045 | EIM17055.1 | chlororaphen | — | — | [ | |
Vanadium haloperoxidase | LoVBPO2a | BCK50960.1 | snyderol | — | — | [ |
Haloacid dehalogenase | AncA | THU99223.1 | monocyclofarnesol | — | — | [ |
AncC | THU99223.1 | antrocin | — | — |
84 | MCKINNIE S M K, MILES Z D, JORDAN P A, et al. Total enzyme syntheses of napyradiomycins A1 and B1[J]. Journal of the American Chemical Society, 2018, 140(51): 17840-17845. |
85 | DIETHELM S, TEUFEL R, KAYSSER L, et al. A multitasking vanadium-dependent chloroperoxidase as an inspiration for the chemical synthesis of the merochlorins[J]. Angewandte Chemie International Edition, 2014, 53(41): 11023-11026. |
86 | HARIZANI M, IOANNOU E, ROUSSIS V. The Laurencia paradox: an endless source of chemodiversity[J]. Progress in the Chemistry of Organic Natural Products, 2016, 102: 91-252. |
87 | GRESSLER M, LÖHR N A, SCHÄFER T, et al. Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota[J]. Natural Product Reports, 2021, 38(4): 702-722. |
88 | SANDARGO B, CHEPKIRUI C, CHENG T, et al. Biological and chemical diversity go hand in hand: basidiomycota as source of new pharmaceuticals and agrochemicals[J]. Biotechnology Advances, 2019, 37(6): 107344. |
89 | LU M Y J, FAN W L, WANG W F, et al. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): E4743-E4752. |
90 | IGNEA C, RAADAM M H, KOUTSAVITI A, et al. Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks[J]. Nature Communications, 2022, 13(1): 5188. |
91 | TANG M C, SHEN C, DENG Z X, et al. Combinatorial biosynthesis of terpenoids through mixing-and-matching sesquiterpene cyclase and cytochrome P450 pairs[J]. Organic Letters, 2022, 24(26): 4783-4787. |
92 | FREY M, BATHE U, MEINK L, et al. Combinatorial biosynthesis in yeast leads to over 200 diterpenoids[J]. Metabolic Engineering, 2024, 82: 193-200. |
93 | URLACHER V B, GIRHARD M. Cytochrome P450 monooxygenases in biotechnology and synthetic biology[J]. Trends in Biotechnology, 2019, 37(8): 882-897. |
94 | XIAO H, ZHANG Y, WANG M. Discovery and engineering of cytochrome P450s for terpenoid biosynthesis[J]. Trends in Biotechnology, 2019, 37(6): 618-631. |
95 | EBRECHT A C, VAN DER BERGH N, HARRISON S T L, et al. Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis [J]. Scientific Reports, 2019, 9(1): 20088. |
96 | LIN G M, VOIGT C A. Design of a redox-proficient Escherichia coli for screening terpenoids and modifying cytochrome P450s[J]. Nature Catalysis, 2023, 6: 1016-1029. |
97 | KEY H M, DYDIO P, LIU Z N, et al. Beyond iron: iridium-containing P450 enzymes for selective cyclopropanations of structurally diverse alkenes[J]. ACS Central Science, 2017, 3(4): 302-308. |
98 | LELYVELD V S, BRUSTAD E, ARNOLD F H, et al. Metal-substituted protein MRI contrast agents engineered for enhanced relaxivity and ligand sensitivity[J]. Journal of the American Chemical Society, 2011, 133(4): 649-651. |
99 | BORDEAUX M, SINGH R, FASAN R. Intramolecular C(sp3)H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts[J]. Bioorganic & Medicinal Chemistry, 2014, 22(20): 5697-5704. |
100 | BLOOMER B, NATOLI S, GARCIA-BORRÀS M, et al. Mechanistic and structural characterization of an iridium-containing cytochrome reveals kinetically relevant cofactor dynamics[J]. Nature Catalysis, 2023, 6: 39-51. |
101 | HU Y L, ZHANG Q, LIU S H, et al. Building Streptomyces albus as a chassis for synthesis of bacterial terpenoids[J]. Chemical Science, 2023, 14(13): 3661-3667. |
102 | CHEN R, JIA Q D, MU X, et al. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(29): e2023247118. |
103 | BURKHARDT I, ROND T D, CHEN P Y, et al. Ancient plant-like terpene biosynthesis in corals[J]. Nature Chemical Biology, 2022, 18(6): 664-669. |
104 | JUNG Y, MITSUHASHI T, SATO S, et al. Function and structure of a terpene synthase encoded in a giant virus genome[J]. Journal of the American Chemical Society, 2023, 145(48): 25966-25970. |
105 | ZHAO Y, LIANG F Y, XIE Y M, et al. Oxetane ring formation in taxol biosynthesis is catalyzed by a bifunctional cytochrome P450 enzyme[J]. Journal of the American Chemical Society, 2024, 146(1): 801-810. |
106 | JIANG B, GAO L, WANG H J, et al. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin Ⅲ[J]. Science, 2024, 383(6683): 622-629. |
107 | YUAN Y J, CHENG S, BIAN G K, et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi[J]. Nature Catalysis, 2022, 5: 277-287. |
1 | BERGMAN M E, DAVIS B, PHILLIPS M A. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action[J]. Molecules, 2019, 24(21): 3961. |
2 | 高铫晖, 王高乾, 黄蕙芸, 等. 真菌三萜及甾体的生物合成研究进展[J]. 有机化学, 2018, 38(9): 2335-2347. |
GAO Y H, WANG G Q, HUANG H Y, et al. Biosynthesis of fungal triterpenoids and steroids[J]. Chinese Journal of Organic Chemistry, 2018, 38(9): 2335-2347. | |
3 | SCESA P D, LIN Z J, SCHMIDT E W. Author Correction: ancient defensive terpene biosynthetic gene clusters in the soft corals[J]. Nature Chemical Biology, 2023, 19(6): 790. |
4 | BROCK N L, DICKSCHAT J S. Biosynthesis of terpenoids[M/OL]//RAMAWAT K, MÉRILLON J M. Natural products. Berlin, Heidelberg: Springer, 2013: 2693-2732. (2013-01-01)[2023-12-01]. . |
5 | KOZLOV A V, GILLE L, STANIEK K, et al. Dihydrolipoic acid maintains ubiquinone in the antioxidant active form by two-electron reduction of ubiquinone and one-electron reduction of ubisemiquinone[J]. Archives of Biochemistry and Biophysics, 1999, 363(1): 148-154. |
6 | DELLAPENNA D. A decade of progress in understanding vitamin E synthesis in plants[J]. Journal of Plant Physiology, 2005, 162(7): 729-737. |
7 | KATO S. The function of vitamin D receptor in vitamin D action[J]. Journal of Biochemistry, 2000, 127(5): 717-722. |
8 | ZHAO M Y, WANG L, WANG J M, et al. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants[J]. Journal of Integrative Plant Biology, 2020, 62(10): 1461-1468. |
9 | BHATIA S P, MCGINTY D, LETIZIA C S, et al. Fragrance material review on L-menthol[J]. Food and Chemical Toxicology, 2008, 46(11): S218-S223. |
10 | CARAZO A, MACÁKOVÁ K, MATOUŠOVÁ K, et al. Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity[J]. Nutrients, 2021, 13(5): 1703. |
11 | GOZARI M, ALBORZ M, EL-SEEDI H R, et al. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats[J]. European Journal of Medicinal Chemistry, 2021, 210: 112957. |
12 | LI C Y, ZHA W J, LI W, et al. Advances in the biosynthesis of terpenoids and their ecological functions in plant resistance[J]. International Journal of Molecular Sciences, 2023, 24(14): 11561. |
13 | MA N, ZHANG Z Y, LIAO F L, et al. The birth of artemisinin[J]. Pharmacology & Therapeutics, 2020, 216: 107658. |
14 | GONG X, YANG M, HE C N, et al. Plant pharmacophylogeny: review and future directions[J]. Chinese Journal of Integrative Medicine, 2022, 28(6): 567-574. |
15 | SAMAAN T M ABU, SAMEC M, LISKOVA A, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer[J]. Biomolecules, 2019, 9(12): 789. |
16 | ZAPPAVIGNA S, COSSU A M, GRIMALDI A, et al. Anti-inflammatory drugs as anticancer agents[J]. International Journal of Molecular Sciences, 2020, 21(7): 2605. |
17 | HUANG Y, VALIANTE V. Chemical diversity and biosynthesis of drimane-type sesquiterpenes in the fungal Kingdom[J]. ChemBioChem, 2022, 23(17): e202200173. |
18 | WANG C H, HOU J, DENG H K, et al. Microbial production of mevalonate[J]. Journal of Biotechnology, 2023, 370: 1-11. |
19 | FRANK A, GROLL M. The methylerythritol phosphate pathway to isoprenoids[J]. Chemical Reviews, 2017, 117(8): 5675-5703. |
20 | KARLIC H, VARGA F. Mevalonate Pathway[M/OL]//Encyclopedia of Cancer. Third Edition. New York: Academic Press, 2019, 445-457 [2023-12-01]. . |
21 | OGURA K, KOYAMA T. Enzymatic aspects of isoprenoid chain elongation[J]. Chemical Reviews, 1998, 98(4): 1263-1276. |
22 | OLDFIELD E, LIN F Y. Terpene biosynthesis: modularity rules[J]. Angewandte Chemie International Edition, 2012, 51(5): 1124-1137. |
23 | CROTEAU R, PURKETT P T. Geranyl pyrophosphate synthase: characterization of the enzyme and evidence that this chain-length specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis)[J]. Archives of Biochemistry and Biophysics, 1989, 271(2): 524-535. |
24 | PARVIN R, SHAHROKH K O, MOZAFAR S, et al. Biosynthesis, regulation and properties of plant monoterpenoids[J]. Journal of Medicinal Plants Research, 2014, 8(29): 983-991. |
25 | MILLER D J, ALLEMANN R K. Sesquiterpene synthases: passive catalysts or active players?[J]. Natural Product Reports, 2012, 29(1): 60-71. |
26 | ZERBE P, BOHLMANN J. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering[J]. Trends in Biotechnology, 2015, 33(7): 419-428. |
27 | FOY N J, PRONIN S V. Synthesis of pleuromutilin[J]. Journal of the American Chemical Society, 2022, 144(23): 10174-10179. |
28 | CHEN Q W, LI J X, LIU Z X, et al. Molecular basis for sesterterpene diversity produced by plant terpene synthases[J]. Plant Communications, 2020, 1(5): 100051. |
29 | RAZ K, LEVI S, GUPTA P K, et al. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations[J]. Current Opinion in Biotechnology, 2020, 65: 248-258. |
30 | WHITEHEAD J N, LEFERINK N G H, JOHANNISSEN L O, et al. Decoding catalysis by terpene synthases[J]. ACS Catalysis, 2023, 13(19): 12774-12802. |
31 | NAGEGOWDA D A, GUPTA P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids[J]. Plant Science, 2020, 294: 110457. |
32 | ZHAO Y J, CHENG Q Q, SU P, et al. Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 2371-2383. |
33 | CHRISTIANSON D W. Structural biology and chemistry of the terpenoid cyclases[J]. Chemical Reviews, 2006, 106(8): 3412-3442. |
34 | CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chemical Reviews, 2017, 117(17): 11570-11648. |
35 | LI Z, ZHANG L L, XU K W, et al. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase[J]. Nature Communications, 2023, 14(1): 4001. |
36 | TAO H, LAUTERBACH L, BIAN G K, et al. Discovery of non-squalene triterpenes[J]. Nature, 2022, 606(7913): 414-419. |
37 | HEWAGE R T, TSENG C C, LIANG S Y, et al. Genome mining of cryptic bisabolenes that were biosynthesized by intramembrane terpene synthases from Antrodia cinnamomea [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2023, 378(1871): 20220033. |
38 | CHEN Q B, YUAN G Y, YUAN T, et al. Set of cytochrome P450s cooperatively catalyzes the synthesis of a highly oxidized and rearranged diterpene-class sordarinane architecture[J]. Journal of the American Chemical Society, 2022, 144(8): 3580-3589. |
108 | TSUTSUMI H, MORIWAKI Y, TERADA T, et al. Structural and molecular basis of the catalytic mechanism of geranyl pyrophosphate C6-methyltransferase: creation of an unprecedented farnesyl pyrophosphate C6-methyltransferase[J]. Angewandte Chemie International Edition, 2022, 61(1): e202111217. |
109 | XING B Y, XU H C, LI A N, et al. Crystal structure based mutagenesis of cattleyene synthase leads to the generation of rearranged polycyclic diterpenes[J]. Angewandte Chemie International Edition, 2022, 61(36): e202209785. |
110 | YE Z L, HUANG Y L, SHI B, et al. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone[J]. Metabolic Engineering, 2022, 72: 107-115. |
111 | SAMUSEVICH R, HEBRA T, BUSHUIEV R, et al. Discovery and characterization of terpene synthases powered by machine learning[EB/OL]. bioRxiv, 2024: 2024.01.29.577750. (2024-02-01)[2024-02-28]. . |
112 | ZHANG X, KING-SMITH E, DONG L B, et al. Divergent synthesis of complex diterpenes through a hybrid oxidative approach[J]. Science, 2020, 369(6505): 799-806. |
39 | WANG Z Y, YANG Q, HE J Y, et al. Cytochrome P450 mediated cyclization in eunicellane derived diterpenoid biosynthesis[J]. Angewandte Chemie International Edition, 2023, 62(45): e202312490. |
40 | XU H C, LAUTERBACH L, GOLDFUSS B, et al. Fragmentation and [4+3] cycloaddition in sodorifen biosynthesis[J]. Nature Chemistry, 2023, 15(8): 1164-1171. |
41 | DUAN Y T, KOUTSAVITI A, HARIZANI M, et al. Widespread biosynthesis of 16-carbon terpenoids in bacteria[J]. Nature Chemical Biology, 2023, 19(12): 1532-1539. |
42 | MAGNUS N, VON REUSS S H, BRAACK F, et al. Non-canonical biosynthesis of the Brexane-type bishomosesquiterpene chlororaphen through two consecutive methylation steps in Pseudomonas chlororaphis O6 and Variovorax boronicumulans PHE5-4[J]. Angewandte Chemie International Edition, 2023, 62(29): e202303692. |
43 | ISHIKAWA T, WASHIO K, KANEKO K, et al. Characterization of vanadium-dependent bromoperoxidases involved in the production of brominated sesquiterpenes by the red alga Laurencia okamurae [J]. Applied Phycology, 2022, 3(1): 120-131. |
44 | IGNEA C, PONTINI M, MOTAWIA M S, et al. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering[J]. Nature Chemical Biology, 2018, 14(12): 1090-1098. |
45 | GENNADIOS H A, GONZALEZ V, COSTANZO L D, et al. Crystal structure of (+)-delta-cadinene synthase from Gossypium arboreum and evolutionary divergence of metal binding motifs for catalysis[J]. Biochemistry, 2009, 48(26): 6175-6183. |
46 | CANE D E, KANG I. Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase[J]. Archives of Biochemistry and Biophysics, 2000, 376(2): 354-364. |
47 | BAER P, RABE P, FISCHER K, et al. Induced-fit mechanism in classⅠterpene cyclases[J]. Angewandte Chemie International Edition, 2014, 53(29): 7652-7656. |
48 | KÖKSAL M, JIN Y H, COATES R M, et al. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis[J]. Nature, 2011, 469(7328): 116-120. |
49 | THOMA R, SCHULZ-GASCH T, D′ARCY B, et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase[J]. Nature, 2004, 432(7013): 118-122. |
50 | LENHART A, WEIHOFEN W A, PLESCHKE A E, et al. Crystal structure of a squalene cyclase in complex with the potential anticholesteremic drug Ro48-8071[J]. Chemistry & Biology, 2002, 9(5): 639-645. |
51 | PAN X M, RUDOLF J D, DONG L B. Class Ⅱ terpene cyclases: structures, mechanisms, and engineering[J]. Natural Product Reports, 2024, 41(3): 402-433. |
52 | WANG Y H, XU H C, ZOU J, et al. Catalytic role of carbonyl oxygens and water in selinadiene synthase[J]. Nature Catalysis, 2022, 5: 128-135. |
53 | JIA Q D, BROWN R, KÖLLNER T G, et al. Origin and early evolution of the plant terpene synthase family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(15): e2100361119. |
54 | VOGEL B S, WILDUNG M R, VOGEL G, et al. Abietadiene synthase from grand fir (Abies grandis). cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis[J]. Journal of Biological Chemistry, 1996, 271(38): 23262-23268. |
55 | LI Z, JIANG Y Y, ZHANG X W, et al. Fragrant venezuelaenes A and B with A 5-5-6-7 tetracyclic skeleton: discovery, biosynthesis, and mechanisms of central catalysts[J]. ACS Catalysis, 2020, 10(10): 5846-5851. |
56 | GALAPPATHTHI M C A, PATABENDIGE N M, PREMARATHNE B M, et al. A review of Ganoderma triterpenoids and their bioactivities[J]. Biomolecules, 2022, 13(1): 24. |
57 | GAO X Y, LIU G C, ZHANG J X, et al. Pharmacological properties of ginsenoside Re[J]. Frontiers in Pharmacology, 2022, 13: 754191. |
58 | VANE J R, BOTTING R M. Anti-inflammatory drugs and their mechanism of action[J]. Inflammation Research, 1998, 47(): S78-S87. |
59 | WELANDER P V. Deciphering the evolutionary history of microbial cyclic triterpenoids[J]. Free Radical Biology & Medicine, 2019, 140: 270-278. |
60 | LI Y L, WANG J, LI L Y, et al. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis[J]. Natural Product Reports, 2023, 40(8): 1303-1353. |
61 | CHEN L L. Linking long noncoding RNA localization and function[J]. Trends in Biochemical Sciences, 2016, 41(9): 761-772. |
62 | SMANSKI M J, YU Z G, CASPER J, et al. Dedicated ent-kaurene and ent-atiserene synthases for platensimycin and platencin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(33): 13498-13503. |
63 | LIN H C, CHOOI Y H, DHINGRA S, et al. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-bergamotene[J]. Journal of the American Chemical Society, 2013, 135(12): 4616-4619. |
64 | YANG Y L, ZHANG Y T, ZHANG S S, et al. Identification and characterization of a membrane-bound sesterterpene cyclase from Streptomyces somaliensis [J]. Journal of Natural Products, 2018, 81(4): 1089-1092. |
65 | RUDOLF J D, CHANG C Y. Terpene synthases in disguise: enzymology, structure, and opportunities of non-canonical terpene synthases[J]. Natural Product Reports, 2020, 37(3): 425-463. |
66 | BRANDT W, BRÄUER L, GÜNNEWICH N, et al. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes[J]. Phytochemistry, 2009, 70(15/16): 1758-1775. |
67 | LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124-156. |
68 | HUANG H, LEVIN E J, LIU S A, et al. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1[J]. PLoS Biology, 2014, 12(7): e1001911. |
69 | MANIKANDAN P, NAGINI S. Cytochrome P450 structure, function and clinical significance: a review[J]. Current Drug Targets, 2018, 19(1): 38-54. |
70 | ZUO H L, HUANG H Y, LIN Y C, et al. Enzyme activity of natural products on cytochrome P450[J]. Molecules, 2022, 27(2): 515. |
71 | ZHU D Q, SEO M J, IKEDA H, et al. Genome mining in streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone[J]. Journal of the American Chemical Society, 2011, 133(7): 2128-2131. |
72 | HANSEN N L, KJAERULFF L, HECK Q K, et al. Tripterygium wilfordii cytochrome P450s catalyze the methyl shift and epoxidations in the biosynthesis of triptonide[J]. Nature Communications, 2022, 13(1): 5011. |
73 | CHOOI Y H, HONG Y J, CACHO R A, et al. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis[J]. Journal of the American Chemical Society, 2013, 135(45): 16805-16808. |
74 | ABDELRAHEEM E, THAIR B, VARELA R F, et al. Methyltransferases: functions and applications[J]. ChemBioChem, 2022, 23(18): e202200212. |
75 | LASHLEY A, MILLER R, PROVENZANO S, et al. Functional diversification and structural origins of plant natural product methyltransferases[J]. Molecules, 2022, 28(1): 43. |
76 | DEWICK P M. Medicinal natural products: a biosynthetic approach[M/OL]. 3rd Edition. Hoboken, New Jersey: Wiley, 2009[2023-12-01]. . |
77 | VON REUSS S H, KAI M, PIECHULLA B, et al. Octamethylbicyclo[3.2.1]octadienes from the rhizobacterium Serratia odorifera [J]. Angewandte Chemie International Edition, 2010, 49(11): 2009-2010. |
78 | VON REUSS S, DOMIK D, LEMFACK M C, et al. Sodorifen biosynthesis in the rhizobacterium Serratia plymuthica involves methylation and cyclization of MEP-derived farnesyl pyrophosphate by a SAM-dependent C-methyltransferase[J]. Journal of the American Chemical Society, 2018, 140(37): 11855-11862. |
79 | DOMIK D, THÜRMER A, WEISE T, et al. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13[J]. Frontiers in Microbiology, 2016, 7: 737. |
80 | DUELL E R, D′AGOSTINO P M, SHAPIRO N, et al. Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli [J]. Microbial Cell Factories, 2019, 18(1): 32. |
81 | DOMIK D, MAGNUS N, PIECHULLA B. Analysis of a new cluster of genes involved in the synthesis of the unique volatile organic compound sodorifen of Serratia plymuthica 4Rx13[J]. FEMS Microbiology Letters, 2016, 363(14): fnw139. |
82 | WEVER R, KRENN B E, RENIRIE R. Marine vanadium-dependent haloperoxidases, their isolation, characterization, and application[M/OL]//Methods in Enzymology, 2018, 605: 141-201 [2023-12-01]. . |
83 | CARTER-FRANKLIN J N, BUTLER A. Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products[J]. Journal of the American Chemical Society, 2004, 126(46): 15060-15066. |
[1] | Ru LEI, Hui TAO, Tiangang LIU. Deep genome mining boosts the discovery of microbial terpenoids [J]. Synthetic Biology Journal, 2024, 5(3): 507-526. |
[2] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[3] | Shichao REN, Qiuyan SUN, Xudong FENG, Chun LI. Biosynthesis of pentacyclic triterpenoid saponins in microbial cell factories [J]. Synthetic Biology Journal, 2022, 3(1): 168-183. |
[4] | Zhen FAN, Haixue PAN, Gongli TANG. Engineered yeast facilitates rapid and systematic mining of fungal chimeric terpene synthases [J]. Synthetic Biology Journal, 2021, 2(5): 666-673. |
[5] | Xiaodong LI, Chengshuai YANG, Pingping WANG, Xing YAN, Zhihua ZHOU. Production of sesquiterpenoids α-neoclovene and β-caryophyllene by engineered Saccharomyces cerevisiae [J]. Synthetic Biology Journal, 2021, 2(5): 792-803. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||