Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (1): 60-70.DOI: 10.12211/2096-8280.2020-058
• Invited Review • Previous Articles Next Articles
Kai WANG, Zihe LIU, Biqiang CHEN, Meng WANG, Yang ZHANG, Haoran BI, Yali ZHOU, Yiying HUO, Tianwei TAN
Received:
2020-04-24
Revised:
2020-05-12
Online:
2020-07-07
Published:
2020-02-25
Contact:
Tianwei TAN
王凯, 刘子鹤, 陈必强, 王萌, 张洋, 毕浩然, 周雅莉, 霍奕影, 谭天伟
通讯作者:
谭天伟
作者简介:
王凯(1994—),男,博士研究生,研究方向为生物能源。E-mail: 基金资助:
CLC Number:
Kai WANG, Zihe LIU, Biqiang CHEN, Meng WANG, Yang ZHANG, Haoran BI, Yali ZHOU, Yiying HUO, Tianwei TAN. Microbial utilization of carbon dioxide to synthesize fuels and chemicals——third-generation biorefineries[J]. Synthetic Biology Journal, 2020, 1(1): 60-70.
王凯, 刘子鹤, 陈必强, 王萌, 张洋, 毕浩然, 周雅莉, 霍奕影, 谭天伟. 微生物利用二氧化碳合成燃料及化学品——第三代生物炼制[J]. 合成生物学, 2020, 1(1): 60-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-058
途径 | 固碳的种类 | 关键酶 | 酶比活力①/μmol·(min·mg)-1 | 产物 | ATP能量消耗 |
---|---|---|---|---|---|
卡尔文循环 | CO2 | RuBisCO | 304.3[ | 3-磷酸甘油醛 | 9 |
W-L途径 | CO2 | 甲酸脱氢酶 CO脱氢酶 | 439[ | 乙酰辅酶A | <1② |
14 000[ | |||||
DC/HB循环 | CO2/HCO3- | 4-羟基丁酰辅酶A脱水酶 | — | 乙酰辅酶A | 5 |
HP/HB循环 | HCO3- | 4-羟基丁酰辅酶A脱水酶 | — | 乙酰辅酶A | 6 |
3-HP双循环 | HCO3- | 丙二酰辅酶A还原酶 丙酰辅酶A合酶 | 80[ 22[ | 丙酮酸 | 7 |
还原性 TCA 循环 | CO2 | 2-酮戊二酸合酶 | 35.2[ | 乙酰辅酶A | 2 |
ATP柠檬酸裂合酶 | 26.7 |
Tab. 1 Comparison of natural carbon dioxide fixation pathways[21,22,23,24,25,26,27]
途径 | 固碳的种类 | 关键酶 | 酶比活力①/μmol·(min·mg)-1 | 产物 | ATP能量消耗 |
---|---|---|---|---|---|
卡尔文循环 | CO2 | RuBisCO | 304.3[ | 3-磷酸甘油醛 | 9 |
W-L途径 | CO2 | 甲酸脱氢酶 CO脱氢酶 | 439[ | 乙酰辅酶A | <1② |
14 000[ | |||||
DC/HB循环 | CO2/HCO3- | 4-羟基丁酰辅酶A脱水酶 | — | 乙酰辅酶A | 5 |
HP/HB循环 | HCO3- | 4-羟基丁酰辅酶A脱水酶 | — | 乙酰辅酶A | 6 |
3-HP双循环 | HCO3- | 丙二酰辅酶A还原酶 丙酰辅酶A合酶 | 80[ 22[ | 丙酮酸 | 7 |
还原性 TCA 循环 | CO2 | 2-酮戊二酸合酶 | 35.2[ | 乙酰辅酶A | 2 |
ATP柠檬酸裂合酶 | 26.7 |
Fig. 1 Overview of three generations of biorefineries[Light green part (left): the first-generation biorefineries, the main raw material is vegetable oil, waste edible oil, etc. to synthesize biofuels; Blue part (middle): the second-generation biorefineries, the raw material is mainly non-food biomass, including grain straw, bagasse, etc.; Green part (right): the third-generation biorefineries, microbes use CO2 as raw material to produce fuels and chemicals]
1 | CESTELLOS-BLANCO S, ZHANG H, KIM M J, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3: 245-255. |
2 | CHEN X, CAO Y, LI F, et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha [J]. ACS Catalysis, 2018, 8: 4429-4437. |
3 | PETIT J R, JOUZEL J RAYNAUD D,et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399: 429-436. |
4 | PACALA S, SOCOLOW R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies[J]. Science, 2004, 305: 968. |
5 | NEILL B C, OPPENHEIMER M. Dangerous climate impacts and the Kyoto Protocol[J]. Science, 2002, 296(5575): 1971-1972. |
6 | LIU Z, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nature Catalysis, 2020, 3: 274-288. |
7 | MIN F, KOPKE M, DENNIS S. Gas fermentation for commercial biofuels production [M]. London: lntechOpen, 2013. |
8 | DESAI S H, ATSUMI S. Photosynthetic approaches to chemical biotechnology[J]. Current Opinion in Biotechnology, 2013, 24: 1031-1036. |
9 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27: 1177-1180. |
10 | SAVAKIS P, HELLINGWERF K J. Engineering cyanobacteria for direct biofuel production from CO2[J]. Current Opinion in Biotechnology, 2015, 33: 8-14. |
11 | LI Y J, WANG M M, CHEN Y W,et al. Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars[J]. Scientific Reports, 2017, 7: 43875. |
12 | ANTONOVSKY N, SHMUEL G, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166: 115-125. |
13 | BANG J, LEE S Y. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways[J]. PNAS, 2018, 115: E9271-E9279. |
14 | YU H, LIAO J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9: 3992. |
15 | BAR-EVEN A, NOOR E, MILO R. A survey of carbon fixation pathways through a quantitative lens[J]. Journal of Experimental Botany, 2012, 63: 2325-2342. |
16 | GONG F, ZHU H, ZHANG Y, et al. Biological carbon fixation: from natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
17 | ERB T J, ZARZYCKI J. A short history of RuBisCO: the rise and fall (?) of Nature's predominant CO2 fixing enzyme[J]. Current Opinion in Biotechnology, 2018, 49: 100-107. |
18 | ASHIDA H, MIZOHATA E, YOKOTA A. Learning RuBisCO's birth and subsequent environmental adaptation[J]. Biochem. Soc. Trans., 2019, 47: 179-185. |
19 | DUCAT D C, SILVER P. A improving carbon fixation pathways[J]. Current Opinion in Chemical Biology, 2012, 16: 337-344. |
20 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell, 2019, 179: 1255-1263. |
21 | FAST A G, PAPOUTSAKIS E T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J]. Current Opinion in Chemical Engineering, 2012, 1: 380-395. |
22 | KIM E Y, RO Y T, KIM Y M. Purification and some properties of ribulose 1,5-bisphosphate carboxylases/oxygenases from Acinetobacter sp. strain JC1 and Hydrogenophaga pseudoflava[J]. Molecules & Cells, 1997, 7: 380-388. |
23 | LU Y, ZHAO H X, ZHANG C,et al. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase[J]. Applied Microbiology and Biotechnology, 2010, 86: 255-262. |
24 | DOBBEK H, SVETLITCHNYI V, GREMER L, et al. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] Cluster[J]. Science, 2001, 293: 1281-1285. |
25 | STRAUSS G, FUCHS G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle [J]. Eur. J. Biochem., 1993, 215: 633-643. |
26 | HORSWILL A R, ESCALANTE-SEMERENA J C. Characterization of the propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica: residue Lys592 is required for propionyl-AMP synthesis[J]. Biochemistry, 2002, 41: 2379-2387. |
27 | YAMAMOTO M, ARAI H, ISHII, et al. Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6[J]. Biochem. Biophys. Res. Commun., 2003, 312: 1297-1302. |
28 | RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta, 2008, 1784: 1873-1898. |
29 | YISHAI O, BOUZON M, DÖRING V, et al. In vivo sssimilation of One-Carbon via a synthetic reductive glycine pathway in Escherichia coli[J]. ACS Synthetic Biology, 2018, 7: 2023-2028. |
30 | KUMAR M, SUNDARAM S, GNANSOUNOU E, et al. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review[J]. Bioresource Technology,2018, 247: 1059-1068. |
31 | FAST A G, PAPOUTSAKIS E T. Functional expression of the Clostridium ljungdahlii acetyl-CoA synthase in Clostridium acetobutylicum as demonstrated by a novel in vivo CO exchange activity, on the way to heterologous installation of a functional Wood-Ljungdahl pathway[J]. Applied and Environmental Microbiology, 2018, 7: e02307-e02317. |
32 | CARLSON E D, PAPOUTSAKIS E T. Heterologous expression of the Clostridium carboxidivorans CO dehydrogenase alone or together with the acetyl coenzyme a synthase enables both reduction of CO2 and oxidation of CO by Clostridium acetobutylicum [J]. Applied and Environmental Microbiology, 2017, 83(16): e00829-17. |
33 | BAR-EVEN A. Formate assimilation: the metabolic architecture of natural and synthetic pathways[J]. Biochemistry, 2016, 55: 3851-3863. |
34 | FIGUEROA I A, BARNUMA T P, SOMASEKHAR P Y,et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway[J]. PNAS, 2018, 115: E92-E101. |
35 |
KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020. DOI: 10. 1038/s41589-020-0473-5.
DOI |
36 | DORING V, DARII E, YISHAI O, et al. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018, 7(9): 2029-2036. |
37 | GONZALEZ DE LA CRUZ J, MACHENS F, MESSERSCHMIDT K, et al. Core catalysis of the reductive glycine pathway demonstrated in yeast[J]. ACS Synthetic Biology, 2019, 8(5): 911-917. |
38 | HUBER H, GALLENBERGER M, JAHN U, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum[J]. PNAS, 2008, 105: 7851-7856. |
39 | BERG I A, KOCKELKORN D, BUCKEL W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea[J]. Science, 2007, 318: 1782-1786. |
40 | HOLO H. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate[J]. Archives of Microbiology, 1989, 151: 252-256. |
41 | EVANS M C, BUCHANAN B B, ARNON D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium[J]. PNAS, 1966, 55: 928-934. |
42 | FUCHS G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? [J]. Annual Review of Microbiology, 2011, 65: 631-658. |
43 | KELLER M W, SCHUTA G J, LIPSCOMB G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide[J]. PNAS, 2013, 110: 5840-5845. |
44 | HUGLER M, MENENDEZ C, SCHAGGER H, et al. Malonyl-coenzyme a reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation[J]. Journal of Bacteriology, 2002, 184: 2404-2410. |
45 | ALBER B E, FUCHS G. Propionyl-coenzyme a synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation[J]. J. Biol. Chem., 2002, 277: 12137-12143. |
46 | MATTOZZI M, ZIESACK M, VOGES M J, et al. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth[J]. Metabolic Engineering, 2013, 16: 130-139. |
47 | IVANOVSKY R N, SINTSOV N V, KONDRATIEVA E N ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum [J]. Archives of Microbiology, 1980, 128: 239-241. |
48 | HUGLER M, HUBER H, MOLYNEAUX S J, et al. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage[J]. Environ. Microbiol., 2007, 9: 81-92. |
49 | MALL A, SOBOTTA J, HUBER C, et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium[J]. Science, 2018, 359: 563-567. |
50 | GUO L, ZHANG F, ZHANG C, et al. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115: 1571-1580. |
51 | BERG I A, KOCKELKORN D, RAMOS‑VERA W H, et al. Autotrophic carbon fixation in archaea[J]. Nature Reviews Microbiology, 2010, 8: 447-460. |
52 | BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. PNAS, 2010, 107: 8889-8894. |
53 |
SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science, 2019. DOI:10.1126/science. aat9077.
DOI |
54 | EMERSON D F, STEPHANOPOULOS G. Limitations in converting waste gases to fuels and chemicals[J]. Current Opinion in Biotechnology, 2019, 59: 39-45. |
55 | LIEW F, HENSTRAA A M, KӦPKE M, et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production[J]. Metabolic Engineering, 2017, 40: 104-114. |
56 | TRAN Q H, UNDEN G. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation[J]. Eur. J. Biochem., 1998, 251: 538-543. |
57 | BOYLE N R, MORGAN J A. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation[J]. Metabolic Engineering, 2011, 13: 150-158. |
58 | WIEBE R, GADDY V L. The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical Phenomena*[J]. Journal of the American Chemical Society, 1940, 62: 815-817. |
59 | JAJESNIAK P, OMAR ALIH E M, WONG T S. Carbon dioxide capture and utilization using biological systems: opportunities and challenges[J]. J. Bioproce. & Biotech., 2014, 4(3):1000115. |
60 | MACKINDER L C, MEYERB M T, METTLER-ALTMANNET T, et al. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle[J]. PNAS, 2016, 113: 5958-5963. |
61 | CLAASSENS N J, SOUSA D Z, SANTOS DOS, et al. Harnessing the power of microbial autotrophy[J]. Nature Reviews Microbiology, 2016, 14: 692-706. |
62 | LIU C, COLÓN B C, ZIESACK M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. |
63 | MARTINEZ A, BRADLEY A S, WALDBAUER J R, et al. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host[J]. PNAS, 2007, 104: 5590-5595. |
64 | GUO J, SUÁSTEGUI M, SAKIMOTO K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362: 813-816. |
65 | GUZMAN M S, RENGASAMY K, BINKLEY M M, et al. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris[J]. Nature Communications, 2019, 10: 1355. |
66 | NEVIN K P, WOODARD T L, FRANKS A E, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2): e00103-10. |
67 | TREMBLAY P L, ANGENENT L T, ZHANG T. Extracellular electron uptake: among autotrophs and mediated by surfaces[J]. Trends Biotechnol., 2017, 35: 360-371. |
68 | JIANG Y, MAY H D, LU L, et al. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation[J]. Water Res., 2019, 149: 42-55. |
69 | CLAASSENS N J, SANCHEZ-ANDREA I, SOUSA D Z, et al. Towards sustainable feedstocks: a guide to electron donors for microbial carbon fixation[J]. Current Opinion in Biotechnology, 2018, 50: 195-205. |
70 | COTTON C A, CLAASSENS N J, BENITO-VAQUERIZO S, et al. Renewable methanol and formate as microbial feedstocks[J]. Current Opinion in Biotechnology, 2019, 62: 168-180. |
71 | BENNETT R K, DILLON K, HAR J R G, et al. Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production[J]. Metabolic Engineering, 2020, 60: 45-55. |
72 | TUYISHIME P, WANG Y, FAN L W, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018(49): 220-231. |
73 |
CHEN H, DONG F, MINTEER S D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials[J]. Nature Catalysis, 2020. DOI:10.1038/s41929-019-0408-2.
DOI |
74 | VENKATA MOHAN S, MODESTRA J A, AMULYA K, et al. A circular bioeconomy with biobased products from CO2 sequestration[J]. Trends Biotechnol., 2016, 34: 506-519. |
75 | CLAASSENS N J. A warm welcome for alternative CO2 fixation pathways in microbial biotechnology[J]. Microb. Biotechnol., 2017, 10: 31-34. |
76 | LI F F, YANG Z H, ZENG R, et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber[J]. Industrial & Engineering Chemistry Research, 2011, 50, 6496-6502. |
77 | DU K, WEN X B, WANG Z J, et al. Integrated lipid production, CO2 fixation, and removal of SO2 and NO from simulated flue gas by oleaginous Chlorella pyrenoidosa[J]. Environmental Science and Pollution Research International, 2019, 26(16): 16195-16209. |
[1] | Zhongliang SUN, Hui CHEN, Qiang WANG. From CO2 to value-added products—carbon neutral microalgal green biomanufacturing [J]. Synthetic Biology Journal, 2022, 3(5): 953-965. |
[2] | Jie REN, Anping ZENG. CO2 based biomanufacturing: from basic research to industrial application [J]. Synthetic Biology Journal, 2021, 2(6): 854-862. |
[3] | Shuobo SHI, Qiongyu MENG, Weibo QIAO, Huimin ZHAO. Establishing carbon dioxide-based third-generation biorefinery for a sustainable low-carbon economy [J]. Synthetic Biology Journal, 2020, 1(1): 44-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||