Please wait a minute...
Fig/Tab
RSS Service
Email Alert
Toggle navigation
Home
About Journal
About the Journal
Editorial Board
The 2nd EB
The 1st EB
Submission Guide
Journal
Just Accepted
Current Issue
Archive
Most Read Articles
Most Download Articles
Most Cited Articles
Subscription
Columns
Publishing Policy
Preprinting Policy
Data Policy
Publishing Ethics
中文
IMAGE/TABLE DETAILS
Figure Option
View
Download
Download As Powerpoint Slide
Advances in electro-microbial synergistic systems for value-added conversion of carbon dioxide
HAN Lin, GUO Yuman, LI Yan, CAO Hengheng, LI Jiajing, YANG Minghao, WANG Mengmeng, LI Jinping, LV Yongqin
Synthetic Biology Journal
DOI:
10.12211/2096-8280.2025-070
Fig. 13
Schematic illustration of the electromicrobial cascade system for artificial glucose synthesis
[
103
]
Extracts from the Article
基于该策略,Zheng等人构建了一个电-生物空间解耦系统(图13)[103],成功将CO
2
电催化转化与酵母发酵过程串联起来,完成了从简单碳源向长链高附加值产物的全流程转化。他们首先采用镍-氮-碳单原子催化剂(Ni-N-C)将CO
2
选择性还原为CO,继而在铜基催化剂作用下进一步还原为乙酸。随后,通过基因工程改造
Saccharomyces cerevisiae
,赋予其利用乙酸合成葡萄糖及延伸至脂肪酸类物质的能力,验证了该系统在CO
2
向多碳能源化合物转化中的实际可行性。
原位耦合与异位耦合的对比 ...
Upcycling CO
2
into energy-rich long-chain compounds via electrochemical and metabolic engineering
3
2022
... 基于该策略,Zheng等人构建了一个电-生物空间解耦系统(
图13
)[
103
],成功将CO
2
电催化转化与酵母发酵过程串联起来,完成了从简单碳源向长链高附加值产物的全流程转化.他们首先采用镍-氮-碳单原子催化剂(Ni-N-C)将CO
2
选择性还原为CO,继而在铜基催化剂作用下进一步还原为乙酸.随后,通过基因工程改造
Saccharomyces cerevisiae
,赋予其利用乙酸合成葡萄糖及延伸至脂肪酸类物质的能力,验证了该系统在CO
2
向多碳能源化合物转化中的实际可行性. ...
Other Images/Table from this Article
Fig.1
Classifications of electrocatalytic-microbial
in situ
coupling systems
Fig.2
Design of different electrode materials and schematic diagram of the MES systems
Fig.3
Design of artificially regulated MES systems
Fig. 4
MES for C
2+
product synthesis
Fig. 5
H
2
-mediated enhancement strategies for MES-1
Fig. 6
H
2
-mediated enhancement strategies for MES-2
Fig. 7
Schematic of enhanced CO
2
-to-CH
4
energy efficiency via redox-mediated cathode functionalization in MES
[
80
]
Fig. 8
Construction of an artificial photosynthesis system by integrating a photoelectrochemical system with genetically engineered cells expressing rhodopsin and an outer-membrane conduit MtrCAB
[
95
]
Fig. 9
Three integrated modes of electrocatalytic-microbial
ex situ
coupling systems for CO
2
conversion
[
9
]
Fig. 10
An integrated electromicrobial process for converting CO
2
into higher alcohols
[
90
]
Fig. 11
Schematic illustration of the integrated EMC2 system
[
96
]
Fig. 12
Schematic of the continuous-flow biohybrid CO
2
electrolysis-fermentation system
[
102
]
Fig. 14
Schematic of the spatially separated electrochemical CO
2
reduction reaction (CO
2
RR) and microbial fermentation process for efficient β-farnesene synthesis from CO
2
[
98
]
Fig. 15
Schematic of the sequential CO
2
electrolysis and microbial fermentation system for artificial synthesis of PHB
[
104
]
Fig. 16
Schematic illustration of L-tyrosine synthesis from CO
2
using a blended nexus molecular system based on an abiotic/biotic cascade catalysis
[
105
]
Fig. 17
Schematic diagram of the carbon dioxide electrocatalytic platform and microbial conversion for long-chain compound synthesis. a) Schematic illustration of the integrated electrocatalytic/biocatalytic platform system for the synthesis of long-chain compounds from CO
2
. b) Schematic depiction of the fabrication process of the MPN@deCOP@Ag-Cu
2
O electrocatalytic platform. c) Construction of the ethanol utilization pathway
[
106
]
.
Table 1 Representative work:
in situ
vs
ex situ
coupling
Table 2 Comparative analysis of
in situ
and
ex situ
coupling systems