Please wait a minute...
Fig/Tab
RSS Service
Email Alert
Toggle navigation
Home
About Journal
About the Journal
Editorial Board
The 2nd EB
The 1st EB
Submission Guide
Journal
Just Accepted
Current Issue
Archive
Most Read Articles
Most Download Articles
Most Cited Articles
Subscription
Columns
Publishing Policy
Preprinting Policy
Data Policy
Publishing Ethics
中文
IMAGE/TABLE DETAILS
Figure Option
View
Download
Download As Powerpoint Slide
Advances in electro-microbial synergistic systems for value-added conversion of carbon dioxide
HAN Lin, GUO Yuman, LI Yan, CAO Hengheng, LI Jiajing, YANG Minghao, WANG Mengmeng, LI Jinping, LV Yongqin
Synthetic Biology Journal
DOI:
10.12211/2096-8280.2025-070
Fig. 15
Schematic of the sequential CO
2
electrolysis and microbial fermentation system for artificial synthesis of PHB
[
104
]
Extracts from the Article
在另一项研究中,Zhang等人开发了一种利用等离子体激发与电化学耦合的全分离系统(图15),通过构筑富缺陷的Bi
2
O
3
纳米催化剂高效将CO
2
转化为甲酸,法拉第效率超过80%[104]。随后,将甲酸作为唯一碳源供给
R. eutropha
进行发酵,最终以99.6 mg/(L·d)的速率实现了PHB的持续积累。这一策略不仅突破了传统发酵对复杂碳源依赖的局限,也为“绿色塑料”制造提供了碳中和路径下的新范式。
在另一项研究中,Zhang等人开发了一种利用等离子体激发与电化学耦合的全分离系统(
图15
),通过构筑富缺陷的Bi
2
O
3
纳米催化剂高效将CO
2
转化为甲酸,法拉第效率超过80%[
104
].随后,将甲酸作为唯一碳源供给
R. eutropha
进行发酵,最终以99.6 mg/(L·d)的速率实现了PHB的持续积累.这一策略不仅突破了传统发酵对复杂碳源依赖的局限,也为“绿色塑料”制造提供了碳中和路径下的新范式. ...
在另一项研究中,Zhang等人开发了一种利用等离子体激发与电化学耦合的全分离系统(
图15
),通过构筑富缺陷的Bi
2
O
3
纳米催化剂高效将CO
2
转化为甲酸,法拉第效率超过80%[
104
].随后,将甲酸作为唯一碳源供给
R. eutropha
进行发酵,最终以99.6 mg/(L·d)的速率实现了PHB的持续积累.这一策略不仅突破了传统发酵对复杂碳源依赖的局限,也为“绿色塑料”制造提供了碳中和路径下的新范式. ...
Bi等人进一步拓展了该策略,将CO
2
电催化产物甲酸和乙酸分别作为微生物的碳源和还原当量,建立了一套电-微生物完全分离型耦合系统(
图14
),并用于合成高附加值生物燃料——β-法尼烯[
98
].具体而言,研究团队利用固态电解质反应器连续将CO
2
还原生成甲酸与乙酸,并在适当预处理后作为发酵底物供给代谢工程改造的
Yarrowia lipolytica
.最终实现了14.8±0.23 g/L的β-法尼烯产量,充分体现了反应过程解耦对微生物合成路径调控的正向推动作用. ...
Artificial synthesis of polyesters at ambient condition via consecutive CO
2
electrolysis and fermentation
4
2024
... 在另一项研究中,Zhang等人开发了一种利用等离子体激发与电化学耦合的全分离系统(
图15
),通过构筑富缺陷的Bi
2
O
3
纳米催化剂高效将CO
2
转化为甲酸,法拉第效率超过80%[
104
].随后,将甲酸作为唯一碳源供给
R. eutropha
进行发酵,最终以99.6 mg/(L·d)的速率实现了PHB的持续积累.这一策略不仅突破了传统发酵对复杂碳源依赖的局限,也为“绿色塑料”制造提供了碳中和路径下的新范式. ...
Other Images/Table from this Article
Fig.1
Classifications of electrocatalytic-microbial
in situ
coupling systems
Fig.2
Design of different electrode materials and schematic diagram of the MES systems
Fig.3
Design of artificially regulated MES systems
Fig. 4
MES for C
2+
product synthesis
Fig. 5
H
2
-mediated enhancement strategies for MES-1
Fig. 6
H
2
-mediated enhancement strategies for MES-2
Fig. 7
Schematic of enhanced CO
2
-to-CH
4
energy efficiency via redox-mediated cathode functionalization in MES
[
80
]
Fig. 8
Construction of an artificial photosynthesis system by integrating a photoelectrochemical system with genetically engineered cells expressing rhodopsin and an outer-membrane conduit MtrCAB
[
95
]
Fig. 9
Three integrated modes of electrocatalytic-microbial
ex situ
coupling systems for CO
2
conversion
[
9
]
Fig. 10
An integrated electromicrobial process for converting CO
2
into higher alcohols
[
90
]
Fig. 11
Schematic illustration of the integrated EMC2 system
[
96
]
Fig. 12
Schematic of the continuous-flow biohybrid CO
2
electrolysis-fermentation system
[
102
]
Fig. 13
Schematic illustration of the electromicrobial cascade system for artificial glucose synthesis
[
103
]
Fig. 14
Schematic of the spatially separated electrochemical CO
2
reduction reaction (CO
2
RR) and microbial fermentation process for efficient β-farnesene synthesis from CO
2
[
98
]
Fig. 16
Schematic illustration of L-tyrosine synthesis from CO
2
using a blended nexus molecular system based on an abiotic/biotic cascade catalysis
[
105
]
Fig. 17
Schematic diagram of the carbon dioxide electrocatalytic platform and microbial conversion for long-chain compound synthesis. a) Schematic illustration of the integrated electrocatalytic/biocatalytic platform system for the synthesis of long-chain compounds from CO
2
. b) Schematic depiction of the fabrication process of the MPN@deCOP@Ag-Cu
2
O electrocatalytic platform. c) Construction of the ethanol utilization pathway
[
106
]
.
Table 1 Representative work:
in situ
vs
ex situ
coupling
Table 2 Comparative analysis of
in situ
and
ex situ
coupling systems