1 |
FETZ E E. Operant conditioning of cortical unit activity[J]. Science, 1969, 163(3870): 955-958.
|
2 |
EVARTS E V. Relation of pyramidal tract activity to force exerted during voluntary movement[J]. Journal of Neurophysiology, 1968, 31(1): 14-27.
|
3 |
GEORGOPOULOS A P, KALASKA J F, CAMINITI R, et al. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex[J]. The Journal of Neuroscience, 1982, 2(11): 1527-1537.
|
4 |
CHENG M, GAO X R, GAO S K, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Bio-Medical Engineering, 2002, 49(10): 1181-1186.
|
5 |
PFURTSCHELLER G, ARANIBAR A. Event-related cortical desynchronization detected by power measurements of scalp EEG[J]. Electroencephalography and Clinical Neurophysiology, 1977, 42(6): 817-826.
|
6 |
SERRUYA M D, HATSOPOULOS N G, PANINSKI L, et al. Brain-machine interface: instant neural control of a movement signal[J]. Nature, 2002, 416(6877): 141-142.
|
7 |
ROUSCHE P J, NORMANN R A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex[J]. Journal of Neuroscience Methods, 1998, 82(1): 1-15.
|
8 |
NICOLELIS M A L, DIMITROV D, CARMENA J M, et al. Chronic, multisite, multielectrode recordings in macaque monkeys[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(19): 11041-11046.
|
9 |
MUSALLAM S, CORNEIL B D, GREGER B, et al. Cognitive control signals for neural prosthetics[J]. Science, 2004, 305(5681): 258-262.
|
10 |
HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J]. Nature, 2006, 442(7099): 164-171.
|
11 |
CHAUDHARY U, XIA B, SILVONI S, et al. Correction: Brain-computer interface-based communication in the completely locked-in state[J]. PLoS Biology, 2018, 16(12): e3000089.
|
12 |
WANDER J D, BLAKELY T, MILLER K J, et al. Distributed cortical adaptation during learning of a brain-computer interface task[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10818-10823.
|
13 |
LOGOTHETIS N K. The underpinnings of the BOLD functional magnetic resonance imaging signal[J]. The Journal of Neuroscience, 2003, 23(10): 3963-3971.
|
14 |
GALLEGOS-AYALA G, FURDEA A, TAKANO K, et al. Brain communication in a completely locked-in patient using bedside near-infrared spectroscopy[J]. Neurology, 2014, 82(21): 1930-1932.
|
15 |
SLUTZKY M W. Brain-machine interfaces: powerful tools for clinical treatment and neuroscientific investigations[J]. The Neuroscientist, 2019, 25(2): 139-154.
|
16 |
BIRBAUMER N, HINTERBERGER T, KUBLER A, et al. The thought-translation device: an update[C]//Proceedings of the Psychophysiology. New York: Cambridge University Press, 2000, 37: S28.
|
17 |
FARWELL L A, DONCHIN E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-523.
|
18 |
GUAN C T, THULASIDAS M, WU J K. High performance P300 speller for brain-computer interface[C]//IEEE International Workshop on Biomedical Circuits and Systems. December 1-3, 2004, Singapore. IEEE, 2005: S3/5 /INV-S 3/13.
|
19 |
PFURTSCHELLER G, MÜLLER G R, PFURTSCHELLER J, et al. 'Thought'-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia[J]. Neuroscience Letters, 2003, 351(1): 33-36.
|
20 |
WOLPAW J R, MCFARLAND D J. Multichannel EEG-based brain-computer communication[J]. Electroencephalography and Clinical Neurophysiology, 1994, 90(6): 444-449.
|
21 |
MCFARLAND D J, SARNACKI W A, WOLPAW J R. Electroencephalographic (EEG) control of three-dimensional movement[J]. Journal of Neural Engineering, 2010, 7(3): 036007.
|
22 |
GANGADHAR G, CHAVARRIAGA R, MILLÁN J D E L R. Fast recognition of anticipation-related potentials[J]. IEEE Transactions on Bio-Medical Engineering, 2009, 56(4): 1257-1260.
|
23 |
MITZDORF U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena[J]. Physiological Reviews, 1985, 65(1): 37-100.
|
24 |
BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applications with a wearable system[J]. Nature, 2018, 555(7698): 657-661.
|
25 |
WANG Y J, WANG R P, GAO X R, et al. A practical VEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 234-239.
|
26 |
MORROW M M, MILLER L E. Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons[J]. Journal of Neurophysiology, 2003, 89(4): 2279-2288.
|
27 |
TODOROVA S, SADTLER P, BATISTA A, et al. To sort or not to sort: the impact of spike-sorting on neural decoding performance[J]. Journal of Neural Engineering, 2014, 11(5): 056005.
|
28 |
BUZSÁKI G, ANASTASSIOU C A, KOCH C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes[J]. Nature Reviews Neuroscience, 2012, 13(6): 407-420.
|
29 |
STARK E, ABELES M. Predicting movement from multiunit activity[J]. The Journal of Neuroscience, 2007, 27(31): 8387-8394.
|
30 |
CHESTEK C A, GILJA V, NUYUJUKIAN P, et al. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex[J]. Journal of Neural Engineering, 2011, 8(4): 045005.
|
31 |
SANES J N, DONOGHUE J P. Oscillations in local field potentials of the primate motor cortex during voluntary movement[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(10): 4470-4474.
|
32 |
MURTHY V N, FETZ E E. Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior[J]. Journal of Neurophysiology, 1996, 76(6): 3949-3967.
|
33 |
BUNDY D T, PAHWA M, SZRAMA N, et al. Decoding three-dimensional reaching movements using electrocorticographic signals in humans[J]. Journal of Neural Engineering, 2016, 13(2): 026021.
|
34 |
SCHALK G, KUBÁNEK J, MILLER K J, et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans[J]. Journal of Neural Engineering, 2007, 4(3): 264-275.
|
35 |
CRONE N E, MIGLIORETTI D L, GORDON B, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization[J]. Brain, 1998, 121(12): 2271-2299.
|
36 |
KUBÁNEK J, MILLER K J, OJEMANN J G, et al. Decoding flexion of individual fingers using electrocorticographic signals in humans[J]. Journal of Neural Engineering, 2009, 6(6): 066001.
|
37 |
FLINT R D, WANG P T, WRIGHT Z A, et al. Extracting kinetic information from human motor cortical signals[J]. NeuroImage, 2014, 101: 695-703.
|
38 |
MCCRIMMON C M, WANG P T, HEYDARI P, et al. Electrocorticographic encoding of human gait in the leg primary motor cortex[J]. Cerebral Cortex, 2018, 28(8): 2752-2762.
|
39 |
MUGLER E M, PATTON J L, FLINT R D, et al. Direct classification of all American English phonemes using signals from functional speech motor cortex[J]. Journal of Neural Engineering, 2014, 11(3): 035015.
|
40 |
WANG P T, KING C E, MCCRIMMON C M, et al. Comparison of decoding resolution of standard and high-density electrocorticogram electrodes[J]. Journal of Neural Engineering, 2016, 13(2): 026016.
|
41 |
PANDARINATH C, NUYUJUKIAN P, BLABE C H, et al. High performance communication by people with paralysis using an intracortical brain-computer interface[J]. eLife, 2017, 6: e18554.
|
42 |
MOSES D A, METZGER S L, LIU J R, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria[J]. The New England Journal of Medicine, 2021, 385(3): 217-227.
|
43 |
COLLINGER J L, WODLINGER B, DOWNEY J E, et al. High-performance neuroprosthetic control by an individual with tetraplegia[J]. The Lancet, 2013, 381(9866): 557-564.
|
44 |
BOUTON C E, SHAIKHOUNI A, ANNETTA N V, et al. Restoring cortical control of functional movement in a human with quadriplegia[J]. Nature, 2016, 533(7602): 247-250.
|
45 |
NOWAK D A, GREFKES C, AMELI M, et al. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand[J]. Neurorehabilitation and Neural Repair, 2009, 23(7): 641-656.
|
46 |
BACHER D, JAROSIEWICZ B, MASSE N Y, et al. Neural point-and-click communication by a person with incomplete locked-in syndrome[J]. Neurorehabilitation and Neural Repair, 2015, 29(5): 462-471.
|
47 |
JAROSIEWICZ B, SARMA A A, BACHER D, et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface[J]. Science Translational Medicine, 2015, 7(313): 313ra179.
|
48 |
GUENTHER F H, BRUMBERG J S, WRIGHT E J, et al. A wireless brain-machine interface for real-time speech synthesis[J]. PLoS One, 2009, 4(12): e8218.
|
49 |
BOUCHARD K E, MESGARANI N, JOHNSON K, et al. Functional organization of human sensorimotor cortex for speech articulation[J]. Nature, 2013, 495(7441): 327-332.
|
50 |
WILLETT F R, AVANSINO D T, HOCHBERG L R, et al. High-performance brain-to-text communication via handwriting[J]. Nature, 2021, 593(7858): 249-254.
|
51 |
HOGGAN E, BREWSTER S A, JOHNSTON J. Investigating the effectiveness of tactile feedback for mobile touchscreens[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. April 5-10, 2008, Florence, Italy. New York: ACM, 2008: 1573-1582.
|
52 |
PRASAD G, HERMAN P, COYLE D, et al. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study[J]. Journal of Neuroengineering and Rehabilitation, 2010, 7: 60.
|
53 |
AJIBOYE A B, WILLETT F R, YOUNG D R, et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration[J]. The Lancet, 2017, 389(10081): 1821-1830.
|
54 |
DALY J J, WOLPAW J R. Brain-computer interfaces in neurological rehabilitation[J]. The Lancet Neurology, 2008, 7(11): 1032-1043.
|
55 |
WODLINGER B, DOWNEY J E, TYLER-KABARA E C, et al. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations[J]. Journal of Neural Engineering, 2015, 12(1): 016011.
|
56 |
MILLER K J, SCHALK G, FETZ E E, et al. Cortical activity during motor execution, motor imagery, and imagery-based online feedback[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4430-4435.
|
57 |
MORAN D W, SCHWARTZ A B. Motor cortical representation of speed and direction during reaching[J]. Journal of Neurophysiology, 1999, 82(5): 2676-2692.
|
58 |
KAREN A, MOXON, . Brain-machine interfaces beyond neuroprosthetics[J]. Neuron, 2015, 86(1): 55-67.
|
59 |
GALLEGO J A, PERICH M G, CHOWDHURY R H, et al. Long-term stability of cortical population dynamics underlying consistent behavior[J]. Nature Neuroscience, 2020, 23(2): 260-270.
|
60 |
CHESTEK C A, BATISTA A P, SANTHANAM G, et al. Single-neuron stability during repeated reaching in macaque premotor cortex[J]. The Journal of Neuroscience, 2007, 27(40): 10742-10750.
|
61 |
FLINT R D, WRIGHT Z A, SCHEID M R, et al. Long term, stable brain machine interface performance using local field potentials and multiunit spikes[J]. Journal of Neural Engineering, 2013, 10(5): 056005.
|
62 |
WESSBERG J, STAMBAUGH C R, KRALIK J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in Primates[J]. Nature, 2000, 408(6810): 361-365.
|
63 |
SHEN L, ALEXANDER G E. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area[J]. Journal of Neurophysiology, 1997, 77(3): 1195-1212.
|
64 |
GANGULY K, DIMITROV D F, WALLIS J D, et al. Reversible large-scale modification of cortical networks during neuroprosthetic control[J]. Nature Neuroscience, 2011, 14(5): 662-667.
|
65 |
GOLUB M D, SADTLER P T, OBY E R, et al. Learning by neural reassociation[J]. Nature Neuroscience, 2018, 21(4): 607-616.
|
66 |
GANGULY K, CARMENA J M. Emergence of a stable cortical map for neuroprosthetic control[J]. PLoS Biology, 2009, 7(7): e1000153.
|
67 |
PETERS A J, CHEN S X, KOMIYAMA T. Emergence of reproducible spatiotemporal activity during motor learning[J]. Nature, 2014, 510(7504): 263-267.
|
68 |
JAROSIEWICZ B, CHASE S M, FRASER G W, et al. Functional network reorganization during learning in a brain-computer interface paradigm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19486-19491.
|