合成生物学 ›› 2023, Vol. 4 ›› Issue (2): 394-406.DOI: 10.12211/2096-8280.2022-072
朱骊宇1,2, 赵玉龙1,2, 李伟1,3,4, 王立宾1,3,4
收稿日期:
2022-12-11
修回日期:
2023-02-27
出版日期:
2023-04-30
发布日期:
2023-04-27
通讯作者:
李伟,王立宾
作者简介:
基金资助:
Liyu ZHU1,2, Yulong ZHAO1,2, Wei LI1,3,4, Libin WANG1,3,4
Received:
2022-12-11
Revised:
2023-02-27
Online:
2023-04-30
Published:
2023-04-27
Contact:
Wei LI, Libin WANG
摘要:
哺乳动物染色体工程是指通过多种实验手段对哺乳动物的染色体进行编辑,从而可以构建疾病动物模型、制备人源化药物工厂、解析物种进化机制甚至于合成全新生命。近些年,天然染色体改造技术、染色体设计与合成技术及染色体大片段转移技术等哺乳动物染色体工程的核心技术迅速发展,并相互交叉融合。同时,胚胎干细胞被发展为一种新型的哺乳动物合成生物学的底盘细胞,极大地推动了哺乳动物染色体工程的发展,催生了一大批用于医药和进化研究的动物模型,包括模拟唐氏综合征的小鼠模型、产生人类单克隆抗体的工具小鼠以及用于研究染色体重组生物学效应的染色体连接小鼠等,也极大推动了基础研究和生物医药领域的发展。但是,因为缺乏对哺乳动物染色体和发育的全面认知,所以对哺乳动物染色体的操纵仍面临诸多挑战,不仅包括技术手段,也包括生物伦理及安全性等。本文将对以上三种哺乳动物染色体工程主要的技术方法及其在多方面的应用进展进行简要综述,同时对哺乳动物染色体工程的进一步应用与挑战进行展望。
中图分类号:
朱骊宇, 赵玉龙, 李伟, 王立宾. 哺乳动物染色体工程研究进展[J]. 合成生物学, 2023, 4(2): 394-406.
Liyu ZHU, Yulong ZHAO, Wei LI, Libin WANG. Progress in mammalian chromosome engineering[J]. Synthetic Biology Journal, 2023, 4(2): 394-406.
1 | 徐赫鸣, 谢泽雄, 刘夺, 等. 酿酒酵母染色体设计与合成研究进展[J]. 遗传, 2017, 39(10): 865-876. |
XU H M, XIE Z X, LIU D, et al. Design and synthesis of yeast chromosomes[J]. Hereditas, 2017, 39(10): 865-876. | |
2 | 米福贵, 云锦凤, 逯晓萍. 植物染色体工程与育种[J]. 中国草地, 1999, 21(2): 64-67, 78. |
MI F G, YUN J F, LU X P. Chromosomal engineering and plant breeding[J]. Grassland of China, 1999, 21(2): 64-67, 78. | |
3 | 李炳林, 李宏运, 安泽伟, 等. 棉花染色体工程育种[J]. 山西农业大学学报, 2001, 21(1): 1-6. |
LI B L, LI H Y, AN Z W, et al. Cotton chromosome engineering breeding[J]. Journal of Shanxi Agricultural University, 2001, 21(1): 1-6. | |
4 | 纪军. 染色体工程改良小麦品质的研究[D]. 石家庄: 中国科学院石家庄农业现代化研究所, 2001. |
JI J. Study on improving wheat quality by chromosome engineering[D]. Shijiazhuang: Shijiazhuang Institute of Agricultural Modernization, Chinese Academy of Sciences, 2001. | |
5 | 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28. |
DING M Z, LI B Z, WANG Y, et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28. | |
6 | STRICKLETT P K, NELSON R D, KOHAN D E. Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase[J]. Gene, 1998, 215(2): 415-423. |
7 | RAMIREZ-SOLIS R, LIU P T, BRADLEY A. Chromosome engineering in mice[J]. Nature, 1995, 378(6558): 720-724. |
8 | ZHENG B H, SAGE M, CAI W W, et al. Engineering a mouse balancer chromosome[J]. Nature Genetics, 1999, 22(4): 375-378. |
9 | SU H, WANG X Z, BRADLEY A. Nested chromosomal deletions induced with retroviral vectors in mice[J]. Nature Genetics, 2000, 24(1): 92-95. |
10 | BITINAITE J, WAH D A, AGGARWAL A K, et al. FokI dimerization is required for DNA cleavage[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(18): 10570-10575. |
11 | LAM K N, VAN BAKEL H, COTE A G, et al. Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays[J]. Nucleic Acids Research, 2011, 39(11): 4680-4690. |
12 | UL AIN Q, CHUNG J Y, KIM Y H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN[J]. Journal of Controlled Release, 2015, 205: 120-127. |
13 | KAZUKI Y, YAKURA Y, ABE S, et al. Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies[J]. Scientific Reports, 2014, 4: 6136. |
14 | MAK A N S, BRADLEY P, CERNADAS R A, et al. The crystal structure of TAL effector PthXo1 bound to its DNA target[J]. Science, 2012, 335(6069): 716-719. |
15 | HOCKEMEYER D, WANG H Y, KIANI S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nature Biotechnology, 2011, 29(8): 731-734. |
16 | MA S Y, ZHANG S L, WANG F, et al. Highly efficient and specific genome editing in silkworm using custom TALENs[J]. PLoS One, 2012, 7(9): e45035. |
17 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
18 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
19 | ZUO E W, HUO X N, YAO X, et al. CRISPR/Cas9-mediated targeted chromosome elimination[J]. Genome Biology, 2017, 18(1): 224. |
20 | SHAO Y Y, LU N, WU Z F, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335. |
21 | WANG L B, LI Z K, WANG L Y, et al. A sustainable mouse karyotype created by programmed chromosome fusion[J]. Science, 2022, 377(6609): 967-975. |
22 | ZHANG X M, YAN M, YANG Z H, et al. Creation of artificial karyotypes in mice reveals robustness of genome organization[J]. Cell Research, 2022, 32(11): 1026-1029. |
23 | WANG Y A, QU Z, FANG Y, et al. Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development[J]. Cell Discovery, 2023, 9: 11. |
24 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
25 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. |
26 | 王会, 戴俊彪, 罗周卿. 基因组的“读-改-写"技术[J]. 合成生物学, 2020, 1(5): 503-515. |
WANG H, DAI J B, LUO Z Q. Reading, editing, and writing techniques for genome research[J]. Synthetic Biology Journal, 2020, 1(5): 503-515. | |
27 | KOLISIS N, KOLISIS F. Synthetic biology: old and new dilemmas-the case of artificial life[J]. Biotech, 2021, 10(3): 16. |
28 | 何博, 付宗恒, 吴毅, 等. 哺乳动物合成基因组学研究进展[J]. 合成生物学, 2022, 3(1): 78-97. |
HE B, FU Z H, WU Y, et al. Research progress of synthetic mammalian genomics[J]. Synthetic Biology Journal, 2022, 3(1): 78-97. | |
29 | HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome[J]. Science, 2016, 351(6280): aad6253. |
30 | HOSHIKA S, LEAL N A, KIM M J, et al. Hachimoji DNA and RNA: a genetic system with eight building blocks[J]. Science, 2019, 363(6429): 884-887. |
31 | OSTROV N, LANDON M, GUELL M, et al. Design, synthesis, and testing toward a 57-codon genome[J]. Science, 2016, 353(6301): 819-822. |
32 | HOCHREIN L, MITCHELL L A, SCHULZ K, et al. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast[J]. Nature Communications, 2018, 9: 1931. |
33 | AGARWAL K L, BÜCHI H, CARUTHERS M H, et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast[J]. Nature, 1970, 227(5253): 27-34. |
34 | CELLO J, PAUL A V, WIMMER E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science, 2002, 297(5583): 1016-1018. |
35 | CHAN L Y, KOSURI S, ENDY D. Refactoring bacteriophage T7[J]. Molecular Systems Biology, 2005, 1: 2005.0018. |
36 | DORMITZER P R, SUPHAPHIPHAT P, GIBSON D G, et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics[J]. Science Translational Medicine, 2013, 5(185): 185ra68. |
37 | OLDFIELD L M, GRZESIK P, VOORHIES A A, et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): E8885-E8894. |
38 | NOYCE R S, LEDERMAN S, EVANS D H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments[J]. PLoS One, 2018, 13(1): e0188453. |
39 | GIBSON D G, BENDERS G A, ANDREWS-PFANNKOCH C, et al. Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome[J]. Science, 2008, 319(5867): 1215-1220. |
40 | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56. |
41 | FREDENS J, WANG K H, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569(7757): 514-518. |
42 | DYMOND J S, RICHARDSON S M, COOMBES C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design[J]. Nature, 2011, 477(7365): 471-476. |
43 | MITCHELL L A, WANG A, STRACQUADANIO G, et al. Synthesis, debugging, and effects of synthetic chromosome consolidation: synⅥ and beyond[J]. Science, 2017, 355(6329): eaaf4831. |
44 | SHEN Y, WANG Y, CHEN T, et al. Deep functional analysis of synⅡ, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355(6329): eaaf4791. |
45 | ANNALURU N, MULLER H, MITCHELL L A, et al. Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179): 55-58. |
46 | WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): eaaf4706. |
47 | XIE Z X, LI B Z, MITCHELL L A, et al. "Perfect" designer chromosome Ⅴ and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704. |
48 | ZHANG W M, ZHAO G H, LUO Z Q, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6329): eaaf3981. |
49 | LIU W, LUO Z Q, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9: 1936. |
50 | JIA B, WU Y, LI B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9: 1933. |
51 | BOEKE J D, CHURCH G, HESSEL A, et al. GENOME ENGINEERING. the genome project-write[J]. Science, 2016, 353(6295): 126-127. |
52 | MICHELSON A M, TODD A R. Nucleotides part ⅩⅩⅩⅡ. Synthesis of a dithymidine dinucleotide containing a 3′,5′-internucleotidic linkage[J]. Journal of the Chemical Society (Resumed), 1955: 2632-2638. |
53 | BEAUCAGE S L, CARUTHERS M H. Cheminform abstract: deoxynucleoside phosphoramidites. a new class of key intermediates for deoxypolynucleotide synthesis[J/OL]. Chemischer Informationsdienst, 1981, 12(36)[2022-12-01]. . |
54 | FODOR S P, READ J L, PIRRUNG M C, et al. Light-directed, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251(4995): 767-773. |
55 | SHETTY R P, ENDY D, KNIGHT T F. Engineering BioBrick vectors from BioBrick parts[J]. Journal of Biological Engineering, 2008, 2: 5. |
56 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11): e3647. |
57 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
58 | ABREMSKI K, HOESS R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein[J]. The Journal of Biological Chemistry, 1984, 259(3): 1509-1514. |
59 | KUHSTOSS S, RAO R N. Analysis of the integration function of the streptomycete bacteriophage phi C31[J]. Journal of Molecular Biology, 1991, 222(4): 897-908. |
60 | FU J, BIAN X Y, HU S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5): 440-446. |
61 | COBB R E, WANG Y J, ZHAO H M. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6): 723-728. |
62 | ZHOU J T, WU R H, XUE X L, et al. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA[J]. Nucleic Acids Research, 2016, 44(14): e124. |
63 | MITCHELL L A, MCCULLOCH L H, PINGLAY S, et al. De novo assembly and delivery to mouse cells of a 101 kb functional human gene[J]. Genetics, 2021, 218(1): iyab038. |
64 | MONTOLIU L. Large-scale preparation of yeast agarose plugs to isolate yeast artificial chromosome DNA[J/OL]. Cold Spring Harbor Protocols, 2018, 2018(8)[2022-12-01]. . |
65 | GNIRKE A, HUXLEY C, PETERSON K, et al. Microinjection of intact 200- to 500-kb fragments of YAC DNA into mammalian cells[J]. Genomics, 1993, 15(3): 659-667. |
66 | KIM J Y, CHOI J H, KIM S H, et al. Efficacy of gene modification in placenta-derived mesenchymal stem cells based on nonviral electroporation[J]. International Journal of Stem Cells, 2021, 14(1): 112-118. |
67 | STEWART M P, LANGER R, JENSEN K F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts[J]. Chemical Reviews, 2018, 118(16): 7409-7531. |
68 | MARSCHALL P, MALIK N, LARIN Z. Transfer of YACs up to 2.3 Mb intact into human cells with polyethylenimine[J]. Gene Therapy, 1999, 6(9): 1634-1637. |
69 | MEJÍA J E, WILLMOTT A, LEVY E, et al. Functional complementation of a genetic deficiency with human artificial chromosomes[J]. American Journal of Human Genetics, 2001, 69(2): 315-326. |
70 | LARTIGUE C, GLASS J I, ALPEROVICH N, et al. Genome transplantation in bacteria: changing one species to another[J]. Science, 2007, 317(5838): 632-638. |
71 | SUZUKI T, KAZUKI Y, HARA T, et al. Current advances in microcell-mediated chromosome transfer technology and its applications[J]. Experimental Cell Research, 2020, 390(1): 111915. |
72 | SINENKO S A, PONOMARTSEV S V, TOMILIN A N. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy[J]. Experimental Cell Research, 2020, 389(1): 111882. |
73 | BROWN D M, CHAN Y A, DESAI P J, et al. Efficient size-independent chromosome delivery from yeast to cultured cell lines[J]. Nucleic Acids Research, 2017, 45(7): e50. |
74 | KUGOH H, MITSUYA K, MEGURO M, et al. Mouse A9 cells containing single human chromosomes for analysis of genomic imprinting[J]. DNA Research, 1999, 6(3): 165-172. |
75 | O'DOHERTY A, RUF S, MULLIGAN C, et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes[J]. Science, 2005, 309(5743): 2033-2037 |
76 | WADE-MARTINS R, SMITH E R, TYMINSKI E, et al. An infectious transfer and expression system for genomic DNA loci in human and mouse cells[J]. Nature Biotechnology, 2001, 19(11): 1067-1070. |
77 | MORALLI D, MONACO Z L. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology[J]. Chromosome Research, 2015, 23(1): 105-110. |
78 | LI L P, BLANKENSTEIN T. Generation of transgenic mice with megabase-sized human yeast artificial chromosomes by yeast spheroplast-embryonic stem cell fusion[J]. Nature Protocols, 2013, 8(8): 1567-1582. |
79 | LISKOVYKH M, LEE N C, LARIONOV V, et al. Moving toward a higher efficiency of microcell-mediated chromosome transfer[J]. Molecular Therapy-Methods & Clinical Development, 2016, 3: 16043. |
80 | FEUK L, CARSON A R, SCHERER S W. Structural variation in the human genome[J]. Nature Reviews Genetics, 2006, 7(2): 85-97. |
81 | HASTINGS P J, LUPSKI J R, ROSENBERG S M, et al. Mechanisms of change in gene copy number[J]. Nature Reviews Genetics, 2009, 10(8): 551-564. |
82 | MAYNARD T M, HASKELL G T, LIEBERMAN J A, et al. 22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome[J]. International Journal of Developmental Neuroscience, 2002, 20(3/4/5): 407-419. |
83 | WU Q F, NIEBUHR E, YANG H M, et al. Determination of the 'critical region' for cat-like cry of Cri-du-chat syndrome and analysis of candidate genes by quantitative PCR[J]. European Journal of Human Genetics, 2005, 13(4): 475-485. |
84 | SHINOHARA T, TOMIZUKA K, MIYABARA S, et al. Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down's syndrome[J]. Human Molecular Genetics, 2001, 10(11): 1163-1175. |
85 | RICARD G, MOLINA J, CHRAST J, et al. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models[J]. PLoS Biology, 2010, 8(11): e1000543. |
86 | TUNÇ E, ILGAZ S. Robertsonian translocation (13;14) and its clinical manifestations: a literature review[J]. Reproductive Biomedicine Online, 2022, 45(3): 563-573. |
87 | YUNIS J J, PRAKASH O. The origin of man: a chromosomal pictorial legacy[J]. Science, 1982, 215(4539): 1525-1530. |
88 | MATSUMURA H, TADA M, OTSUJI T, et al. Targeted chromosome elimination from ES-somatic hybrid cells[J]. Nature Methods, 2007, 4(1): 23-25. |
89 | LI L B, CHANG K H, WANG P R, et al. Trisomy correction in down syndrome induced pluripotent stem cells[J]. Cell Stem Cell, 2012, 11(5): 615-619. |
90 | TOMIZUKA K, YOSHIDA H, UEJIMA H, et al. Functional expression and germline atransmission of a human chromosome fragment in chimaeric mice[J]. Nature Genetics, 1997, 16(2): 133-143. |
91 | TOMIZUKA K, SHINOHARA T, YOSHIDA H, et al. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(2): 722-727. |
92 | KUROIWA Y, KASINATHAN P, SATHIYASEELAN T, et al. Antigen-specific human polyclonal antibodies from hyperimmunized cattle[J]. Nature Biotechnology, 2009, 27(2): 173-181. |
93 | KAZUKI Y, KOBAYASHI K, AUEVIRIYAVIT S, et al. Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans[J]. Human Molecular Genetics, 2013, 22(3): 578-592. |
94 | KOBAYASHI K, ABE C, ENDO M, et al. Gender difference of hepatic and intestinal CYP3A4 in CYP3A humanized mice generated by a human chromosome-engineering technique[J]. Drug Metabolism Letters, 2017, 11(1): 60-67. |
95 | KAZUKI Y, KOBAYASHI K, HIRABAYASHI M, et al. Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(8): 3072-3081. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
[3] | 白仲虎, 任和, 聂简琪, 孙杨. 高通量平行发酵技术的发展与应用[J]. 合成生物学, 2023, 4(5): 904-915. |
[4] | 吴玉洁, 刘欣欣, 刘健慧, 杨开广, 随志刚, 张丽华, 张玉奎. 基于高通量液相色谱质谱技术的菌株筛选与关键分子定量分析研究进展[J]. 合成生物学, 2023, 4(5): 1000-1019. |
[5] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[6] | 刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. |
[7] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[8] | 刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851. |
[9] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[10] | 孙智, 杨宁, 娄春波, 汤超, 杨晓静. 功能拓扑的理性设计及其在合成生物学中的应用[J]. 合成生物学, 2023, 4(3): 444-463. |
[11] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[12] | 孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589. |
[13] | 王晟, 王泽琛, 陈威华, 陈珂, 彭向达, 欧发芬, 郑良振, 孙瑨原, 沈涛, 赵国屏. 基于人工智能和计算生物学的合成生物学元件设计[J]. 合成生物学, 2023, 4(3): 422-443. |
[14] | 吕海龙, 王建, 吕浩, 王金, 徐勇, 顾大勇. 合成生物学在下一代基因诊断技术中的应用进展[J]. 合成生物学, 2023, 4(2): 318-332. |
[15] | 申赵铃, 吴艳玲, 应天雷. 合成生物学与病毒疫苗研发[J]. 合成生物学, 2023, 4(2): 333-346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||