• 特约评述 •
苏娟娟1,2, 郑家文1,2, 苗润泽1,3, 韩鹏1,3, 王士安1,2, 李福利1,2
收稿日期:
2024-12-05
修回日期:
2025-03-28
出版日期:
2025-04-08
通讯作者:
王士安,李福利
作者简介:
基金资助:
SU Juanjuan1,2, ZHENG Jiawen1,2, MIAO Runze1,3, HAN Peng1,3, WANG Shi’an1,2, LI Fuli1,2
Received:
2024-12-05
Revised:
2025-03-28
Online:
2025-04-08
Contact:
WANG Shi’an, LI Fuli
摘要:
油脂及脂肪酸衍生物是食品、生物能源、材料以及医药化工的基础原料,需求量大。当前我国油脂供给高度依赖进口油料作物,受限于耕地资源,仅依靠农业种植难以满足需求。合成生物技术的发展为油脂生产提供了新途径,其中微生物油脂合成技术具有原料来源广、生产周期短、不占用耕地等优势,成为缓解油脂资源供应压力的战略选择。本文从大宗油脂和高值油脂的角度,系统综述了微生物油脂和植物油脂合成生物制造的研究现状,分析了植物油脂和微生物油脂的经济性差异,并总结了油脂分离提取及检测技术。未来,从商业化成熟度考量,高值油脂在短期内有望快速发展,而大宗油脂在中远期具有广阔前景。通过合成生物技术构建高效油脂合成的微生物细胞工厂,推动全链条低成本生物炼制技术,有望创新油脂生产方式,促进油脂产业多元化发展。
中图分类号:
苏娟娟, 郑家文, 苗润泽, 韩鹏, 王士安, 李福利. 微生物油脂与植物油脂的合成生物制造[J]. 合成生物学, DOI: 10.12211/2096-8280.2024-093.
SU Juanjuan, ZHENG Jiawen, MIAO Runze, HAN Peng, WANG Shi’an, LI Fuli. Biosynthesis and manufacture of microbial oils and vegetable oils[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2024-093.
微生物种类 | 常见产油菌种 | 油脂含量 (占干重百分比) | 主要脂肪酸 组成 | 特征 | 参考 文献 |
---|---|---|---|---|---|
酵母菌 | 解脂耶氏酵母 Y. lipolytica | 通常在20%-45%之间,特定条件下可超过90% | 油酸、棕榈酸、棕榈油酸 | 遗传改造技术成熟;底物利用谱广,可代谢乙酸、脂肪酸、油脂、正烷烃;抗逆性较强 | [ |
圆红冬孢酵母 R. toruloides | 通常在40%-60%之间,可超过70% | 油酸、棕榈酸、硬脂酸 | 遗传工具相对丰富,可利用农林废弃物产油 | [ | |
产油丝孢酵母 C. oleaginosus | 通常大于50% | 油酸、棕榈酸、硬脂酸 | 代谢木糖能力强;能利用木质纤维素水解液及工业废弃物 | [ | |
斯达氏油脂酵母 L. starkeyi | 通常为30%-60%, 可超过70% | 油酸、棕榈酸、硬脂酸 | 能够代谢木糖;遗传工具较少 | [ | |
霉菌 | 高山被孢霉 M. alpina | 通常在40%-60%之间,可超过70% | 油酸、棕榈酸、ARA | 商业化生产ARA的主要菌株 | [ |
卷枝毛霉 M. circinelloides | 通常为25%-53% | 亚油酸、油酸、GLA | GLA含量高;调控机制研究较多;遗传改造技术相对丰富;代谢工程潜力大;可利用葡萄糖、乙酸等做碳源 | [ | |
藻类 | 裂殖壶菌 A. limacinum | 通常在30%-50%之间,可超过60% | DHA、棕榈酸 | 生长速度快、发酵密度高;高产DHA;油脂类型适合婴幼儿补充 | [ |
小球藻 C.vulgaris | 通常为41%-58% | 棕榈酸、油酸、亚油酸、ALA、GLA | ALA和GLA含量高,适宜用于食品补充剂;能够用来处理城市及工业废水 | [ | |
三角褐指藻 P. tricornutum | 通常为18%-57% | EPA、棕榈酸、棕榈油酸 | EPA产量高,不饱和脂肪酸含量尤其是ω3/ω6比值高,油脂营养价值较好 | [ | |
细菌 | 浑浊红球菌 R. opacus | 通常在20%-40%之间,可超过50% | 棕榈酸、 十七烷酸、油酸 | 超长链脂肪酸产量高;可利用木质纤维素水解液及工业废弃物 | [ |
甲基微菌 M. buryatense | 通常为10%-30% | 中短链脂肪酸 | 可以甲烷为碳源合成脂肪酸,生物转化一碳化合物潜力大 | [ |
表1 典型产油微生物及其特征
Table 1 Summary of oil-producing microbial resources and their characteristics
微生物种类 | 常见产油菌种 | 油脂含量 (占干重百分比) | 主要脂肪酸 组成 | 特征 | 参考 文献 |
---|---|---|---|---|---|
酵母菌 | 解脂耶氏酵母 Y. lipolytica | 通常在20%-45%之间,特定条件下可超过90% | 油酸、棕榈酸、棕榈油酸 | 遗传改造技术成熟;底物利用谱广,可代谢乙酸、脂肪酸、油脂、正烷烃;抗逆性较强 | [ |
圆红冬孢酵母 R. toruloides | 通常在40%-60%之间,可超过70% | 油酸、棕榈酸、硬脂酸 | 遗传工具相对丰富,可利用农林废弃物产油 | [ | |
产油丝孢酵母 C. oleaginosus | 通常大于50% | 油酸、棕榈酸、硬脂酸 | 代谢木糖能力强;能利用木质纤维素水解液及工业废弃物 | [ | |
斯达氏油脂酵母 L. starkeyi | 通常为30%-60%, 可超过70% | 油酸、棕榈酸、硬脂酸 | 能够代谢木糖;遗传工具较少 | [ | |
霉菌 | 高山被孢霉 M. alpina | 通常在40%-60%之间,可超过70% | 油酸、棕榈酸、ARA | 商业化生产ARA的主要菌株 | [ |
卷枝毛霉 M. circinelloides | 通常为25%-53% | 亚油酸、油酸、GLA | GLA含量高;调控机制研究较多;遗传改造技术相对丰富;代谢工程潜力大;可利用葡萄糖、乙酸等做碳源 | [ | |
藻类 | 裂殖壶菌 A. limacinum | 通常在30%-50%之间,可超过60% | DHA、棕榈酸 | 生长速度快、发酵密度高;高产DHA;油脂类型适合婴幼儿补充 | [ |
小球藻 C.vulgaris | 通常为41%-58% | 棕榈酸、油酸、亚油酸、ALA、GLA | ALA和GLA含量高,适宜用于食品补充剂;能够用来处理城市及工业废水 | [ | |
三角褐指藻 P. tricornutum | 通常为18%-57% | EPA、棕榈酸、棕榈油酸 | EPA产量高,不饱和脂肪酸含量尤其是ω3/ω6比值高,油脂营养价值较好 | [ | |
细菌 | 浑浊红球菌 R. opacus | 通常在20%-40%之间,可超过50% | 棕榈酸、 十七烷酸、油酸 | 超长链脂肪酸产量高;可利用木质纤维素水解液及工业废弃物 | [ |
甲基微菌 M. buryatense | 通常为10%-30% | 中短链脂肪酸 | 可以甲烷为碳源合成脂肪酸,生物转化一碳化合物潜力大 | [ |
指标 | 植物油脂 | 微生物油脂 | 参考 文献 |
---|---|---|---|
生产成本 | 较低,主要依赖于油料作物(大豆、油菜、棕榈等)的规模种植和成熟的提取工艺;生产成本主要包括种子、化肥、农药、土地租赁和劳动力等 | 较高,主要涉及菌种培养、发酵设备、碳源(葡萄糖、甘油等)和下游提取工艺;能源消耗和技术投入较高 | [ |
原料来源 | 主要来源于植物种子,如大豆、油菜籽、油棕等 | 可利用淀粉糖、工农业废弃物、非粮糖质原料和一碳化合物 | [ |
生产周期 | 长,一般为几个月到几年 | 短,一般为几天到几周 | [ |
资源利用 | 生产易受土地、水和气候变化的影响,大规模种植可能导致土地资源占用和生态破坏 | 生产不受土地和气候限制,可在发酵罐中全年生产,但需要大量碳源和营养物质;生产过程产生的废弃物需妥善处理 | [ |
产量 | 产量较高,尤其是油棕等高产植物; 举例:大豆的油脂产量通常为170-240 g/kg (约17-23%) | 产量相对较低,可通过优化发酵条件提高; 举例:解脂耶氏酵母工程改造菌株的油脂产量可达55-100 g/L,优化菌株及发酵条件可进一步提升;易规模化生产 | [ |
技术成熟度 | 生产技术成熟,已实现大规模商业化应用 | 属于新兴技术,目前的生产规模和效率仍不及植物油脂;下游提取和纯化工艺仍需优化 | [ |
市场应用 | 广泛应用于食品、生物燃料和化工领域,市场需求稳定;市场竞争激烈,利润空间有限 | 主要用于高附加值产品(如ARA、DHA)和特种油脂生产,市场需求增长迅速,但规模相对较小 | [ |
表2 植物油脂和微生物油脂的经济性分析
Table 2 Analysis of economic difference between vegetable oil and microbial oil
指标 | 植物油脂 | 微生物油脂 | 参考 文献 |
---|---|---|---|
生产成本 | 较低,主要依赖于油料作物(大豆、油菜、棕榈等)的规模种植和成熟的提取工艺;生产成本主要包括种子、化肥、农药、土地租赁和劳动力等 | 较高,主要涉及菌种培养、发酵设备、碳源(葡萄糖、甘油等)和下游提取工艺;能源消耗和技术投入较高 | [ |
原料来源 | 主要来源于植物种子,如大豆、油菜籽、油棕等 | 可利用淀粉糖、工农业废弃物、非粮糖质原料和一碳化合物 | [ |
生产周期 | 长,一般为几个月到几年 | 短,一般为几天到几周 | [ |
资源利用 | 生产易受土地、水和气候变化的影响,大规模种植可能导致土地资源占用和生态破坏 | 生产不受土地和气候限制,可在发酵罐中全年生产,但需要大量碳源和营养物质;生产过程产生的废弃物需妥善处理 | [ |
产量 | 产量较高,尤其是油棕等高产植物; 举例:大豆的油脂产量通常为170-240 g/kg (约17-23%) | 产量相对较低,可通过优化发酵条件提高; 举例:解脂耶氏酵母工程改造菌株的油脂产量可达55-100 g/L,优化菌株及发酵条件可进一步提升;易规模化生产 | [ |
技术成熟度 | 生产技术成熟,已实现大规模商业化应用 | 属于新兴技术,目前的生产规模和效率仍不及植物油脂;下游提取和纯化工艺仍需优化 | [ |
市场应用 | 广泛应用于食品、生物燃料和化工领域,市场需求稳定;市场竞争激烈,利润空间有限 | 主要用于高附加值产品(如ARA、DHA)和特种油脂生产,市场需求增长迅速,但规模相对较小 | [ |
图1 微生物合成多种长链/超长链不饱和脂肪酸的代谢途径(OA, 油酸;LA, 亚油酸;ALA, α-亚麻酸;GLA, γ-亚麻酸;EDA, 花生二烯酸;DGLA, 二高-γ-亚麻酸;STA, 硬脂酸;ETrA, 二十碳三烯酸;ETA, 二十碳四烯酸;DPA, 二十二碳五烯酸;Des, 去饱和酶;Elo, 延长酶;KCS, 3-酮酯酰-CoA合酶。虚线代表多步反应)
Fig. 1 Metabolic pathways for microbial synthesis of various long-chain/very long-chain unsaturated fatty acids(OA, oleic acid; LA, linoleic acid; ALA, alpha-linolenic acid; GLA, gamma-linolenic acid; EDA, eicosadienoic acid; DGLA, dihomo-gamma-linolenic acid; STA, stearidonic acid; ETrA, eicosatrienoic acid; ETA, eicosatetraenoic acid; DPA, docosapentaenoic acid; Des, desaturase; Elo, elongase; KCS, 3-ketoacyl-CoA synthase. The dashed line represents a multi-step reaction)
1 | 俞立波, 鲁统宇, 孙建明, 预期视角下我国大豆价格影响因素研究 [J]. 中国物价, 2024, (10):13-18. |
Yu LB, Lu TY, Sun JM, A study on the factors influencing China's soybean prices from the perspective of expectation [J]. China Price Journal, 2024, (10):13-18. | |
2 | Abdelghany AM, Zhang S, Azam M, et al., Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions [J]. The Crop Journal, 2020, 8(4):635-644. |
3 | Wu Y, Zhou R, Wang Z, et al., The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils [J]. PLoS One, 2019, 14(3):e0212879. |
4 | Li M, Luo J, Nawaz MA, et al., Phytochemistry, bioaccessibility, and bioactivities of sesame seeds: an overview [J]. Food Reviews International, 2024, 40(1):309-335. |
5 | Muhammad Anjum F, Nadeem M, Issa Khan M, et al., Nutritional and therapeutic potential of sunflower seeds: a review [J]. British Food Journal, 2012, 114(4):544-552. |
6 | Cao H, Gong W, Rong J, et al., Editorial: woody oil crops: key trait formation and regulation [J]. Frontiers in Plant Science, 2023, 14:1328990. |
7 | Zhang F, Li Z, Zhou J, et al., Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera [J]. BMC Plant Biology, 2021, 21(1):348. |
8 | Yi M, You Y, Zhang Y, et al., Highly valuable fish oil: formation process, enrichment, subsequent utilization, and storage of eicosapentaenoic acid ethyl esters [J]. Molecules, 2023, 28(2):672. |
9 | Mishra B, Mv A, Thomas A, et al., Formulated therapeutic products of animal fats and oils: future prospects of zootherapy [J]. International Journal of Pharmaceutical Investigation, 2020, 10:112-116. |
10 | Athenaki M, Gardeli C, Diamantopoulou P, et al., Lipids from yeasts and fungi: physiology, production and analytical considerations [J]. Journal of Applied Microbiology, 2018, 124(2):336-367. |
11 | Alvarez HM, Hernández MA, Lanfranconi MP, et al., Rhodococcus as Biofactories for Microbial Oil Production [J]. Molecules, 2021, 26(16). |
12 | Blazeck J, Hill A, Liu L, et al., Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production [J]. Nature Communications, 2014, 5(1):3131. |
13 | 徐鹏, 纪念王义翘教授:解脂耶氏酵母替代植物油脂的技术瓶颈及展望 [J]. 合成生物学, 2021, 2(4):509-527. |
Xu P, In memory of Prof. Daniel I.C. Wang: Engineering Yarrowia lipolytica for the production of plant-based lipids: technical constraints and perspectives for a sustainable cellular agriculture economy [J]. Synthetic Biology Journal, 2021, 2(4):509-527. | |
14 | Larroude M, Rossignol T, Nicaud JM, et al., Synthetic biology tools for engineering Yarrowia lipolytica [J]. Biotechnology Advances, 2018, 36(8):2150-2164. |
15 | Christen S, Sauer U, Intracellular characterization of aerobic glucose metabolism in seven yeast species by 13 C flux analysis and metabolomics [J]. FEMS Yeast Research, 2011, 11(3):263-272. |
16 | Spagnuolo M, Yaguchi A, Blenner M, Oleaginous yeast for biofuel and oleochemical production [J]. Current Opinion in Biotechnology, 2019, 57:73-81. |
17 | Xue SJ, Chi Z, Zhang Y, et al., Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications [J]. Critical Reviews in Biotechnology, 2018, 38(7):1049-1060. |
18 | Yaegashi J, Kirby J, Ito M, et al., Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts [J]. Biotechnol Biofuels, 2017, 10:241. |
19 | Li Y, Zhao Z, Bai F, High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y 4 in fed-batch culture [J]. Enzyme and Microbial Technology, 2007, 41(3):312-317. |
20 | Görner C, Redai V, Bracharz FR, et al., Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509 [J]. Green Chemistry, 2016, 18:2037-2046. |
21 | Yaguchi A, Robinson A, Mihealsick E, et al., Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous [J]. Microbial Cell Factories, 2017, 16(1):206. |
22 | Totani N, Watanabe A, Oba K, An improved method of arachidonic acid production by Mortierella alpina [J]. Journal of Japan Oil Chemists Society, 1987, 36:328-331. |
23 | Takeno S, Sakuradani E, Tomi A, et al., Transformation of oil-producing fungus, Mortierella alpina 1S-4, using zeocin, and application to arachidonic acid production [J]. Journal of Bioscience and Bioengineering, 2005, 100(6):617-622. |
24 | Sakuradani E, Ando A, Shimizu S, et al., Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4 [J]. Journal of Bioscience and Bioengineering, 2013, 116(4):417-422. |
25 | Zhang XY, Li B, Huang BC, et al., Production, biosynthesis, and commercial applications of fatty acids from oleaginous fungi [J]. Frontiers in Nutrition, 2022, 9:873657. |
26 | Fazili ABA, Shah AM, Zan X, et al., Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production [J]. Microbial Cell Factories, 2022, 21(1):29. |
27 | Han X, Li Z, Wen Y, et al., Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways [J]. Biotechnology for Biofuels, 2021, 14(1):70. |
28 | Barclay W, Weaver C, Metz J, et al., 4 - development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update, in: Z. Cohen, C. Ratledge (Eds.), Single Cell Oils (Second Edition), AOCS Press2010, pp. 75-96. |
29 | Matos ÂP, Feller R, Moecke EHS, et al., Chemical characterization of six microalgae with potential utility for food application [J]. Journal of the American Oil Chemists’ Society, 2016, 93(7):963-972. |
30 | Rizwan M, Mujtaba G, Memon SA, et al., Exploring the potential of microalgae for new biotechnology applications and beyond: A review [J]. Renewable and Sustainable Energy Reviews, 2018, 92:394-404. |
31 | Xue Z, Yu Y, Yu W, et al., Development Prospect and Preparation Technology of Edible Oil From Microalgae [J]. Frontiers in Marine Science, 2020, 7:402. |
32 | Kim HM, Chae TU, Choi SY, et al., Engineering of an oleaginous bacterium for the production of fatty acids and fuels [J]. Nature Chemical Biology, 2019, 15(7):721-729. |
33 | Gientka I, Gadaszewska M, Błażejak S, et al., Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol [J]. European Food Research and Technology, 2017, 243(2):275-286. |
34 | Garg S, Wu H, Clomburg JM, et al., Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C [J]. Metabolic Engineering, 2018, 48:175-183. |
35 | Kikukawa H, Sakuradani E, Ando A, et al., Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: a review [J]. Journal of Advanced Research, 2018, 11:15-22. |
36 | Jin H, Zhang H, Zhou Z, et al., Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production [J]. Biotechnology Bioengineering, 2020, 117(1):96-108. |
37 | Jovanovic S, Dietrich D, Becker J, et al., Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and pharmaceuticals [J]. Current Opinion in Biotechnology, 2021, 69:199-211. |
38 | Su H, Shi P, Shen Z, et al., High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering [J]. Communicationa Biology, 2023, 6(1):1125. |
39 | Pfleger BF, Gossing M, Nielsen J, Metabolic engineering strategies for microbial synthesis of oleochemicals [J]. Metabolic Engineering, 2015, 29:1-11. |
40 | Yan Q, Pfleger BF, Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals [J]. Metabolic Engineering, 2020, 58:35-46. |
41 | Khan I, Hussain M, Jiang B, et al., Omega-3 long-chain polyunsaturated fatty acids: metabolism and health implications [J]. Progress in Lipid Research, 2023, 92:101255. |
42 | Lennen RM, Pfleger BF, Microbial production of fatty acid-derived fuels and chemicals [J]. Current Opinion in Biotechnology, 2013, 24(6):1044-1053. |
43 | Rahim MA, Ayub H, Sehrish A, et al., Essential components from plant source oils: a review on extraction, detection, identification, and quantification [J]. Molecules, 2023, 28(19):6881. |
44 | Gallego-García M, Susmozas A, Negro MJ, et al., Challenges and prospects of yeast-based microbial oil production within a biorefinery concept [J]. Microbial Cell Factories, 2023, 22(1):246. |
45 | Ukegbu PO, Onwuzuruike UA, Obasi NE, Production of edible oil from microorganisms, in: O.O. Babalola (Ed.), Food Security and Safety: African Perspectives, Springer International Publishing, Cham, 2021, pp. 563-592. |
46 | Jin H, Yang X, Zhao H, et al., Genetic analysis of protein content and oil content in soybean by genome-wide association study [J]. Frontiers in Plant Science, 2023, 14:1182771. |
47 | Duan Z, Li Q, Wang H, et al., Genetic regulatory networks of soybean seed size, oil and protein contents [J]. Frontiers in Plant Science, 2023, 14:1160418. |
48 | Qiao K, Imam Abidi SH, Liu H, et al., Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica [J]. Metabolic Engineering, 2015, 29:56-65. |
49 | Qiao K, Wasylenko TM, Zhou K, et al., Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism [J]. Nature Biotechnology, 2017, 35(2):173-177. |
50 | Cortés-Peña YR, Woodruff W, Banerjee S, et al., Integration of plant and microbial oil processing at oilcane biorefineries for more sustainable biofuel production [J]. GCB Bioenergy, 2024, 16(11):e13183. |
51 | Ludwiczak A, Zieliński T, Sibińska E, et al., Comparative analysis of microbial contamination in diesel fuels using MALDI-TOF MS [J]. Scientific Reports, 2025, 15(1):4525. |
52 | Kadir APG, Oil palm economic performance in Malaysia and R&D progress in 2019 [J]. Journal of Oil Palm Research, 2020:1-32. |
53 | Park SB, Lee YR, Yun JH, et al., Towards maximizing biomass and lipid productivity: high-throughput screening assay for prospecting heterotrophic growth for new microalgal isolates [J]. Microbial Cell Factories, 2024, 23(1):299. |
54 | Meijaard EM, Virah-Sawmy M, Newing HS, et al., Exploring the future of vegetable oils : oil crop implications : fats, forests, forecasts, and futures, 2024. |
55 | Song X-P, Hansen MC, Potapov P, et al., Massive soybean expansion in South America since 2000 and implications for conservation [J]. Nature Sustainability, 2021, 4(9):784-792. |
56 | Clemente TE, Cahoon EB, oil Soybean : genetic approaches for modification of functionality and total content [J]. Plant Physiology, 2009, 151(3):1030-1040. |
57 | Lardizabal K, Effertz R, Levering C, et al., Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean [J]. Plant Physiology, 2008, 148(1):89-96. |
58 | Song QX, Li QT, Liu YF, et al., Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants [J]. Journal of Experimental Botany, 2013, 64(14):4329-4341. |
59 | Wang HW, Zhang B, Hao YJ, et al., The soybean dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants [J]. the Plant Journal, 2007, 52(4):716-729. |
60 | Liu YF, Li QT, Lu X, et al., Soybean GmMYB73 promotes lipid accumulation in transgenic plants [J]. BMC Plant Biology, 2014, 14:73. |
61 | 刘虹洁, 王金星, 刘昭军, et al., 大豆种子蛋白和油脂含量调控的研究进展 [J]. 热带亚热带植物学报, 2022, 30(06):791-800. |
Liu HJ, Wang JX, Liu ZJ, et al., Research progress on protein and oil contents of soybean seeds [J]. Journal of Tropical and Subtropical Botany, 2022, 30(06):791-800. | |
62 | Tokel D, Erkencioglu BN, Production and trade of oil crops, and their contribution to the world economy, in: H. Tombuloglu, T. Unver, G. Tombuloglu, K.R. Hakeem (Eds.), Oil Crop Genomics, Springer International Publishing, Cham, 2021, pp. 415-427. |
63 | Chew TL, Bhatia S, Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery [J]. Bioresource Technology, 2008, 99(17):7911-7922. |
64 | Tan KT, Lee KT, Mohamed AR, et al., Palm oil: addressing issues and towards sustainable development [J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):420-427. |
65 | Bellou S, Triantaphyllidou IE, Aggeli D, et al., Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content [J]. Current Opinion in Biotechnology, 2016, 37:24-35. |
66 | Schörken U, Kempers P, biotechnology Lipid : industrially relevant production processes [J]. European Journal of Lipid Science and Technology, 2009, 111:627-645. |
67 | Ratledge C, Microbial oils: an introductory overview of current status and future prospects [J]. OCL-Oilseeds and Fats Crops and Lipids, 2013, 20:D602. |
68 | Hassane AMA, Eldiehy KSH, Saha D, et al., Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies [J]. Archives of Microbiology, 2024, 206(7):338. |
69 | Meng X, Yang J, Xu X, et al., Biodiesel production from oleaginous microorganisms [J]. Renewable Energy, 2009, 34(1):1-5. |
70 | 赵宗保, 胡翠敏, 能源微生物油脂技术进展 [J]. 生物工程学报, 2011, 27(03):427-435. |
Zhao ZB, Hu CM, Progress in bioenergy-oriented microbial lipid technology [J]. Chinese Journal of Biotechnology, 2011, 27(03):427-435. | |
71 | Saenge C, Cheirsilp B, Suksaroge TT, et al., Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids [J]. Process Biochemistry, 2011, 46(1):210-218. |
72 | Liang Y, Tang T, Siddaramu T, et al., Lipid production from sweet sorghum bagasse through yeast fermentation [J]. Renewable Energy, 2012, 40(1):130-136. |
73 | Banerjee S, Singh V, Economic and environmental bottlenecks in the industrial-scale production of lipid-derived biofuels from oleaginous yeasts : a review of the current trends and future prospects [J]. GCB Bioenergy, 2024, 16(7):e13173. |
74 | Qadeer S, Khalid A, Mahmood S, et al., Utilizing oleaginous bacteria and fungi for cleaner energy production [J]. Journal of Cleaner Production, 2017, 168:917-928. |
75 | Infante EG, Gomide FTF, Secchi AR, et al., Diesel production from lignocellulosic residues: trends, challenges and opportunities [J]. Biofuels, Bioproducts and Biorefining, 2024, 18(5):1711-1738. |
76 | Zhang B, Khushik FA, Zhan B, et al., Transformation of lignocellulose to starch-like carbohydrates by organic acid-catalyzed pretreatment and biological detoxification [J]. Biotechnology Bioengineering, 2021, 118(10):4105-4118. |
77 | Liu G, Zhang Q, Li H, et al., Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production [J]. Biotechnology Bioengineering, 2018, 115(1):60-69. |
78 | Liu Q, Lu M, Jin C, et al., Ultra-centrifugation force in adaptive evolution changes the cell structure of oleaginous yeast Trichosporon cutaneum into a favorable space for lipid accumulation [J]. Biotechnology Bioengineering, 2022, 119(6):1509-1521. |
79 | Cotton CAR, Edlich-Muth C, Bar-Even A, Reinforcing carbon fixation : CO2 reduction replacing and supporting carboxylation [J]. Current Opinion in Biotechnology, 2018, 49:49-56. |
80 | Li A, Cao X, Fu R, et al., Biocatalysis of CO2 and CH4: key enzymes and challenges [J]. Biotechnology Advances, 2024, 72:108347. |
81 | 赵亮, 李振帅, 付丽平, et al., 生物转化一碳化合物原料产油脂与单细胞蛋白研究进展 [J]. 合成生物学, 2024, 5:1-19. |
Zhao L, Li ZS, Fu LP, et al., Progress in biomanufacturing of lipids and single cell protein from one-carbon compounds [J]. Synthetic Biology Journal, 2024, 5:1-19. | |
82 | Kinney Anthony J, Cahoon Edgar B, Damude Howard G, et al., Production of very long chain polyunsaturated fatty acids in oilseed plants, DU PONT, 2011. |
83 | Ruiz-López N, Sayanova O, Napier JA, et al., Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants [J]. Journal of Experimental Botany, 2012, 63(7):2397-2410. |
84 | Hudson KA, Hudson ME, Genetic variation for seed oil biosynthesis in soybean [J]. Plant Molecular Biology Reporter, 2021, 39(4):700-709. |
85 | Zhou B, Fei W, Yang S, et al., Alteration of the fatty acid composition of Brassica napus L. via overexpression of phospholipid: diacylglycerol acyltransferase 1 from Sapium sebiferum (L.) Roxb [J]. Plant Science, 2020, 298:110562. |
86 | Fenyk S, Woodfield HK, Romsdahl TB, et al., Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation [J]. Biochemical Journal, 2022, 479(6):805-823. |
87 | Wu D, Zhang K, Li CY, et al., Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens) [J]. Gene, 2023, 889:147808. |
88 | Sinclair AJ, Jayasooriya A, 16-nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils, in: Z. Cohen, C. Ratledge (Eds.), Single Cell Oils (Second Edition), AOCS Press2010, pp. 351-368. |
89 | Xie D, Jackson EN, Zhu Q, Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica : from fundamental research to commercial production [J]. Applied Microbiology and Biotechnology, 2015, 99(4):1599-1610. |
90 | Xue Z, Sharpe PL, Hong SP, et al., Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica [J]. Nature Biotechnology, 2013, 31(8):734-740. |
91 | Du F, Li Z, Li X, et al., Optimizing multicopy chromosomal integration for stable high-performing strains [J]. Nature Chemical Biology, 2024, 20(12):1670-1679. |
92 | Cui J, Chen H, Tang X, et al., Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use [J]. Applied Microbiology and Biotechnology, 2020, 104(23):9947-9963. |
93 | Chakraborty P, Kumar R, Karn S, et al., Recent trends in metabolic engineering for microbial production of value-added natural products [J]. Biochemical Engineering Journal, 2025, 213:109537. |
94 | Rani H, Sharma S, Bala M, Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects : a review [J]. Journal of Food Process Engineering, 2021, 44(11):e13851. |
95 | Zeng W, Liu X, Chao Y, et al., The effect of extraction methods on the components and quality of Camellia oleifera oil: focusing on the flavor and lipidomics [J]. Food Chemistry, 2024, 447:139046. |
96 | Zhang F, Zhu F, Chen B, et al., Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review [J]. Food Research International, 2022, 156:111159. |
97 | Kapoore RV, Butler TO, Pandhal J, et al., Microwave-assisted extraction for microalgae: from biofuels to biorefinery [J]. Biology (Basel), 2018, 7(1):18. |
98 | Grajzer M, Szmalcel K, Kuźmiński Ł, et al., Characteristics and antioxidant potential of cold-pressed oils—possible strategies to improve oil stability [J]. Foods, 2020, 9(11):1630. |
99 | Symoniuk E, Wroniak M, Napiórkowska K, et al., Oxidative stability and antioxidant activity of selected cold-pressed oils and oils mixtures [J]. Foods, 2022, 11(11):1597. |
100 | Postma PR, Miron TL, Olivieri G, et al., Mild disintegration of the green microalgae Chlorella vulgaris using bead milling [J]. Bioresource Technology, 2015, 184:297-304. |
101 | Meullemiestre A, Breil C, Abert-Vian M, et al., Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application [J]. Bioresource Technology, 2016, 211:190-199. |
102 | Ekpeni LEN, Benyounis KY, Nkem-Ekpeni FF, et al., Underlying factors to consider in improving energy yield from biomass source through yeast use on high-pressure homogenizer (hph) [J]. Energy, 2015, 81:74-83. |
103 | Liu C, Wufuer A, Kong L, et al., Organic solvent extraction-assisted catalytic hydrothermal liquefaction of algae to bio-oil [J]. RSC Advances, 2018, 8(55):31717-31724. |
104 | Wrona O, Rafińska K, Możeński C, et al., Supercritical fluid extraction of bioactive compounds from plant materials [J]. Journal of AOAC INTERNATIONAL, 2019, 100(6):1624-1635. |
105 | Danlami JM, Arsad A, Zaini MAA, et al., A comparative study of various oil extraction techniques from plants [J]. Reviews in Chemical Engineering, 2014, 30(6):605-626. |
106 | Wang C, Duan Z, Fan L, et al., Supercritical CO₂ fluid extraction of Elaeagnus mollis diels seed oil and its antioxidant ability [J]. Molecules, 2019, 24(5):911. |
107 | Khoo HE, Azlan A, Abd Kadir NAA, Fatty acid profile, phytochemicals, and other substances in Canarium odontophyllum fat extracted using supercritical carbon dioxide [J]. Frontiers in Chemistry, 2019, 7:5. |
108 | Cheng CH, Du TB, Pi HC, et al., Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2 [J]. Bioresource Technology, 2011, 102(21):10151-10153. |
109 | Gao Y, Ding Z, Liu Y, et al., Aqueous enzymatic extraction: a green, environmentally friendly and sustainable oil extraction technology [J]. Trends in Food Science & Technology, 2024, 144:104315. |
110 | Jin G, Yang F, Hu C, et al., Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides [J]. Bioresource Technology, 2012, 111:378-382. |
111 | Zhang J, Lyu L, Liang S, et al., Yeast lipid technology for biomass refinery [J]. Scientia Sinica Chimica, 2025, 55(1):28-36. |
112 | Cravotto G, Boffa L, Mantegna S, et al., Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves [J]. Ultrasonics Sonochemistry, 2008, 15(5):898-902. |
113 | Thilakarathna RCN, Siow LF, Tang T-K, et al., A review on application of ultrasound and ultrasound assisted technology for seed oil extraction [J]. Journal of Food Science and Technology, 2023, 60(4):1222-1236. |
114 | Matei PL, Deleanu I, Brezoiu AM, et al., Ultrasound-assisted extraction of blackberry seed oil: optimization and oil characterization [J]. Molecules, 2023, 28(6):2486. |
115 | Zhang X, Yan S, Tyagi RD, et al., Ultrasonication assisted lipid extraction from oleaginous microorganisms [J]. Bioresource Technology, 2014, 158:253-261. |
116 | Lu Y, Xiong R, Tang Y, et al., An overview of the detection methods to the edible oil oxidation degree: Recent progress, challenges, and perspectives [J]. Food Chemistry, 2025, 463:141443. |
117 | Ecker J, Scherer M, Schmitz G, et al., A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters [J]. Journal of Chromatography B, 2012, 897:98-104. |
118 | Patel MK, Das S, Thakur JK, GC-MS-based analysis of methanol : chloroform-extracted fatty acids from plant tissues [J]. Bio Protocol, 2018, 8(18):e3014. |
119 | Zhong H, Chai J, Yu C, et al., Rapid detection of oil content in Camellia oleifera kernels based on hyperspectral imaging and machine learning [J]. Journal of Food Composition and Analysis, 2025, 137:106899. |
120 | Yuan W, Zhou H, Zhang C, et al., Prediction of oil content in Camellia oleifera seeds based on deep learning and hyperspectral imaging [J]. Industrial Crops and Products, 2024, 222:119662. |
121 | Song A, Wang C, Wen W, et al., Predicting the oil content of individual corn kernels combining NIR-HSI and multi-stage parameter optimization techniques [J]. Food Chemistry, 2024, 461:140932. |
122 | He Y, Wang X, Ma B, et al., Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution [J]. Biotechnology Advances, 2019, 37(6):107388. |
123 | Prado E, Eklouh-Molinier C, Enez F, et al., Prediction of fatty acids composition in the rainbow trout Oncorhynchus mykiss by using Raman micro-spectroscopy [J]. Anal Chim Acta, 2022, 1191:339212. |
124 | Sasaki R, Toda S, Sakamoto T, et al., Simultaneous imaging and characterization of polyunsaturated fatty acids, carotenoids, and microcrystalline guanine in single Aurantiochytrium limacinum cells with linear and nonlinear Raman microspectroscopy [J]. J Phys Chem B, 2023, 127(12):2708-2718. |
[1] | 应汉杰, 柳东, 王振宇, 沈涛, 庄伟, 朱晨杰. 工业生物制造与“碳中和”目标探讨[J]. 合成生物学, 2025, 6(1): 1-7. |
[2] | 张以恒, 陈雪梅, 石婷. 生物制造的市本率(PC值):定义与应用[J]. 合成生物学, 2025, 6(1): 8-17. |
[3] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[4] | 张以恒. 中国哲学思想“道法术器”对生物制造的启示[J]. 合成生物学, 2024, 5(6): 1231-1241. |
[5] | 柴猛, 王风清, 魏东芝. 综合利用木质纤维素生物转化合成有机酸[J]. 合成生物学, 2024, 5(6): 1242-1263. |
[6] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[7] | 赵亮, 李振帅, 付丽平, 吕明, 王士安, 张全, 刘立成, 李福利, 刘自勇. 生物转化一碳化合物原料产油脂与单细胞蛋白研究进展[J]. 合成生物学, 2024, 5(6): 1300-1318. |
[8] | 刘建明, 张炽坚, 张冰, 曾安平. 巴氏梭菌作为工业底盘细胞高效生产1,3-丙二醇——从代谢工程和菌种进化到过程工程和产品分离[J]. 合成生物学, 2024, 5(6): 1386-1403. |
[9] | 程峰, 邹树平, 徐建妙, 汤恒, 薛亚平, 郑裕国. 生物高纯精草:高光学纯L-草铵膦生物制造的创新与发展[J]. 合成生物学, 2024, 5(6): 1404-1418. |
[10] | 张晨悦, 马英群, 王兴, 傅容湛, 黄技伟, 花秀夫, 范代娣, 费强. 全碳素生物转化沼气制备生物航煤制造路线研究进展[J]. 合成生物学, 2023, 4(6): 1246-1258. |
[11] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
[12] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[13] | 张璨, 施李杨, 戴建武. 细胞培养肉用生物材料的设计[J]. 合成生物学, 2022, 3(4): 676-689. |
[14] | 王倩, 祁庆生. 聚羟基脂肪酸酯的低碳生物制造:基于碳转化率的分析与应用[J]. 合成生物学, 2022, 3(4): 748-762. |
[15] | 任杰, 曾安平. 基于二氧化碳的生物制造:从基础研究到工业应用的挑战[J]. 合成生物学, 2021, 2(6): 854-862. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||