合成生物学 ›› 2020, Vol. 1 ›› Issue (4): 395-412.DOI: 10.12211/2096-8280.2020-037
邵洁1,2, 刘海利1, 王勇1
收稿日期:
2020-03-30
修回日期:
2020-05-02
出版日期:
2020-08-31
发布日期:
2020-10-09
通讯作者:
王勇
作者简介:
邵洁(1993—),女,博士研究生,主要研究方向为天然产物合成生物学。E-mail:基金资助:
Jie SHAO1,2, Haili LIU1, Yong WANG1
Received:
2020-03-30
Revised:
2020-05-02
Online:
2020-08-31
Published:
2020-10-09
Contact:
Yong WANG
摘要:
得益于近年来系统生物学和分子生物学等多方面技术的发展,合成生物学的研究对象正逐步过渡到更为复杂的多细胞体系。因此植物合成生物学正成为合成生物学的“下一篇章”。植物拥有丰富的内膜系统和细胞器、高度特化的生物合成基因簇、精细的代谢调控网络,为开展相关研究提供了理想的模式体系。以植物为底盘的合成生物学研究,如设计检测环境变化的植物传感器、开发精准修饰的基因编辑技术、建立高效异源合成代谢途径等,不仅有助于人类加深对复杂生命运行规律的理解,还有望为解决农业生产、生物制药、能源环境等方面的困境与难题提供新策略,实现可持续发展。本文总结近期植物合成生物学在基础研究方面的进展,主要涉及元件的表征定量标准化、遗传装置的理性设计、使能技术的开发应用,还在此基础上回顾了该领域在农业和工业的实际应用,提出未来发展亟需解决的问题及延伸应用。
中图分类号:
邵洁, 刘海利, 王勇. 植物合成生物学的现在与未来[J]. 合成生物学, 2020, 1(4): 395-412.
Jie SHAO, Haili LIU, Yong WANG. Present and future of plant synthetic biology[J]. Synthetic Biology Journal, 2020, 1(4): 395-412.
1 | MORTIMER J C. Plant synthetic biology could drive a revolution in biofuels and medicine [J]. Experimental Biology and Medicine, 2019, 244(4): 323-331. |
2 | SONNEWALD U. Plant synthetic biology: one answer to global challenges [J]. Journal of Integrative Plant Biology, 2018, 60(12): 1124-1126. |
3 | FERNANDEZ-FUENTES N, ANTUNES M S, MOREY K J, et al. Programmable ligand detection system in plants through a synthetic signal transduction pathway [J]. PLoS One, 2011, 6(1): e16292. |
4 | MUELLER K, SIEGEL D, JAHNKE F R, et al. A red light-controlled synthetic gene expression switch for plant systems [J]. Molecular Biosystems, 2014, 10(7): 1679-1688. |
5 | PATRON N J, ORZAEZ D, MARILLONNET S, et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts [J]. New Phytologist, 2015, 209(2): 885. |
6 | SCHAUMBERG K A, ANTUNES M S, KASSAW T K, et al. Quantitative characterization of genetic parts and circuits for plant synthetic biology [J]. Nature Methods, 2016, 13(1): 94-100. |
7 | FUENTES P, ZHOU F, ERBAN A, et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop [J]. elife, 2016, 5: e13364. |
8 | PATERAKI I, ANDERSEN-RANBERG J, JENSEN N B, et al. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii [J]. elife, 2017, 6: e23001. |
9 | LU Y, ZHU J K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 System [J]. Molecular Plant, 2017, 10(3): 523-525. |
10 | LI C, ZONG Y, WANG Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion [J]. Genome Biology, 2018, 19: 59. |
11 | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion [J]. Nature Biotechnology, 2017, 35(5): 441-443. |
12 | ZONG Y, WANG Y, LI C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion [J]. Nature Biotechnology, 2017, 35(5): 438-440. |
13 | CHEN Y, WANG Z, NI H, et al. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis [J]. Science China-Life Sciences, 2017, 60(5): 520-523. |
14 | SOUTH P F. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 365(6455): 768-768. |
15 | DEMIRER G S, ZHANG H, MATOS J L, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants [J]. Nature Nanotechnology, 2019, 14(5): 456-464. |
16 | KWAK S Y, LEW T T S, SWEENEY C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers [J]. Nature Nanotechnology, 2019, 14(5): 447-455. |
17 | LI J H, MUTANDA I, WANG K B, et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana [J]. Nature Communications, 2019, 10(1): 4850. |
18 | LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors [J]. Nature Biotechnology, 2020, 38: 875-882. |
19 | FEIKE D, KOROLEV A V, SOUMPOUROU E, et al. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots [J]. Plant Biotechnology Journal, 2019, 17(12): 2234-2245. |
20 | PEREZ-GONZALEZ A, CARO E. Benefits of using genomic insulators flanking transgenes to increase expression and avoid positional effects [J]. Scientific Reports, 2019, 9(1): 8474. |
21 | HAO Y, ZONG W, ZENG D, et al. Shortened snRNA promoters for efficient CRISPR/Cas-based multiplex genome editing in monocot plants [J]. Science China-Life Sciences, 2020, 63: 933-935. |
22 | HAMMER S C, KUBIK G, WATKINS E, et al. Anti-Markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis [J]. Science, 2017, 358(6360): 215-218. |
23 | CHEN K, HUANG X Y, KAN S B J, et al. Enzymatic construction of highly strained carbocycles [J]. Science, 2018, 360(6384): 71-75. |
24 | ZHANG R J K, CHEN K, HUANG X Y, et al. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C—H functionalization [J]. Nature, 2019, 565(7737): 67-72. |
25 | WALIA A, WAADT R, JONES A M. Genetically encoded biosensors in plants: pathways to discovery [J]. Annual Review of Plant Biology, 2018, 69: 497-524. |
26 | LUO Y, SCHOLL S, DOERING A, et al. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis [J]. Nature Plants, 2015, 1: 15094. |
27 | GJETTING S K, YTTING C K, SCHULZ A, et al. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor [J]. Journal of Experimental Botany, 2012, 63(8): 3207-3218. |
28 | WILDE R J, SHUFFLEBOTTOM D, COOKE S, et al. Control of gene-expression in tobacco cells using a bacterial operator repressor system [J]. EMBO Journal, 1992, 11(4): 1251-1259. |
29 | WEINMANN P, GOSSEN M, HILLEN W, et al. A chimeric transactivator allows tetracycline-responsive gene-expression in whole plants [J]. Plant Journal, 1994, 5(4): 559-569. |
30 | ROBERTS G R, GAROOSI G A, KOROLEVA O, et al. The alc-GR system: a modified alc gene switch designed for use in plant tissue culture [J]. Plant Physiology, 2005, 138(3): 1259-1267. |
31 | AOYAMA T, CHUA N H. A glucocorticoid-mediated transcriptional induction system in transgenic plants [J]. Plant Journal, 1997, 11(3): 605-612. |
32 | BOHMDORFER G, TRAMONTANO A, LUXA K, et al. A synthetic biology approach allows inducible retrotransposition in whole plants [J]. Systems and Synthetic Biology, 2010, 4(2): 133-138. |
33 | KOLAR K, KNOBLOCH C, STORK H, et al. OptoBase: a web platform for molecular optogenetics [J]. ACS Synthetic Biology, 2018, 7(7): 1825-1828. |
34 | CHATELLE C, OCHOA-FERNANDEZ R, ENGESSER R, et al. A green-light-responsive system for the control of transgene expression in mammalian and plant cells [J]. ACS Synthetic Biology, 2018, 7(5): 1349-1358. |
35 | BERNABE-ORTS J M, QUIJANO-RUBIO A, VAZQUEZ-VILAR M, et al. A memory switch for plant synthetic biology based on the phage ΦC31 integration system [J]. Nucleic Acids Research, 2020, 48(6): 3379-3394. |
36 | VILLALOBOS A, NESS J E, GUSTAFSSON C, et al. Gene Designer: a synthetic biology tool for constructing artificial DNA segments [J]. BMC Bioinformatics, 2006, 7: 285. |
37 | COLL A, WILSON M L, GRUDEN K, et al. Rule-based design of plant expression vectors using GenoCAD [J]. PLoS One, 2015, 10(8): e136004. |
38 | DASIKA M S, MARANAS C D. OptCircuit: an optimization based method for computational design of genetic circuits [J]. BMC Systems Biology, 2008, 2: 24. |
39 | WEEDING E, HOULE J, KAZNESSIS Y N. SynBioSS designer: a web-based tool for the automated generation of kinetic models for synthetic biological constructs [J]. Briefings in Bioinformatics, 2010, 11(4): 394-402. |
40 | ISHII N, NAKAHIGASHI K, BABA T, et al. Multiple high-throughput analyses monitor the response of E.coli to perturbations [J]. Science, 2007, 316(5824): 593-597. |
41 | DUPUY L, MACKENZIE J, HASELOFF J. Coordination of plant cell division and expansion in a simple morphogenetic system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(6): 2711-2716. |
42 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases [J]. Nature Methods, 2009, 6(5): 343-345. |
43 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability [J]. PLoS One, 2008, 3(11): e3647. |
44 | SARRION-PERDIGONES A, ELVIRA FALCONI E, ZANDALINAS S I, et al. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules [J]. PLoS One, 2011, 6(7): e21622. |
45 | LAMPROPOULOS A, SUTIKOVIC Z, WENZL C, et al. GreenGate - a novel, versatile, and efficient cloning system for plant transgenesis [J]. PLoS One, 2013, 8(12): e83043. |
46 | ENGLER C, YOULES M, GRUETZNER R, et al. A Golden Gate modular cloning toolbox for plants [J]. ACS Synthetic Biology, 2014, 3(11): 839-843. |
47 | POLLAK B, CERDA A, DELMANS M, et al. Loop assembly: a simple and open system for recursive fabrication of DNA circuits [J]. New Phytologist, 2019, 222(1): 628-640. |
48 | HOCHREIN L, MACHENS F, GREMMELS J, et al. AssemblX: a user-friendly toolkit for rapid and reliable multi-gene assemblies [J]. Nucleic Acids Research, 2017, 45(10): e80. |
49 | SHIH P M, VUU K, MANSOORI N, et al. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology [J]. Nature Communications, 2016, 7: 13215. |
50 | ORTIZ L, PAVAN M, MCCARTHY L, et al. Automated robotic liquid handling assembly of modular DNA devices [J]. Journal of Visualized Experiments, 2017, 130: 54703. |
51 |
STORCH M, HAINES M C, BALDWIN G S. DNA-BOT: a low-cost, automated DNA assembly platform for synthetic biology [J]. Synthetic Biology, 2020. DOI: 10.1093/synbio/ysaa010.
DOI |
52 | ZHANG Y, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science [J]. Nature Plants, 2019, 5(8): 778-794. |
53 | MA X, ZHANG Q, ZHU Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants [J]. Molecular Plant, 2015, 8(8): 1274-1284. |
54 | DECAESTECKER W, BUONO R A, PFEIFFER M L, et al. CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis [J]. Plant Cell, 2019, 31(12): 2868-2887. |
55 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420-424. |
56 | JIN S, ZONG Y, GAO Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice [J]. Science, 2019, 364(6437): 292-295. |
57 | LIN Q, ZONG Y, XUE C, et al. Prime genome editing in rice and wheat [J]. Nature Biotechnology, 2020, 38: 582-585. |
58 | METJE-SPRINK J, MENZ J, MODRZEJEWSKI D, et al. DNA-free genome editing: past, present and future [J]. Frontiers in Plant Science, 2018, 9: 1957. |
59 | MALNOY M, VIOLA R, JUNG M-H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins [J]. Frontiers in Plant Science, 2016, 7: 1904. |
60 | ANDERSSON M, TURESSON H, OLSSON N, et al. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery [J]. Physiologia Plantarum, 2018, 164(4): 378-384. |
61 | PIATEK A, ALI Z, BAAZIM H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors [J]. Plant Biotechnology Journal, 2015, 13(4): 578-589. |
62 | TIWARI S B, BELACHEW A, MA S F, et al. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors [J]. Plant Journal, 2012, 70(5): 855-865. |
63 | LI Z, ZHANG D, XIONG X, et al. A potent Cas9-derived gene activator for plant and mammalian cells [J]. Nature Plants, 2017, 3(12): 930-936. |
64 | LOWDER L G, ZHOU J, ZHANG Y, et al. Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems [J]. Molecular Plant, 2018, 11(2): 245-256. |
65 | GALLEGO-BARTOLOME J, GARDINER J, LIU W, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): E2125-E2134. |
66 | PAPIKIAN A, LIU W, GALLEGO-BARTOLOME J, et al. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems [J]. Nature Communications, 2019, 10: 729. |
67 | CUNNINGHAM F J, GOH N S, DEMIRER G S, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering [J]. Trends in Biotechnology, 2018, 36(9): 882-897. |
68 | ZHANG H, DEMIRER G S, ZHANG H L, et al. DNA nanostructures coordinate gene silencing in mature plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15): 7543-7548. |
69 | DOYLE C, HIGGINBOTTOM K, SWIFT T A, et al. A simple method for spray-on gene editing in planta. [EB/OL]. [2019-11-07]. . |
70 | MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems [J]. Nature Biotechnology, 2019, 38(1): 84-89. |
71 | FUENTES P, ARMAREGO-MARRIOTT T, BOCK R. Plastid transformation and its application in metabolic engineering [J]. Current Opinion in Biotechnology, 2018, 49: 10-15. |
72 | SIDOROV V A, KASTEN D, PANG S Z, et al. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker [J]. Plant Journal, 1999, 19(2): 209-216. |
73 | RUF S, HERMANN M, BERGER I J, et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit [J]. Nature Biotechnology, 2001, 19(9): 870-875. |
74 | KANAMOTO H, YAMASHITA A, ASAO H, et al. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids [J]. Transgenic Research, 2006, 15(2): 205-217. |
75 | OKUMURA S, SAWADA M, PARK Y W, et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts [J]. Transgenic Research, 2006, 15(5): 637-646. |
76 | RUF S, FORNER J, HASSE C, et al. High-efficiency generation of fertile transplastomic Arabidopsis plants [J]. Nature Plants, 2019, 5(3): 282-289. |
77 | ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition [J]. Current Opinion in Biotechnology, 2019, 61: 102-109. |
78 | ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8529-8536. |
79 | LONG B M, HEE W Y, SHARWOOD R E, et al. Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts [J]. Nature Communications, 2018, 9: 3570. |
80 | SCHWANDER T, BORZYSKOWSKI L S VON, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
81 | TRUDEAU D L, EDLICH-MUTH C, ZARZYCKI J, et al. Design and in vitro realization of carbon-conserving photorespiration [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(49): E11455-E11464. |
82 | PAPANATSIOU M, PETERSEN J, HENDERSON L, et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth [J]. Science, 2019, 363(6434): 1456-1459. |
83 | HART J E, SULLIVAN S, HERMANOWICZ P, et al. Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12550-12557. |
84 | VICENTE E J, DEAN D R. Keeping the nitrogen-fixation dream alive [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(12): 3009-3011. |
85 | ALLEN R S, TILBROOK K, WARDEN A C, et al. Expression of 16 nitrogenase proteins within the plant mitochondrial matrix [J]. Frontiers in Plant Science, 2017, 8: 287. |
86 | ROGERS C, OLDROYD G E D. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals [J]. Journal of Experimental Botany, 2014, 65(8): 1939-1946. |
87 | GEDDES B A, PARAMASIVAN P, JOFFRIN A, et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria [J]. Nature Communications, 2019, 10: 3430. |
88 | WATERS M T, GUTJAHR C, BENNETT T, et al. Strigolactone signaling and evolution [J]. Annual Review of Plant Biology, 2017, 68: 291-322. |
89 | SUZUKI N, RIVERO R M, SHULAEV V, et al. Abiotic and biotic stress combinations [J]. New Phytologist, 2014, 203(1): 32-43. |
90 | GLOWACKA K, KROMDIJK J, KUCERA K, et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop [J]. Nature Communications, 2018, 9: 868. |
91 | BORLAND A M, GRIFFITHS H, HARTWELL J, et al. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands [J]. Journal of Experimental Botany, 2009, 60(10): 2879-2896. |
92 | YANG X, CUSHMAN J C, BORLAND A M, et al. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world [J]. New Phytologist, 2015, 207(3): 491-504. |
93 | VAIDYA A S, HELANDER J D M, PETERSON F C, et al. Dynamic control of plant water use using designed ABA receptor agonists [J]. Science, 2019, 366(6464): 416. |
94 | Ö ÇELIK, MERIÇ S, AYAN A, et al. Biotic stress-tolerant plants through small RNA technology [M]. San Diego: Academic Press, 2020, 435-468. |
95 | VANKAMMEN A. Virus-induced gene silencing in infected and transgenic plants [J]. Trends in Plant Science, 1997, 2(11): 409-411. |
96 | GUO H, SONG X, WANG G, et al. Plant-generated artificial small RNAs mediated aphid resistance [J]. PLoS One, 2014, 9(5): e97410. |
97 | YOGINDRAN S, RAJAM M V. Artificial miRNA-mediated silencing of ecdysone receptor (EcR) affects larval development and oogenesis in Helicoverpa armigera [J]. Insect Biochemistry and Molecular Biology, 2016, 77: 21-30. |
98 | SAINI R P, RAMAN V, DHANDAPANI G, et al. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera [J]. PLoS One, 2018, 13(3): e0194150. |
99 | KIS A, THOLT G, IVANICS M, et al. Polycistronic artificial miRNA-mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature [J]. Molecular Plant Pathology, 2016, 17(3): 427-437. |
100 | ZHANG T, ZHENG Q, YI X, et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system [J]. Plant Biotechnology Journal, 2018, 16(8): 1415-1423. |
101 | BEYER P. Golden Rice and 'Golden' crops for human nutrition [J]. New Biotechnology, 2010, 27(5): 478-481. |
102 | BEIKE A K, JAEGER C, ZINK F, et al. High contents of very long-chain polyunsaturated fatty acids in different moss species [J]. Plant Cell Reports, 2014, 33(2): 245-254. |
103 | RUIZ-LOPEZ N, HASLAM R P, NAPIER J A, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop [J]. Plant Journal, 2014, 77(2): 198-208. |
104 | DE LEPELEIRE J, STROBBE S, VERSTRAETE J, et al. Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes [J]. Molecular Plant, 2018, 11(1): 175-188. |
105 | PLANTA J, XIANG X, LEUSTEK T, et al. Engineering sulfur storage in maize seed proteins without apparent yield loss [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(43): 11386-11391. |
106 | XING S N, CHEN K L, ZHU H C, et al. Fine-tuning sugar content in strawberry [J]. Genome Biology, 2020, 21(230). . |
107 | JORGENSEN K, BAK S, BUSK P K, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology [J]. Plant Physiology, 2005, 139(1): 363-374. |
108 | DENG F, YAMAJI N, MA J F, et al. Engineering rice with lower grain arsenic [J]. Plant Biotechnology Journal, 2018, 16(10): 1691-1699. |
109 | ZHAO X, PARK S Y, YANG D, et al. Synthetic biology for natural compounds [J]. Biochemistry, 2019, 58(11): 1454-1456. |
110 | XU J, AI Y, WANG J, et al. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site [J]. Phytochemistry, 2017, 137: 34-41. |
111 | LYU Z Y, ZHANG F Y, PAN Q F, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin [J]. Plant and Cell Physiology, 2016, 57(3): 588-602. |
112 | SHEN Q, LU X, YAN T, et al. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua [J]. New Phytologist, 2016, 210(4): 1269-1281. |
113 | LV Z, WANG S, ZHANG F, et al. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and botrytis cinerea in Artemisia annua [J]. Plant Cell Physiology, 2016, 57(9): 1961-1971. |
114 | YAN T X, CHEN M H, SHEN Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua [J]. New Phytologist, 2017, 213(3): 1145-1155. |
115 | TOHGE T, ZHANG Y, PETEREK S, et al. Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato [J]. Plant Journal, 2015, 83(4): 686-704. |
116 | ZHANG Y, BUTELLI E, ALSEEKH S, et al. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato [J]. Nature Communications, 2015, 6: 8635. |
117 | LAU W, SATTELY E S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone [J]. Science, 2015, 349(6253): 1224-1228. |
118 | TIAN X, RUAN J X, HUANG J Q, et al. Characterization of gossypol biosynthetic pathway [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): E5410-E5418. |
119 | TORRENS-SPENCE M P, PLUSKAL T, LI F S, et al. Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis [J]. Molecular Plant, 2018, 11(1): 205-217. |
120 | QIU F, ZENG J, WANG J, et al. Functional genomics analysis reveals two novel genes required for littorine biosynthesis [J]. New Phytologist, 2020, 225: 1906-1914. |
121 | CAPUTI L, FRANKE J, FARROW S C, et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle [J]. Science, 2018, 360(6394): 1235-1239. |
122 | JEON J E, KIM J G, FISCHER C R, et al. A pathogen-responsive gene cluster for highly modified fatty acids in tomato [J]. Cell, 2020, 180(1): 176-187. |
123 | QI X, BAKHT S, LEGGETT M, et al. A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 8233-8238. |
124 | SHIMURA K, OKADA A, OKADA K, et al. Identification of a biosynthetic gene cluster in rice for momilactones [J]. Journal of Biological Chemistry, 2007, 282(47): 34013-34018. |
125 | TAKOS A M, KNUDSEN C, LAI D, et al. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway [J]. Plant Journal, 2011, 68(2): 273-286. |
126 | WINZER T, GAZDA V, HE Z, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine [J]. Science, 2012, 336(6089): 1704-1708. |
127 | TOPFER N, FUCHS L M, AHARONI A. The PhytoClust tool for metabolic gene clusters discovery in plant genomes [J]. Nucleic Acids Research, 2017, 45(12): 7049-7063. |
128 | KAUTSAR S A, SUAREZ DURAN H G, BLIN K, et al. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters [J]. Nucleic Acids Research, 2017, 45(W1): W55-W63. |
129 | WUYUN T N, WANG L, LIU H, et al. The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis [J]. Molecular Plant, 2018, 11(3): 429-442. |
130 | WAN T, LIU Z M, LI L F, et al. A genome for gnetophytes and early evolution of seed plants [J]. Nature Plants, 2018, 4(2): 82-89. |
131 | KIM N H, JAYAKODI M, LEE S C, et al. Genome and evolution of the shade-requiring medicinal herb Panax ginseng [J]. Plant Biotechnology Journal, 2018, 16(11): 1904-1917. |
132 | WEI C, YANG H, WANG S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. |
133 | YUAN Y, JIN X, LIU J, et al. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy [J]. Nature Communications, 2018, 9(1): 1615. |
134 | LING H Q, MA B, SHI X, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu [J]. Nature, 2018, 557(7705): 424-428. |
135 | HIBRAND SAINT-OYANT L, RUTTINK T, HAMAMA L, et al. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits [J]. Nature Plants, 2018, 4(7): 473-484. |
136 | VOGEL A, SCHWACKE R, DENTON A K, et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris [J]. Nature Communications, 2018, 9(1): 2515. |
137 | GUO L, WINZER T, YANG X, et al. The opium poppy genome and morphinan production [J]. Science, 2018, 362(6412): 343-347. |
138 | SONG C, LIU Y, SONG A, et al. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits [J]. Molecular Plant, 2018, 11(12): 1482-1491. |
139 | CHAW S M, LIU Y C, WU Y W, et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution [J]. Nature Plants, 2019, 5(1): 63-73. |
140 | ZOU C, LI L, MIKI D, et al. The genome of broomcorn millet [J]. Nature Communications, 2019, 10(1): 436. |
141 | LI M, ZHANG D, GAO Q, et al. Genome structure and evolution of Antirrhinum majus L [J]. Nature Plants, 2019, 5(2): 174-183. |
142 | ZHAO Q, YANG J, CUI M Y, et al. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis [J]. Molecular Plant, 2019, 12(7): 935-950. |
143 | BERTIOLI D J, JENKINS J, CLEVENGER J, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea [J]. Nature Genetics, 2019, 51(5): 877-884. |
144 | SANCHEZ-PEREZ R, PAVAN S, MAZZEO R, et al. Mutation of a bHLH transcription factor allowed almond domestication [J]. Science, 2019, 364(6445): 1095-1098. |
145 | WANG Z, MIAO H, LIU J, et al. Musa balbisiana genome reveals subgenome evolution and functional divergence [J]. Nature Plants, 2019, 5(8): 810-821. |
146 | RENDON-ANAYA M, IBARRA-LACLETTE E, MENDEZ-BRAVO A, et al. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 17081-17089. |
147 | KREPLAK J, MADOUI M A, CAPAL P, et al. A reference genome for pea provides insight into legume genome evolution [J]. Nature Genetics, 2019, 51(9): 1411-1422. |
148 | CHEN L Y, VANBUREN R, PARIS M, et al. The bracteatus pineapple genome and domestication of clonally propagated crops [J]. Nature Genetics, 2019, 51(10): 1549-1558. |
149 | HU L, XU Z, WANG M, et al. The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis [J]. Nature Communications, 2019, 10(1): 4702. |
150 | XIE D, XU Y, WANG J, et al. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype [J]. Nature Communications, 2019, 10(1): 5158. |
151 | LIU J, SHI C, SHI C C, et al. The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis [J]. Molecular Plant, 2020, 13(2): 336-350. |
152 | ZHANG L, CHEN F, ZHANG X, et al. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788): 79-84. |
153 | GUO C, WANG Y, YANG A, et al. The Coix genome provides insights into Panicoideae evolution and papery hull domestication [J]. Molecular Plant, 2020, 13(2): 309-320. |
154 | SRINIVASAN P, SMOLKE C D. Biosynthesis of medicinal tropane alkaloids in yeast [J]. Nature, 2020. . |
155 | HIATT A, CAFFERKEY R, BOWDISH K. Production of antibodies in transgenic plants [J]. Nature, 1989, 342(6245): 76-78. |
156 | DAVEY R T, DODD L, PROSCHAN M A, et al. A randomized, controlled trial of ZMapp for Ebola virus infection [J]. New England Journal of Medicine, 2016, 375(15): 1448-1456. |
157 | STRASSER R, STADLMANN J, SCHAHS M, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure [J]. Plant Biotechnology Journal, 2008, 6(4): 392-402. |
158 | VAMVAKA E, TWYMAN R M, MURAD A M, et al. Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12 [J]. Plant Biotechnology Journal, 2016, 14(1): 97-108. |
159 | LINDH I, BRAVE A, HALLENGARD D, et al. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses [J]. Vaccine, 2014, 32(20): 2288-2293. |
160 | YUSIBOV V, HOOPER D C, SPITSIN S V, et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine [J]. Vaccine, 2002, 20(25/26): 3155-3164. |
161 | FIRSOV A, TARASENKO I, MITIOUCHKINA T, et al. High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed Plants [J]. Molecular Biotechnology, 2015, 57(7): 653-661. |
162 | LEE G, NA Y J, YANG B G, et al. Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection [J]. Plant Biotechnology Journal, 2015, 13(1): 62-72. |
163 | HE Z M, JIANG X L, QI Y, et al. Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression [J]. Genetica, 2008, 133(2): 207-214. |
164 | GANAPATHI T R, SUNIL KUMAR G B, SRINIVAS L, et al. Analysis of the limitations of hepatitis B surface antigen expression in soybean cell suspension cultures [J]. Plant Cell Reports, 2007, 26(9): 1575-1584. |
165 | LOU X M, YAO Q H, ZHANG Z, et al. Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants [J]. Clinical Vaccine Immunology, 2007, 14(4): 464-469. |
166 | GORANTALA J, GROVER S, RAHI A, et al. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine [J]. Journal of Biotechnology, 2014, 176: 1-10. |
167 | JOUNG Y H, PARK S H, MOON K B, et al. The last ten years of advancements in plant-derived recombinant vaccines against hepatitis B [J]. International Journal of Molecular Sciences, 2016, 17(10): 1715. |
168 | MONTESINOS L, BUNDO M, IZQUIERDO E, et al. Production of biologically active cecropin A peptide in rice seed oil bodies [J]. PLoS One, 2016, 11(1): e0146919. |
169 | SHAALTIEL Y, BARTFELD D, HASHMUELI S, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system [J]. Plant Biotechnology Journal, 2007, 5(5): 579-590. |
170 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
171 | SUN Y, CHENG J Y. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresource Technology, 2002, 83(1): 1-11. |
172 | BILAL M, ASGHER M, IQBAL H M N, et al. Biotransformation of lignocellulosic materials into value-added products: a review [J]. International Journal of Biological Macromolecules, 2017, 98: 447-458. |
173 | WILKERSON C G, MANSFIELD S D, LU F, et al. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone [J]. Science, 2014, 344(6179): 90-93. |
174 | ZHOU S F, RUNGE T, KARLEN S D, et al. Chemical pulping advantages of Zip-lignin hybrid poplar [J]. ChemSusChem, 2017, 10(18): 3565-3573. |
175 | EUDES A, SATHITSUKSANOH N, BAIDOO E E, et al. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency [J]. Plant Biotechnology Journal, 2015, 13(9): 1241-1250. |
176 | XIE N Z, LIANG H, HUANG R B, et al. Biotechnological production of muconic acid: current status and future prospects [J]. Biotechnology Advances, 2014, 32(3): 615-622. |
177 | EUDES A, BERTHOMIEU R, HAO Z Y, et al. Production of muconic acid in plants [J]. Metabolic Engineering, 2018, 46: 13-19. |
[1] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[2] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[3] | 吕靖伟, 邓子新, 张琪, 丁伟. 基于深度学习识别RiPPs前体肽及裂解位点[J]. 合成生物学, 2022, 3(6): 1262-1276. |
[4] | 董佳钰, 李敏, 肖宗华, 胡明, 松田侑大, 汪伟光. 米曲霉异源表达天然产物研究进展[J]. 合成生物学, 2022, 3(6): 1126-1149. |
[5] | 杨健钊, 朱新广. 面向碳达峰与碳中和的植物合成生物学[J]. 合成生物学, 2022, 3(5): 847-869. |
[6] | 杨谦, 程伯涛, 汤志军, 刘文. 基因组挖掘在天然产物发现中的应用和前景[J]. 合成生物学, 2021, 2(5): 697-715. |
[7] | 张发光, 曲戈, 孙周通, 马军安. 从化学合成到生物合成——天然产物全合成新趋势[J]. 合成生物学, 2021, 2(5): 674-696. |
[8] | 刘裕, 韦惠玲, 刘骥翔, 王少杰, 苏海佳. 人工多菌体系的设计与构建:合成生物学研究新前沿[J]. 合成生物学, 2021, 2(4): 635-650. |
[9] | 王清, 陈依军. 天然产物成药性的合成生物学改良[J]. 合成生物学, 2020, 1(5): 583-592. |
[10] | 钱秀娟, 陈琳, 章文明, 周杰, 董维亮, 信丰学, 姜岷. 人工多细胞体系设计与构建研究进展[J]. 合成生物学, 2020, 1(3): 267-284. |
[11] | 贺俊斌, 孟松, 潘海学, 唐功利. 多酶催化串联策略在复杂天然产物合成中的应用[J]. 合成生物学, 2020, 1(2): 226-246. |
[12] | 黄雪年, 唐慎, 吕雪峰. 工业丝状真菌土曲霉合成生物技术研究进展及展望[J]. 合成生物学, 2020, 1(2): 187-211. |
[13] | 张博, 马永硕, 尚轶, 黄三文. 植物合成生物学研究进展[J]. 合成生物学, 2020, 1(2): 121-140. |
[14] | 饶聪, 云轩, 虞沂, 邓子新. 微生物药物的合成生物学研究进展[J]. 合成生物学, 2020, 1(1): 92-102. |
[15] | 刘延峰, 周景文, 刘龙, 陈坚. 合成生物学与食品制造[J]. 合成生物学, 2020, 1(1): 84-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||