合成生物学 ›› 2021, Vol. 2 ›› Issue (1): 134-144.DOI: 10.12211/2096-8280.2020-059
• 研究论文 • 上一篇
朱伟1,2, 赵文亮1,2, 何凯1,2
收稿日期:
2020-04-04
修回日期:
2020-11-17
出版日期:
2021-03-22
发布日期:
2021-03-12
通讯作者:
何凯
作者简介:
朱伟(1991-),男,硕士,助理工程师,主要研究方向为机械结构设计、运动控制、机器视觉。E-mail:wei.zhu@siat.ac.cn基金资助:
Wei ZHU1,2, Wenling ZHAO1,2, Kai HE1,2
Received:
2020-04-04
Revised:
2020-11-17
Online:
2021-03-22
Published:
2021-03-12
Contact:
Kai HE
摘要:
克隆挑取主要运用于基因测序、蛋白质表达和高通量筛选等领域。当前克隆挑取任务主要由手工完成,随着科研院所以及医药公司对克隆挑取这项任务需求的爆发式增长,低效率的人工挑取已满足不了市场需求。与人工相比,机器人在挑取效率和精度上均得到了显著提升。基于传统克隆挑取机器人加工成本高、挑取周期长和消毒不彻底等因素,本文设计了一种新型克隆挑取机器人,采用气缸驱动夹取机构,在夹取机构中运用气爪来抓取一次性挑针的方法实现克隆挑取操作。搭建了一套基于工控机运动控制、HexSight菌落识别及定位的嵌入式集成系统,并通过对大肠杆菌克隆的挑取进行了实验验证。结果表明控制系统可以实现对菌落的识别与定位,定位精度为0.03 mm,各气缸、气爪可以精确挑取指定菌落并接种到96孔板中,证明了一次性挑针挑取方式的可行性。
中图分类号:
朱伟, 赵文亮, 何凯. 新型克隆挑取机器人设计与实验研究[J]. 合成生物学, 2021, 2(1): 134-144.
Wei ZHU, Wenling ZHAO, Kai HE. Design and experimental research of new robot for clone selection[J]. Synthetic Biology Journal, 2021, 2(1): 134-144.
引脚 | 信号 | 功能 |
---|---|---|
1 | EXO 0 | 一号气爪输出 |
2 | EXO 1 | 二号气爪输出 |
3 | EXO 2 | 三号气爪输出 |
4 | EXO 3 | 四号气爪输出 |
5 | EXO 4 | 五号气爪输出 |
6 | EXO 5 | 六号气爪输出 |
7 | EXO 6 | 七号气爪输出 |
8 | EXO 7 | 八号气爪输出 |
9 | EXO 8 | 一号气缸输出 |
10 | EXO 9 | 二号气缸输出 |
11 | EXO 10 | 三号气缸输出 |
表2 各输出端口地址分配及功能表
Tab. 2 Address allocation and function of the output ports
引脚 | 信号 | 功能 |
---|---|---|
1 | EXO 0 | 一号气爪输出 |
2 | EXO 1 | 二号气爪输出 |
3 | EXO 2 | 三号气爪输出 |
4 | EXO 3 | 四号气爪输出 |
5 | EXO 4 | 五号气爪输出 |
6 | EXO 5 | 六号气爪输出 |
7 | EXO 6 | 七号气爪输出 |
8 | EXO 7 | 八号气爪输出 |
9 | EXO 8 | 一号气缸输出 |
10 | EXO 9 | 二号气缸输出 |
11 | EXO 10 | 三号气缸输出 |
循环次数 | 气爪编号 | |||
---|---|---|---|---|
取针 | 挑取 | 接种 | 落针 | |
1 | 5 | 7 | 3 | 4 |
2 | 4 | 6 | 2 | 3 |
3 | 3 | 5 | 1 | 2 |
4 | 2 | 4 | 8 | 1 |
5 | 1 | 3 | 7 | 8 |
6 | 8 | 2 | 6 | 7 |
7 | 7 | 1 | 5 | 6 |
8 | 6 | 8 | 4 | 5 |
表3 满载循环工作各气爪上挑针功能
Tab. 3 Picking function of the needles on each pneumatic gripper in a full-load working cycle
循环次数 | 气爪编号 | |||
---|---|---|---|---|
取针 | 挑取 | 接种 | 落针 | |
1 | 5 | 7 | 3 | 4 |
2 | 4 | 6 | 2 | 3 |
3 | 3 | 5 | 1 | 2 |
4 | 2 | 4 | 8 | 1 |
5 | 1 | 3 | 7 | 8 |
6 | 8 | 2 | 6 | 7 |
7 | 7 | 1 | 5 | 6 |
8 | 6 | 8 | 4 | 5 |
引脚 | 信号 | 功能 |
---|---|---|
1 | HOME 0 | 一轴原点输入 |
2 | HOME 1 | 二轴原点输入 |
3 | HOME 2 | 三轴原点输入 |
4 | HOME 3 | 四轴原点输入 |
5 | LIMIT 0+ | 一轴正向限位 |
6 | LIMIT 0- | 一轴负向限位 |
7 | LIMIT 1+ | 二轴正向限位 |
8 | LIMIT 1- | 二轴负向限位 |
9 | LIMIT 2+ | 三轴正向限位 |
10 | LIMIT 2- | 三轴负向限位 |
11 | LIMIT 3+ | 四轴正向限位 |
12 | LIMIT 3- | 四轴负向限位 |
13 | EXI 0 | 转盘零点输入 |
14 | EXI 1 | 转块零点输入 |
15 | EXI 2 | 转块一孔有无输入 |
16 | EXI 3 | 转块二孔有无输入 |
表1 各输入端口地址分配及功能表
Tab. 1 Address allocation and function of the input ports
引脚 | 信号 | 功能 |
---|---|---|
1 | HOME 0 | 一轴原点输入 |
2 | HOME 1 | 二轴原点输入 |
3 | HOME 2 | 三轴原点输入 |
4 | HOME 3 | 四轴原点输入 |
5 | LIMIT 0+ | 一轴正向限位 |
6 | LIMIT 0- | 一轴负向限位 |
7 | LIMIT 1+ | 二轴正向限位 |
8 | LIMIT 1- | 二轴负向限位 |
9 | LIMIT 2+ | 三轴正向限位 |
10 | LIMIT 2- | 三轴负向限位 |
11 | LIMIT 3+ | 四轴正向限位 |
12 | LIMIT 3- | 四轴负向限位 |
13 | EXI 0 | 转盘零点输入 |
14 | EXI 1 | 转块零点输入 |
15 | EXI 2 | 转块一孔有无输入 |
16 | EXI 3 | 转块二孔有无输入 |
选取点 | 实际坐标(mm) | 定位坐标(mm) | (ΔX,ΔY) | 误差 |
---|---|---|---|---|
1 | (-10.000,10.000) | (-10.031,10.005) | (-0.031,0.005) | 0.031 |
2 | (-20.000,20.000) | (-20.034,20.006) | (-0.034,0.006) | 0.035 |
3 | (-30.000,30.000) | (-30.013,30.006) | (-0.013,0.006) | 0.014 |
4 | (-30.000,10.000) | (-30.008,10.027) | (-0.008,0.027) | 0.028 |
5 | (-10.000,30.000) | (-10.021,29.985) | (-0.021,-0.015) | 0.026 |
6 | (10.000,10.000) | (9.994,10.009) | (-0.006,0.009) | 0.011 |
7 | (20.000,20.000) | (20.008,20.003) | (0.008,0.003) | 0.009 |
8 | (30.000,30.000) | (30.057,30.001) | (0.057,0.001) | 0.057 |
9 | (30.000,10.000) | (29.980,10.015) | (-0.020,0.015) | 0.025 |
10 | (10.000,30.000) | (10.044,29.996) | (0.044,-0.004) | 0.044 |
11 | (10.000,-10.000) | (9.998,-10.001) | (-0.002,-0.001) | 0.002 |
12 | (20.000,-20.000) | (20.005,-20.037) | (0.005,-0.037) | 0.037 |
13 | (30.000,-30.000) | (30.035,-30.065) | (0.035,-0.065) | 0.074 |
14 | (30.000,-10.000) | (29.994,-10.009) | (-0.006,-0.009) | 0.011 |
15 | (10.000,-30.000) | (10.027,-30.037) | (0.027,-0.037) | 0.046 |
16 | (-10.000,-10.000) | (-10.018,-10.001) | (-0.018,-0.001) | 0.018 |
17 | (-20.000,-20.000) | (-20.002,-20.004) | (-0.002,-0.004) | 0.004 |
18 | (-30.000,-30.000) | (-29.988,-30.017) | (0.012,-0.017) | 0.021 |
19 | (-10.000,-30.000) | (-10.007,-30.023) | (-0.007,-0.023) | 0.024 |
20 | (-30.000,-10.000) | (-29.994,-9.992) | (0.006,0.008) | 0.010 |
表4 实验结果
Tab. 4 Experimental results
选取点 | 实际坐标(mm) | 定位坐标(mm) | (ΔX,ΔY) | 误差 |
---|---|---|---|---|
1 | (-10.000,10.000) | (-10.031,10.005) | (-0.031,0.005) | 0.031 |
2 | (-20.000,20.000) | (-20.034,20.006) | (-0.034,0.006) | 0.035 |
3 | (-30.000,30.000) | (-30.013,30.006) | (-0.013,0.006) | 0.014 |
4 | (-30.000,10.000) | (-30.008,10.027) | (-0.008,0.027) | 0.028 |
5 | (-10.000,30.000) | (-10.021,29.985) | (-0.021,-0.015) | 0.026 |
6 | (10.000,10.000) | (9.994,10.009) | (-0.006,0.009) | 0.011 |
7 | (20.000,20.000) | (20.008,20.003) | (0.008,0.003) | 0.009 |
8 | (30.000,30.000) | (30.057,30.001) | (0.057,0.001) | 0.057 |
9 | (30.000,10.000) | (29.980,10.015) | (-0.020,0.015) | 0.025 |
10 | (10.000,30.000) | (10.044,29.996) | (0.044,-0.004) | 0.044 |
11 | (10.000,-10.000) | (9.998,-10.001) | (-0.002,-0.001) | 0.002 |
12 | (20.000,-20.000) | (20.005,-20.037) | (0.005,-0.037) | 0.037 |
13 | (30.000,-30.000) | (30.035,-30.065) | (0.035,-0.065) | 0.074 |
14 | (30.000,-10.000) | (29.994,-10.009) | (-0.006,-0.009) | 0.011 |
15 | (10.000,-30.000) | (10.027,-30.037) | (0.027,-0.037) | 0.046 |
16 | (-10.000,-10.000) | (-10.018,-10.001) | (-0.018,-0.001) | 0.018 |
17 | (-20.000,-20.000) | (-20.002,-20.004) | (-0.002,-0.004) | 0.004 |
18 | (-30.000,-30.000) | (-29.988,-30.017) | (0.012,-0.017) | 0.021 |
19 | (-10.000,-30.000) | (-10.007,-30.023) | (-0.007,-0.023) | 0.024 |
20 | (-30.000,-10.000) | (-29.994,-9.992) | (0.006,0.008) | 0.010 |
1 | HUGHES S R, BUTT R, BARTULETT S, et al. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications[J]. Journal of Laboratory Automation, 2011, 16(4):292-307. |
2 | ALYSSA M R, TANVEER S B, ROSSANA C, et al. Targeted proteomics for metabolic pathway optimization: application to terpene production[J]. Metabolic Engineering, 2015, 13(2):194-203. |
3 | 田良玉. 乳酸菌高密度规模发酵工艺优化[D]. 扬州:扬州大学,2018. |
TIAN Liangyu. Optimization of high-density fermentation process of lactic acid bacteria[D]. Yangzhou:Yangzhou University, 2018. | |
4 | 杨书香,刘群. 基因检测技术的应用及国内行业发展现状[J]. 绿色科技,2015,12:281-283. |
YANG Shuxiang, LIU Qun. Application of gene detection technology and development status of domestic industry[J]. Green Technology,2015,12:281-283. | |
5 | 何青梅.生物技术在农业作物病虫害防治上的使用[J].农民致富之友,2018(16):59. |
HE Qingmei. The application of biotechnology in the control of agricultural crop diseases and insect pests[J]. Friends of Farmers Getting Rich,2018(16):59. | |
6 | 冯薇. 现代生物技术的知识产权保护及企业的相关策略研究[D].成都:电子科技大学,2011. |
FENG Wei. Research on intellectual property protection of modern biotechnology and related strategies of enterprises[D]. Chengdu: University of Electronic Science and Technology, 2011. | |
7 | 王会, 戴俊彪, 罗周卿. 基因组的"读-改-写"技术[J]. 合成生物学, 2020, 1(5): 503-515. |
WANG Hui, DAI Junbiao, LUO Zhouqing. The "read-modify-write" technology of genome[J]. Synthetic Biology Journal, 2020, 1(5): 503-515. | |
8 | 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655. |
YUAN Shengjian, MA Yingfei.Research progress and application of phage synthetic biology[J]. Synthetic Biology Journal, 2020, 1(6): 635-655. | |
9 | 齐永. LRIG3基因在三种膀胱癌细胞系中的表达及对其细胞周期、侵袭性和凋亡的影响[D].武汉:华中科技大学,2012. |
QI Yong. LRIG3 gene expression in three bladder cancer cell lines and its effect on cell cycle, invasiveness and apoptosis[D]. Wuhan: Huazhong University of Science and Technology,2012. | |
10 | 张钰. rhAm原核/真核表达系统的构建及其生物学活性研究[D].广州:暨南大学,2018. |
ZHANG Yu. Construction of rhAm prokaryotic / eukaryotic expression system and its biological activity[D]. Guangzhou: Jinan University, 2018. | |
11 | 孙成信.国产自动化实验室流水线产品未来发展和技术预测[J].临床检验杂志(电子版),2020,9(1):249-251. |
SHUN Chengxin. The future development and technology prediction of domestic automated laboratory assembly line products [J]. Journal of Clinical Laboratory Medicine (Electronic Version), 2020, 9(1):249-251. | |
12 | Uber D C,Jaklevic J M,Theil E H,et al.Application of robotics and image processing to automated colony picking and arraying[J]. Biotechniques, 1991, 11(5):642-647. |
13 | Jones P,Watson A,Davies M,et al.Integration of image analysis and robotics into a fully automated colony picking and plate handling system[J].Nucleic Acids Research, 1992, 20(17):4599-4606. |
14 | Briner D R,Sardhara A D, Sugar T G.A multi-pin end-effector for a robotic colony picker[C]//2009 ASME Early Career Technical Conference,Alabama:ASME Early Career Technical Journal, 2009:222-228. |
15 | Hughes S R, Butt T R, Bartolett S, et al. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications[J]. Journal of Laboratory Automation, 2011, 16(4):292-307. |
16 | Heins R A, Cheng X, Nath S, et al. Phylogenomically guided identification of industrially relevant gh1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry[J]. ACS Chemical Biology, 2014, 9(9):2082-2091. |
17 | Robotics Hudson. Rapid pick-brochure [EB/OL].[2021-02-26]. . |
18 | 于哲.克隆的图像识别及挑取移液机器人运动控制系统[D].广州:机械科学研究院, 2005. |
YU Zhe. Clone image recognition and picking pipette robot motion control system [D]. Guangzhou: Institute of Mechanical Science, 2005. | |
19 | 张国忠.克隆挑取及微量液体提取机器人控制系统[D].广州:机械科学研究院, 2004. |
ZHANG Guozhong. Cloning picking and micro liquid extraction robot control system [D]. Guangzhou: Institute of Mechanical Science, 2004. | |
20 | 曾祥忠. 机器视觉及其应用(系列讲座)第二讲图像采集技术—机器视觉的基础[J]. 应用光学, 2006(6):5-9. |
ZENG Xiangzhong. Machine vision and its applications (series lectures) lecture 2: image acquisition technology—the foundation of machine vision [J]. Applied Optics, 2006 (6): 5-9. | |
21 | 雷文华. 机器视觉及其应用(系列讲座)第一讲机器视觉发展概述[J]. 应用光学, 2006(5):1-4. |
LEI Wenhua. Machine vision and its applications (series lectures) lecture 1: overview of machine vision development [J]. Applied Optics, 2006 (5): 1-4 | |
22 | 朱虹. 机器视觉及其应用(系列讲座)第三讲图像处理与分析—机器视觉的核心[J]. 应用光学, 2007(1):10-13. |
ZHU Hong. Machine vision and its applications (lecture series) lecture 3 image processing and analysis—the core of machine vision [J]. Applied Optics, 2007 (1): 10-13. | |
23 | ZHAO H. Illinois biological foundry for advanced biomanufacturing (iBioFAB)[C]// In Synthetic Biology: Engineering, Evolution, and Design Conference2015, 2015:784-785. |
24 | 张静静,张雯佳,曾磊,等. 迈瑞 BS480 全自动生化分析仪性能评价[J]. 实用医学杂志, 2015, 31(11):1852-1854. |
ZHANG Jingjing, ZHANG Wenjia, ZENG Lei, et al. Performance evaluation of Mindray BS480 automatic biochemical analyzer[J]. Journal of Practical Medicine, 2015, 31(11):1852-1854. | |
25 | 贠远,徐青松,李杨民. 并联微操作机器人技术及应用进展[J]. 机械工程学报, 2008, 44(12):12-23. |
YUN Yuan, Qingsong XV, LI Yangming. Technology and application progress of parallel micro-operation robot [J]. Journal of Mechanical Engineering, 2008, 44(12):12-23. | |
26 | TILLICH U M, WOLTER N, SCHULZE K, et al. High-throughput cultivation and screening platform for unicellular phototrophs[J]. BMC Microbiology, 2014, 14(1):239. |
27 | JAVIDPOUR P, DEUTSCH S, MUTALIK V K, et al. Investigation of proposed ladderane biosynthetic genes from anammox bacteria by heterologous expression in E. coli[J]. PLoS One, 2016, 11(3):0151087. |
28 | HEINS R A, CHENG X, NATH S, et al. Phylogenomically guided identification of industrially relevant gh1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry[J]. ACS Chemical Biology, 2014, 9(9):2082-2091. |
29 | HUDSON Robotics. Rapid pick-brochure [EB/OL].[2021-02-26]. . |
30 | BING W C, XING C, HING P S. Research of BP neural network algorithm testing platform based on OPC communication[J]. Applied Mechanics and Materials, 2014, 21(5): 15-44. |
31 | 谢非, 汪璠, 杨继全, 等. 一种目标菌落自动定位与识别方法: 201910211847.7[P]. 2019-06-28. |
XIE Fei, WANG Pan, YANG Jiquan. A method for automatic positioning and identification of target colonies: CN 201910211847.7 [P]. 2019-06-28. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 刘韧玫, 李乐诗, 杨小燕, 陈显军, 杨弋. RNA转录后代谢时空精密控制技术[J]. 合成生物学, 2023, 4(1): 141-164. |
[3] | 王喜先, 孙晴, 刁志钿, 徐健, 马波. 拉曼光谱技术在单细胞表型检测与分选中的应用进展[J]. 合成生物学, 2023, 4(1): 204-224. |
[4] | 林芝, 胡致伟, 瞿旭东, 林双君. 苄基异喹啉类生物碱的微生物合成研究进展及挑战[J]. 合成生物学, 2021, 2(5): 716-733. |
[5] | 操帆, 陈耀晞, 缪阳洋, 张璐, 刘海燕. 蛋白质计算设计:方法和应用展望[J]. 合成生物学, 2021, 2(1): 15-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||