合成生物学 ›› 2022, Vol. 3 ›› Issue (6): 1201-1217.DOI: 10.12211/2096-8280.2022-041

• 特约评述 • 上一篇    下一篇

梭菌分子遗传改造工具研究进展

刘佳昕1, 程驰1,2, 李欣启1, 汪超俊2, 张颖2, 薛闯1,2   

  1. 1.大连理工大学生物工程学院,大连市合成生物学应用转化工程技术研究中心,辽宁 大连 116024
    2.大连理工大学宁波研究院,浙江 宁波 315016
  • 收稿日期:2022-07-18 修回日期:2022-08-30 出版日期:2022-12-31 发布日期:2023-01-17
  • 通讯作者: 程驰,薛闯
  • 作者简介:刘佳昕(1998—),女,硕士研究生。主要进行生物学研究。E-mail:ljx123456@mail.dlut.edu.cn
    程驰(1990—),女,副教授,研究生导师。主要研究领域为:①能源微生物遗传操作工具开发及代谢改造;②化学-生物耦合的CO2固定。E-mail:cheng.chi@dlut.edu.cn
    薛闯(1982—),男,教授,博士生导师。主要从事生物质新能源的生产、分离纯化以及高效代谢菌株构建的研究:①生物法生产燃料乙醇及酵母菌的代谢网络研究;②微生物发酵法生产丁醇;③生物基化学品的高效分离;④有机膜的制备及分离技术;⑤先进能源生产菌株的构建及代谢途径信号转导;⑥激酶的生物信息分析。E-mail:xue.1@dlut.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFC2102500);国家自然科学基金(21878035);大连市杰出青年科技人才支持计划(2021RJ03);大连理工大学基本科研业务费(DUT21RC(3)003, DUT22ZD102);辽宁省“百千万人才工程”经费

Recent progress in the molecular genetic modification tools of Clostridium

Jiaxin LIU1, Chi CHENG1,2, Xinqi LI1, Chaojun WANG2, Ying ZHANG2, Chuang XUE1,2   

  1. 1.Engineering Research Center of Application and Transformation for Synthetic Biology Dalian,School of Bioengineering,Dalian University of Technology,Dalian 116024,Liaoning,China
    2.NingBo Institute of Dalian University of Technology,Ningbo 315016,Zhejiang,China
  • Received:2022-07-18 Revised:2022-08-30 Online:2022-12-31 Published:2023-01-17
  • Contact: Chi CHENG, Chuang XUE

摘要:

梭状芽孢杆菌是一类革兰氏阳性、可内生孢子的严格厌氧型细菌,可产生多种化学物质,包括现如今极具潜力的新型生物燃料丁醇。通过分子改造以提高梭菌发酵的浓度及产率一直是一项亟需突破的重要课题,但该方向的研究长期受限于梭菌不完善的遗传操作工具。近年来,随着分子生物学的快速发展,适用于梭菌的基因编辑工具不断发展,梭菌中已有反义RNA技术、TargeTron、基于同源重组或CRISPR/Cas系统介导的基因编辑技术等多种遗传操作工具,可以基本实现靶标基因插入、删除、替换、点突变以及表达水平调控等各种操作。文中对上述遗传操作工具研究进展进行了总结,并着重讨论了以重组酶为代表的新型遗传操作技术及其在梭菌中的应用潜力。今后应进一步优化现有的梭菌分子遗传改造工具,重点突破梭菌自身同源重组效率低下等技术难点,同时应大力发展新的基因编辑技术,如以CRISPR技术为核心的多位点共编辑系统、噬菌体重组酶介导的多拷贝定点和随机整合技术等。

关键词: 梭状芽孢杆菌, 基因编辑工具, 遗传改造, 重组酶, CRISPR

Abstract:

Clostridium are Gram-positive, strictly anaerobic, endospore-forming bacteria that produce a variety of chemicals, including butanol, which is now a promising new biofuel. Improving the fermentation titer and yield of Clostridium by genetic modification has always been an important challenge that needs to be broken through, but it has long been hindered by the limitation of genetic manipulation tools of Clostridium. In recent years, with the continuous development of molecular biology, gene editing tools for Clostridium have been continuously developed. Many genetic manipulation tools such as plasmid-based gene overexpression, antisense RNA technology, transposon-based mutagenesis, group Ⅱ intron-mediated gene inactivation, and homologous recombination-based or CRISPR/Cas-mediated gene editing technology have been developed. Various operations such as target gene insertion, deletion, substitution, point mutation, and gene expression level regulation have been accomplished in Clostridium. In this review, we summarize the research progress in the molecular genetic modification tools of Clostridium, and especially discuss the potential application of new technologies, such as recombinase-based gene editing technology. Although the application of the recombinase system in Clostridium is rarely reported and discussed, the future application value and significance of this technology should be paid attention to. In the future, optimization of the existing molecular genetic modification technologies in Clostridium is still imperative, such as overcoming the low efficiency of homogeneous recombination in Clostridium, improving the stability and transformation efficiency of plasmids, solving the off-target problem of antisense RNA technology and type Ⅱ intron technology, reducing the toxicity of Cas9 protein, and so on. At the same time, new gene editing technologies should be developed, focusing on emerging technologies including CRISPR/Cas-mediated multi-locus editing systems, phage recombinase-mediated multiplex genome editing, targeted or random multi-copy gene integration, and so on. It is believed that with the development and improvement of genetic modification tools, Clostridium will be able to fully each its potential biorefinery capacity and make an important contribution to the green biosynthesis of bioenergy and bio-based chemicals.

Key words: Clostridium, gene editing tools, genetic modification, recombinase, CRISPR