Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (6): 1017-1029.DOI: 10.12211/2096-8280.2021-011
• Invited Review • Previous Articles Next Articles
Shuqi GUO1, Ziyue JIAO1, Qiang FEI1,2
Received:
2021-01-25
Revised:
2021-04-30
Online:
2022-01-21
Published:
2021-12-31
Contact:
Qiang FEI
郭树奇1, 焦子悦1, 费强1,2
通讯作者:
费强
作者简介:
基金资助:
CLC Number:
Shuqi GUO, Ziyue JIAO, Qiang FEI. Progress in construction and applications of methanotrophic cell factory for chemicals biosynthesis[J]. Synthetic Biology Journal, 2021, 2(6): 1017-1029.
郭树奇, 焦子悦, 费强. 基于化学品生物合成的嗜甲烷菌人工细胞构建及应用进展[J]. 合成生物学, 2021, 2(6): 1017-1029.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-011
Fig. 1 The pathways of methane metabolism in methanotrophs[8, 27] pMMO—particulate methane monooxygenase; sMMO—soluble methane monooxygenase; MDH—methanol dehydrogenase; FDH—formate dehydrogenase
功能 | 质粒 | 筛选标记 | 菌株 | 参考文献 |
---|---|---|---|---|
基因复制 | pBHR1 | Km, Cm | Methylomonas sp. 16a | [ |
pAWP78 | Km | M. buryatense 5G | [ | |
基因表达 | pAWP89 | Km | M. buryatense 5G | [ |
pCAH01:emGFP | Km | M. buryatense 5G | [ | |
基因敲除 | pK18mobsacB | Km, SacB | Methylococcus capsulatus (Bath) | [ |
pCM184 | Gm, SacB | Methylomicrobium alcaliphilum 20Z | [ | |
基因转移技术 | ||||
接合转移 | pRK2013 | Km | Methylomonas sp. 16a | [ |
pBHR1 | Km | Methylomonas sp. 16a | [ | |
电转化 | pAWP89 (线性化) | Km | M. buryatense 5G | [ |
pheSAG (线性化DNA片段) | Km | M. buryatense 5G | [ |
Tab. 1 The genetic tool used for metabolic engineering of methanotrophs
功能 | 质粒 | 筛选标记 | 菌株 | 参考文献 |
---|---|---|---|---|
基因复制 | pBHR1 | Km, Cm | Methylomonas sp. 16a | [ |
pAWP78 | Km | M. buryatense 5G | [ | |
基因表达 | pAWP89 | Km | M. buryatense 5G | [ |
pCAH01:emGFP | Km | M. buryatense 5G | [ | |
基因敲除 | pK18mobsacB | Km, SacB | Methylococcus capsulatus (Bath) | [ |
pCM184 | Gm, SacB | Methylomicrobium alcaliphilum 20Z | [ | |
基因转移技术 | ||||
接合转移 | pRK2013 | Km | Methylomonas sp. 16a | [ |
pBHR1 | Km | Methylomonas sp. 16a | [ | |
电转化 | pAWP89 (线性化) | Km | M. buryatense 5G | [ |
pheSAG (线性化DNA片段) | Km | M. buryatense 5G | [ |
菌株 | 产物种类 | 代谢途径/前体 | 产物 | 产量 | 参考文献 |
---|---|---|---|---|---|
M. buryatense 5GB1C[ | 有机酸 | 丙酮酸 | L-乳酸 | 800 mg/L | [ |
有机酸 | 丙酮酸 | L-乳酸 | 600 mg/L | [ | |
有机酸 | 乙酰辅酶A | 丁烯酸 | 70 mg/L | [ | |
有机酸 | 乙酰辅酶A | 丁酸 | 40 mg/L | [ | |
有机酸 | 莽草酸途径 | 黏糠酸 | 12.4 mg/L | [ | |
有机酸 | 乙酰辅酶A | 脂肪酸 | 111 mg/g DCW | [ | |
M. alcaliphilum 20Z[ | 生物醇 | 丙酮酸 | 2,3-丁二醇 | 86.2 mg/L | [ |
生物醇 | 丙酮酸 | 2,3-丁二醇 | 361.3 mg/L | [ | |
有机酸 | 乙酰辅酶A | 3-羟基丙酸 | 196.3 mg/L | [ | |
有机酸 | 莽草酸途径 | 黏糠酸 | 0.75 mg/L | [ | |
萜类 | MEP 途径 | α-蛇麻烯 | 0.75 mg/g DCW | [ | |
— | TCA循环 | 腐胺 | 98.08 mg/L | [ | |
有机酸 | 丙酮酸 | 乳酸 | 0.027 g/(g DCW·h) | [ | |
— | RuMP 循环 | Shinorine | 31 mg/L | [ | |
M. capsulatus Bath[ | 有机酸 | 莽草酸途径 | 黏糠酸 | 1.0 mg/L | [ |
萜类 | MEP 途径 | 异戊二烯 | 10 mg/L | [ | |
生物醇 | TCA 循环 | 1,4-丁二醇 | — | [ | |
生物醇 | 丙酮酸 | 异丙醇 | 220 mg/L① | [ | |
生物醇 | 丙酮酸 | 异丙醇 | 1 mg/L | [ | |
Methylomonas sp. DH-1[ | 有机酸 | TCA 循环 | 琥珀酸 | 195 mg/L | [ |
有机酸 | 丙酮酸 | D-乳酸 | 1190 mg/L | [ | |
Methylosinus trichosporium OB3b[ | 有机酸 | 乙酰辅酶A | 3-羟基丙酸 | 60.6 mg/L | [ |
— | TCA 循环 | 尸胺 | 283.6 mg/L | [ | |
Methylomonas sp. 16a[ | 萜类 | MEP 途径 | 柠檬烯 | 0.5 mg/L | [ |
萜类 | MEP 途径 | 法尼烯 | — | [ | |
萜类 | MEP 途径 | 虾青素 | 2.4 mg/g DCW | [ | |
萜类 | MEP 途径 | 虾青素 | 2.0 mg/g DCW | [ |
Tab. 2 Biosynthesis of various chemicals and biofuels from methane by methanotrophic cell factories
菌株 | 产物种类 | 代谢途径/前体 | 产物 | 产量 | 参考文献 |
---|---|---|---|---|---|
M. buryatense 5GB1C[ | 有机酸 | 丙酮酸 | L-乳酸 | 800 mg/L | [ |
有机酸 | 丙酮酸 | L-乳酸 | 600 mg/L | [ | |
有机酸 | 乙酰辅酶A | 丁烯酸 | 70 mg/L | [ | |
有机酸 | 乙酰辅酶A | 丁酸 | 40 mg/L | [ | |
有机酸 | 莽草酸途径 | 黏糠酸 | 12.4 mg/L | [ | |
有机酸 | 乙酰辅酶A | 脂肪酸 | 111 mg/g DCW | [ | |
M. alcaliphilum 20Z[ | 生物醇 | 丙酮酸 | 2,3-丁二醇 | 86.2 mg/L | [ |
生物醇 | 丙酮酸 | 2,3-丁二醇 | 361.3 mg/L | [ | |
有机酸 | 乙酰辅酶A | 3-羟基丙酸 | 196.3 mg/L | [ | |
有机酸 | 莽草酸途径 | 黏糠酸 | 0.75 mg/L | [ | |
萜类 | MEP 途径 | α-蛇麻烯 | 0.75 mg/g DCW | [ | |
— | TCA循环 | 腐胺 | 98.08 mg/L | [ | |
有机酸 | 丙酮酸 | 乳酸 | 0.027 g/(g DCW·h) | [ | |
— | RuMP 循环 | Shinorine | 31 mg/L | [ | |
M. capsulatus Bath[ | 有机酸 | 莽草酸途径 | 黏糠酸 | 1.0 mg/L | [ |
萜类 | MEP 途径 | 异戊二烯 | 10 mg/L | [ | |
生物醇 | TCA 循环 | 1,4-丁二醇 | — | [ | |
生物醇 | 丙酮酸 | 异丙醇 | 220 mg/L① | [ | |
生物醇 | 丙酮酸 | 异丙醇 | 1 mg/L | [ | |
Methylomonas sp. DH-1[ | 有机酸 | TCA 循环 | 琥珀酸 | 195 mg/L | [ |
有机酸 | 丙酮酸 | D-乳酸 | 1190 mg/L | [ | |
Methylosinus trichosporium OB3b[ | 有机酸 | 乙酰辅酶A | 3-羟基丙酸 | 60.6 mg/L | [ |
— | TCA 循环 | 尸胺 | 283.6 mg/L | [ | |
Methylomonas sp. 16a[ | 萜类 | MEP 途径 | 柠檬烯 | 0.5 mg/L | [ |
萜类 | MEP 途径 | 法尼烯 | — | [ | |
萜类 | MEP 途径 | 虾青素 | 2.4 mg/g DCW | [ | |
萜类 | MEP 途径 | 虾青素 | 2.0 mg/g DCW | [ |
1 | FEI Q, PIENKOS P T. Bioconversion of methane for value-added products[M]//SANI R K, RATHINAM N K. Extremophilic microbial processing of lignocellulosic feedstocks to biofuels, value-added products, and usable power. Cham: Springer, 2018: 145-162. |
2 | YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507(7493): 488-491. |
3 | EPA. Understanding global warming potentials, 2017[EB/OL]. . |
4 | FELDMAN D R, COLLINS W D, BIRAUD S C, et al. Observationally derived rise in methane surface forcing mediated by water vapour trends[J]. Nature Geoscience, 2018, 11(4): 238-243. |
5 | BOUSQUET P, CIAIS P, MILLER J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J]. Nature, 2006, 443(7110): 439-443. |
6 | EPA. Inventory of U.S. Greenhouse gas emissions and sinks: 1990-2013, 2015[EB/OL]. . |
7 | HWANG I Y, HUR D H, LEE J H, et al. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst[J]. Journal of Microbiology and Biotechnology, 2015, 25(3): 375-380. |
8 | KALYUZHNAYA M G, PURI A W, LIDSTROM M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29: 142-152. |
9 | 胡礼珍, 王佳, 袁波, 等. 碳一气体生物利用进展[J]. 生物加工过程, 2017, 15(6): 17-25. |
HU L Z, WANG J, YUAN B, et al. Production of biofuels and chemicals from C1 gases by microorganisms: status and prospects[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6): 17-25. | |
10 | LIU Y C, HE X R, ZHU P P, et al. pheSAG based rapid and efficient markerless mutagenesis in Methylotuvimicrobium[J]. Frontiers in Microbiology, 2020, 11: 441. |
11 | JEON Y C, ANH D N, LEE E Y. Bioproduction of Isoprenoids and other secondary metabolites using methanotrophic bacteria as an alternative microbial cell factory option: current stage and future aspects[J]. Catalysts, 2019, 9(11): 883. |
12 | CANTERA S, BORDEL S, LEBRERO R, et al. Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement[J]. World Journal of Microbiology and Biotechnology, 2019, 35(1): 16. |
13 | NGUYEN A D, LEE E Y. Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing[J]. Trends in Biotechnology, 2021, 39 (4): 381-396. |
14 | NGUYEN A D, HWANG I Y, LEE O K, et al. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane[J]. Metabolic Engineering, 2018, 47: 323-333. |
15 | NGUYEN D T N, LEE O K, LIM C, et al. Metabolic engineering of type Ⅱ methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway[J]. Metabolic Engineering, 2020, 59: 142-150. |
16 | FU Y F, LI Y, LIDSTROM M. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1[J]. Metabolic Engineering, 2017, 42: 43-51. |
17 | 陆吉学, 王世珍, 方柏山. 生物分子机器——甲烷单加氧酶的研究进展[J]. 生物工程学报, 2015, 31(7): 1015-1023. |
LU J X, WANG S Z, FANG B S, et al. Advances in biomolecular machine: methane monooxygenases[J].Chinese Journal of Biotechnology, 2015, 31(7): 1015-1023. | |
18 | 韩冰, 苏涛, 李信, 等. 甲烷氧化菌及甲烷单加氧酶的研究进展[J]. 生物工程学报, 2008, 24(9): 1511-1519. |
HAN B, SU T, LI X, et al. Research progresses of methanotrophs and methane monooxygenases[J]. Chinese Journal of Biotechnology, 2008, 24(9): 1511-1519. | |
19 | KO Y S, KIM J W, LEE J A, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 49(14): 4615-4636. |
20 | LEE O K, NGUYEN D T N, LEE E Y. Metabolic engineering of methanotrophs for the production of chemicals and fuels[M]// LEE E Y. Methanotrophs. Cham: Springer, 2019: 163-203. |
21 | CHOI K R, JANG W D, YANG D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering[J]. Trends in Biotechnology, 2019, 37(8): 817-837. |
22 | ANTONIEWICZ M R. Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production[J]. Current Opinion in Biotechnology, 2019, 59: 165-174. |
23 | HWANG I Y, NGUYEN A D, NGUYEN T T, et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3071-3080. |
24 | CLOMBURG J M, CRUMBLEY A M, GONZALEZ R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355: aag08046320. |
25 | FEI Q, GUARNIERI M T, TAO L, et al. Bioconversion of natural gas to liquid fuel: opportunities and challenges[J]. Biotechnology Advances, 2014, 32(3): 596-614. |
26 | MURRELL J C, JETTEN M S M. The microbial methane cycle[J]. Environmental Microbiology Reports, 2009, 1(5): 279-284. |
27 | LEE O K, HUR D H, NGUYEN D T N, et al. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane[J]. Biofuels, Bioproducts and Biorefining, 2016, 10(6): 848-863. |
28 | SEMRAU J D, DISPIRITO A A, YOON S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34: 496-531. |
29 | NARIYA S, KALYUZHNAYA M G. Diversity, physiology, and biotechnological potential of halo(alkali)philic methane-consuming bacteria[M]// LEE E Y. Methanotrophs. Cham: Springer, 2019: 139-161. |
30 | 郭树奇, 费强. 甲烷生物利用及嗜甲烷菌的工程改造[J]. 生物工程学报, 2021,37(3):816-830. |
GUO S Q, FEI Q. Bioconversion of methane by metabolically engineered methanotrophs[J]. Chinese Journal of Biotechnology, 2021, 37(3): 816-830. | |
31 | GROOM J D, FORD S M, PESESKY M W, et al. A mutagenic screen identifies a tonb-dependent receptor required for the lanthanide metal switch in the type I methanotroph "Methylotuvimicrobium buryatense" 5GB1C[J]. Journal of Bacteriology, 2019, 201(15): e00120-19. |
32 | LEE J K, KIM S, KIM W, et al. Efficient production of D-lactate from methane in a lactate-tolerant strain of Methylomonas sp. DH-1 generated by adaptive laboratory evolution[J]. Biotechnology for Biofuels, 2019, 12: 234. |
33 | GARG S, CLOMBURG J M, GONZALEZ R. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6): 379-391. |
34 | PURI A W, OWEN S, CHU F, et al. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense[J]. Applied and Environmental Microbiology, 2015, 81(5): 1775-1781. |
35 | SIRAJUDDIN S, ROSENZWEIG A C. Enzymatic oxidation of methane[J]. Biochemistry, 2015, 54(14): 2283-2294. |
36 | SHARPE P L, DICOSIMO D, BOSAK M D, et al. Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis[J]. Applied and Environmental Microbiology, 2007, 73(6): 1721-1728. |
37 | HENARD C A, SMITH H, DOWE N, et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium[J]. Scientific Reports, 2016, 6: 21585. |
38 | CSÁKI R, BODROSSY L, KLEM J, et al. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis[J]. Microbiology (Reading), 2003, 149(7): 1785-1795. |
39 | NGUYEN A D, CHAU T H T, LEE E Y. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals[J]. Chemical Engineering Journal, 2021, 420: 127632. |
40 | TAO L, SEDKOVA N, YAO H, et al. Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp.[J]. Applied Microbiology and Biotechnology, 2007, 74(3): 625-633. |
41 | YAN X, CHU F, PURI A W, et al. Electroporation-based genetic manipulation in type I Methanotrophs[J]. Applied and Environmental Microbiology, 2016, 82(7): 2062-2069. |
42 | TAPSCOTT T, MICHAEL T G, HENARD C A. Development of a CRISPR/Cas9 system for Methylococcus capsulatusin vivo gene editing.[J]. Applied and Environmental Microbiology, 2019, 85(11): e00340-19. |
43 | KHMELENINA V N, BECK D A C, MUNK C, et al. Draft genome sequence of Methylomicrobium buryatense strain 5G, a haloalkaline-tolerant methanotrophic bacterium[J]. Genome Announcements, 2013, 1(4): e00053-13. |
44 | GARG S, WU H, CLOMBURG J M, et al. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C[J]. Metabolic Engineering, 2018, 48: 175-183. |
45 | HENARD C A, AKBERDIN I R, KALYUZHNAYA M G, et al. Muconic acid production from methane using rationally-engineered methanotrophic biocatalysts[J]. Green Chemistry, 2019, 21(24): 6731-6737. |
46 | DEMIDENKO A, AKBERDIN I R, ALLEMANN M, et al. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)[J]. Frontiers in Microbiology, 2017, 7: 2167. |
47 | VUILLEUMIER S, KHMELENINA V N, BRINGEL F, et al. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z[J]. Journal of Bacteriology, 2012, 194(2): 551-552. |
48 | NGUYEN A D, KIM D, LEE E Y. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound[J]. Metabolic Engineering, 2020, 61: 69-78. |
49 | NGUYEN L T, LEE E Y. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z[J]. Biotechnology for Biofuels, 2019, 12(1): 147. |
50 | HENARD C A, FRANKLIN T G, YOUHENNA B, et al. Biogas biocatalysis: methanotrophic bacterial cultivation, metabolite profiling, and bioconversion to lactic acid[J]. Frontiers in Microbiology, 2018, 9: 2610. |
51 | WARD N, LARSEN Q, SAKWA J, et al. Genomic Insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath)[J]. PLoS Biology, 2004, 2(10): 1616-1628. |
52 | LEONARD E, MINSHULL J, NESS J, et al. Compositions and methods for biological production of isoprene: USWO/2014/138419[P]. 2014-09-12. |
53 | HELD M A, ZGAO X, CHAO L Y, et al. New genetically modified microorganism comprising a heterologous gene under the control of a molecular switch, useful for making a multicarbon product, 2,3-butanediol, 1,4-butanediol, and isobutyraldehyde: US 0040344[P]. 2020-02-06. |
54 | COLEMAN W J, VIDANES G M, COTTAREL G, et al. Biological conversion of multi-carbon compounds from methane: US20140273128[P]. 2014-09-18. |
55 | NGUYEN A D, HWANG I Y, LEE O K, et al. Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals[J]. Catalysts, 2018, 8(3): 117. |
56 | NGUYEN D T N, LEE O K, HADIYATI S, et al. Metabolic engineering of the type Ⅰ methanotroph Methylomonas sp. DH-1 for production of succinate from methane[J]. Metabolic Engineering, 2019, 54: 170-179. |
57 | STEIN L Y, YOON S, SEMRAU J D, et al. Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b[J]. Journal of Bacteriology, 2010, 192(24): 6497-6498. |
58 | THINGUYEN T, KYUNGLEE O, SANZHARNAIZABEKOV, et al. Bioconversion of methane to cadaverine and lysine using an engineered type Ⅱ methanotroph, Methylosinus trichosporium OB3b[J]. Green Chemistry, 2020, 22, 7803-7811. |
59 | DICOSIMO D J, KOFFAS M, ODOM J M, et al. Production of cyclic terpenoids: US6818424[P]. 2004-11-16. |
60 | YE R W, YAO H, STEAD K, et al. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp strain 16a[J]. Journal of Industrial Microbiology Biotechnology, 2007, 34(4): 289-299. |
61 | HENARD C A, SMITH H K, GUARNIERI M T. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst[J]. Metabolic Engineering, 2017, 41: 152-158. |
62 | BOGORAD I W, LIN T S, LIAO J C. Synthetic non-oxidative glycolysis enables complete carbon conservation[J]. Nature, 2013, 502(7473): 693-697. |
63 | CHINEN A, KOZLOV Y I, HARA Y, et al. Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission[J]. Journal of Bioscience and Bioengineering, 2007, 103(3): 262-269. |
64 | HENARD C A, FREED E F, GUARNIERI M T. Phosphoketolase pathway engineering for carbon-efficient biocatalysis[J]. Current Opinion in Biotechnology, 2015, 36: 183-188. |
65 | MEADOWS A L, HAWKINS K M, TSEGAYE Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016, 537(7622): 694-697. |
66 | NIU F X, LU Q, BU Y F, et al. Metabolic engineering for the microbial production of isoprenoids: carotenoids and isoprenoid-based biofuels[J]. Synthetic and Systems Biotechnology, 2017, 2(3):167-175. |
67 | AKBERDIN I R, THOMPSON M, HAMILTON R, et al. Methane utilization in Methylomicrobium alcaliphilum 20Z(R): a systems approach[J]. Scientific Reports, 2018, 8(1): 2512. |
68 | SUN L, GONG M Y, LÜ X, et al. Current advance in biological production of short-chain organic acid[J]. Applied Microbiology and Biotechnology, 2020, 104(21): 9109-9124. |
69 | MCANULTY M J, POOSARLA V G, LI J, et al. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane[J]. Biotechnology and Bioengineering, 2017, 114(4): 852-861. |
70 | KIM J W, KO Y S, CHAE T U, et al. High-level production of 3-hydroxypropionic acid from glycerol as a sole carbon source using metabolically engineered Escherichia coli[J]. Biotechnology and Bioengineering, 2020, 117(7): 2139-2152. |
71 | WANG L, ZONG Z, LIU Y, et al. Metabolic engineering of Yarrowia lipolytica for the biosynthesis of crotonic acid[J]. Bioresource Technology, 2019, 287: 121484. |
72 | AHN J H, SEO H, PARK W, et al. Enhanced succinic acid production by mannheimia employing optimal malate dehydrogenase[J]. Nature Communications, 2020, 11(1): 1970. |
73 | MENG X, YANG J M, CAO Y J, et al. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms[J]. Journal of Industrial Microbiology Biotechnology, 2011, 38(8): 919-925. |
74 | ALBER B E. Biotechnological potential of the ethylmalonyl-CoA pathway[J]. Applied Microbiology and Biotechnology, 2011, 89(1): 17-25. |
75 | DAVIS M S, CRONAN J E. Inhibition of Escherichia coli acetyl coenzyme a carboxylase by acyl-acyl carrier protein[J]. Journal of Bacteriology, 2001, 183(4):1499-1503. |
76 | KIM S, CHEONG S, GONZALEZ R. Engineering Escherichia coli for the synthesis of short-and medium-chain α,β-unsaturated carboxylic acids[J]. Metabolic Engineering, 2016, 36: 90-98. |
77 | CLOMBURG J M, VICK J E, BLANKSCHIEN M D, et al. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle[J]. ACS Synthetic Biology, 2012, 1(11): 541-554. |
78 | AKBERDIN I R, COLLINS D A, HAMILTON R, et al. Rare earth elements alter redox balance in Methylomicrobium alcaliphilum 20Z(R)[J]. Frontiers in Microbiology, 2018, 9: 2735. |
79 | BORDEL S R Y H. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis[J]. Metabolic Engineering, 2019, 54: 191-199. |
80 | FU Y, HE L, REEVE J, et al. Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1[J]. mBio, 2019, 10(2): e00406-19. |
81 | NGUYEN A D, PARK J Y, HWANG I Y, et al. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol[J]. Metabolic Engineering, 2020, 57: 1-12. |
82 | HU L Z, YANG Y, YAN X, et al. Molecular mechanism associated with the impact of methane/oxygen gas supply ratios on cell growth of Methylomicrobium buryatense 5GB1 through RNA-Seq[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 263. |
83 | HAKOBYAN A, ZHU J, GLATTER T, et al. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs[J]. Metabolic Engineering, 2020, 61:181-196. |
84 | FEI Q, PURI A W, SMITH H, et al. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense[J]. Biotechnology for Biofuels, 2018, 11: 129. |
85 | DONALDSON G K, HOLLANDS K, PICATAGGIO S K. Biocatalyst for conversion of methane and methanol to isoprene: US20150225743[P]. 2015-08-13. |
86 | REN Y Y, LIU S S, JIN G J, et al. Microbial production of limonene and its derivatives: achievements and perspectives.[J]. Biotechnology Advances, 2020, 15(44):107628. |
87 | ALEMDAR S, HARTWIG S, FRISTER T, et al. Heterologous expression, purification, and biochemical characterization of α-humulene synthase from Zingiber zerumbet Smith[J]. Applied Biochemistry and Biotechnology, 2016, 178(3): 474-489. |
88 | GUO W, LI D, HE R, et al. Synthesizing value-added products from methane by a new Methylomonas[J]. Journal of Applied Microbiology, 2017, 123(5): 1214-1227. |
89 | LIANG L Y, LIU R M, FREED E F, et al. Synthetic biology and metabolic engineering employing Escherichia coli for C2-C6 bioalcohol production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 710. |
90 | JANG Y S, KIM B, SHIN J H, et al. Bio-based production of C2-C6 platform chemicals[J]. Biotechnology Bioengineering, 2012, 109(10):2437-2459. |
91 | BALSKUS E P, WALSH C T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria[J]. Science, 2010, 329(5999): 1653-1656. |
92 | PARK S H, LEE K, JANG J W, et al. Metabolic engineering of Saccharomyces cerevisiae for production of shinorine, a sunscreen material, from xylose[J]. ACS Synthetic Biology, 2019, 8(2): 346-357. |
93 | GONZALEZ J E, LONG C P, ANTONIEWICZ M R. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis[J]. Metabolic Engineering, 2017, 39: 9-18. |
94 | GAO J Y, YOU F Q. Design and optimization of shale gas energy systems: overview, research challenges, and future directions[J]. Computers Chemical Engineering, 2017, 106(11): 699-718. |
95 | 王红秋, 乔明, 郑轶丹. 美“页岩气化工”重塑全球化工产业链[J]. 中国石油企业, 2017(3): 73-74. |
WANG H Q, QIAO M, ZHENG Y D. The "shale gas chemical industry" of USA reshapes global chemical industry chain[J]. China Petroleum Enterprise, 2017(3): 73-74. | |
96 | 金瑞庭. 当前国际大宗商品价格走势及2020年展望[J]. 中国经贸导刊, 2020(9): 24-25. |
JIN R T. Current international commodity price trends and prospects for 2020[J]. China Economic Trade Herald, 2020(9): 24-25. | |
97 | KALYUZHNAYA M G, YANG S, ROZOVA O N, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium[J]. Nature Communications, 2013, 4: 2785. |
98 | NAIZABEKOV S, LEE E Y. Genome-scale metabolic model reconstruction and in silico investigations of methane metabolism in Methylosinus trichosporium OB3b[J]. Microorganisms, 2020, 8(3):437. |
99 | 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报,2021, 72(6): 3202-3214. |
GAO Z X, GUO S Q, FEI Q. Recent progress in microbial bioconversion of greenhouse gases into single cell protein[J]. CIESC Journal,2021, 72(6): 3202-3214. | |
100 | PICONE N, MOHAMMADI S S, WAAJEN A C, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV[J]. Frontiers in Microbiology, 2020, 11: 604485. |
101 | REN J, LEE H M, THAI T D, et al. Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH-1[J]. Biotechnology for Biofuels, 2020, 13(1): 200. |
[1] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[2] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[3] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[4] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[5] | Xianyun GAO, Lingxue NIU, Ni JIAN, Ningzi GUAN. Applications of microbial synthetic biology in the diagnosis and treatment of diseases [J]. Synthetic Biology Journal, 2023, 4(2): 263-282. |
[6] | Ran TU, Shixin LI, Haoni LI, Meng WANG. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains [J]. Synthetic Biology Journal, 2023, 4(1): 165-184. |
[7] | Xixian WANG, Qing SUN, Zhidian DIAO, Jian XU, Bo MA. Advances with applications of Raman spectroscopy in single-cell phenotype sorting and analysis [J]. Synthetic Biology Journal, 2023, 4(1): 204-224. |
[8] | Qi LIU, Zhilan QIAN, Lili SONG, Chaoying YAO, Mingqiang XU, Yanna REN, Menghao CAI. Rewiring and application of Pichia pastoris chassis cell [J]. Synthetic Biology Journal, 2022, 3(6): 1150-1173. |
[9] | Zhengxin DONG, Tao SUN, Lei CHEN, Weiwen ZHANG. Applications of regulatory engineering in photosynthetic cyanobacteria [J]. Synthetic Biology Journal, 2022, 3(5): 966-984. |
[10] | Fei TAO, Tao SUN, Yu WANG, Ting WEI, Jun NI, Ping XU. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 932-952. |
[11] | Jinyu CUI, Aidi ZHANG, Guodong LUAN, Xuefeng LYU. Engineering microalgae for photosynthetic biosynthesis: progress and prospect [J]. Synthetic Biology Journal, 2022, 3(5): 884-900. |
[12] | Jiacheng BI, Zhigang TIAN. Synthetic immunology and future NK cell immunotherapy [J]. Synthetic Biology Journal, 2022, 3(1): 22-34. |
[13] | Shichao REN, Qiuyan SUN, Xudong FENG, Chun LI. Biosynthesis of pentacyclic triterpenoid saponins in microbial cell factories [J]. Synthetic Biology Journal, 2022, 3(1): 168-183. |
[14] | Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN. Advances and perspective on bioproduction of 5-aminolevulinic acid [J]. Synthetic Biology Journal, 2021, 2(6): 1000-1016. |
[15] | Xiaodong LI, Chengshuai YANG, Pingping WANG, Xing YAN, Zhihua ZHOU. Production of sesquiterpenoids α-neoclovene and β-caryophyllene by engineered Saccharomyces cerevisiae [J]. Synthetic Biology Journal, 2021, 2(5): 792-803. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||