Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (6): 1246-1258.DOI: 10.12211/2096-8280.2023-048

• Invited Review • Previous Articles     Next Articles

Progress in the bioconversion of biogas into sustainable aviation fuel

Chenyue ZHANG1, Yingqun MA1,2, Xing WANG3, Rongzhan FU4, Jiwei HUANG5, Xiufu HUA6, Daidi FAN4, Qiang FEI1,2   

  1. 1.School of Chemical Engineering and Technology,Xi 'an Jiaotong University,Xi 'an 710049,Shaanxi,China
    2.Xi 'an Key Laboratory of C1 Compound Bioconversion Technology,Xi 'an 710049,Shaanxi,China
    3.Xi 'an WELLE Environmental Technology Group Co. ,Ltd,Xi 'an 710000,Shaanxi,China
    4.School of Chemical Engineering,Northwest University,Xi 'an 710069,Shaanxi,China
    5.WELLE Environmental Technology Group Co. ,Ltd,Changzhou 213000,Jiangsu,China
    6.Yangtze Delta Region Institute of Tsinghua University,Jiaxing 314006,Zhejiang,China
  • Received:2023-07-02 Revised:2023-09-07 Online:2024-01-19 Published:2023-12-31
  • Contact: Qiang FEI

全碳素生物转化沼气制备生物航煤制造路线研究进展

张晨悦1, 马英群1,2, 王兴3, 傅容湛4, 黄技伟5, 花秀夫6, 范代娣4, 费强1,2   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.西安市一碳化合物生物转化技术重点实验室,陕西 西安 710049
    3.西安维尔利环保科技有限公司,陕西 西安 710000
    4.西北大学化工学院,陕西 西安 710069
    5.维尔利环保科技集团股份有限公司,江苏 常州 213000
    6.浙江清华长三角研究院,浙江 嘉兴 314006
  • 通讯作者: 费强
  • 作者简介:张晨悦(1997—),女,博士研究生。研究方向为一碳生物制造的技术经济可行性分析及全生命周期评价。E-mail:4122316017@stu.xjtu.edu.cn
    费强(1980—),男,教授,博士生导师,西安市一碳化合物生物转化技术重点实验室主任。主要以一碳气体的微生物固定及其高值化利用为研究目标,利用合成生物学和高密度发酵等技术改造和优化细胞工厂,实现食品、材料、化学品、能源等产品的生物制造。E-mail:feiqiang@xjtu.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFC2103500);国家自然科学基金(22178281);陕西省杰出青年科学基金(2022JC-09);陕西高校青年创新团队项目

Abstract:

Biogas primarily composed of methane (CH4) and carbon dioxide (CO2) is recognized as a clean and renewable energy source with potential to replace fossil fuels. Currently, the most common way to utilize biogas is by using combined heat and power (CHP) units to generate electricity and heat. However, burning CH4 in biogas releases an equivalent amount of CO2, resulting in a lower carbon-atom economy. To enhance the carbon-utilization efficiency of biogas and reduce greenhouse gas emission, this review suggests a novel route of biological converting both CH4 and CO2 in biogas produced from anaerobic digestion of food wastes for sustainable aviation fuel (SAF) production with applications of synthetic biology techniques and biomanufacturing strategies. Photoautotroph microorganisms and aerobic methanotrophs are used to convert CO2 and CH4 in biogas, respectively. Primary pathways and key enzymes for lipid biosynthesis from CO2 and CH4 by photoautotrophic microbes and methanotrophic bacterial and strategies for carbon flux improvement are introduced and discussed. As the precursor of SAF, the lipids produced by aforementioned microbes need to undergo recovery, pre-treatment, and upgrading procedures. The effects of different technologies developed for lipid recovery (flocculation, dissolved air flotation (DAF), centrifugation, coagulation, filtration) and upgrading (Hydrogenated Esters and Fatty Acids (HEFA), Fischer-Tropsch (F-T), Alcohol-to-jet (ATJ), Hydroprocessed Fermented Sugars (HFS) on efficiency and operation cost are evaluated. Besides, physical properties of SAF derived from different raw materials are compared. The global warming potential of SAF production using different feedstock by HEFA are summarized and the reduction of greenhouse emission can be up to 80% comparing with petroleum-based ones. This review discusses the metabolic pathways, biosynthesis strategies, fermentation technology, recovery and upgrading processes for the production of biogas-derived SAF. It also provides an outlook on strategies to improve the economic efficiency of microbes-based SAF manufacturing and guideline for commercial applications of biotechnology in fuel production.

Key words: biogas, photoautotroph microorganisms, aerobic methanotrophs, synthetic biology, sustainable aviation fuel, biological manufacturing

摘要:

作为一种清洁可再生能源,沼气具有替代化石燃料的潜能。沼气的传统利用是通过直接燃烧获得电力和热量,但该过程会产生二氧化碳(CO2),不仅降低了沼气利用的碳原子经济性,还会带来温室气体排放等问题。为了实现沼气全碳素转化,本文提出以餐厨垃圾厌氧消化产生的沼气为原料,利用合成生物学技术和生物制造策略,将其中的全部碳素(CO2和CH4)高效转化为生物航煤(SAF)。该制造路线利用光能自养微生物和好氧性嗜甲烷菌分别转化CO2和CH4合成生物油脂,再将油脂提取并升级加工制备SAF。文章通过介绍光能自养微生物和好氧性嗜甲烷菌的关键酶和代谢途径,总结菌种改造策略和发酵工艺优化在提升油脂积累方面的研究进展。在比较了不同生物油脂预处理和升级加工的工艺特点之后,分析了相关技术的经济性和应用场景。基于SAF的燃烧性能及其在生产过程中的全球变暖潜势值,讨论了SAF制造路线的技术可行性。最后,借助技术经济可行性分析,展望了提升SAF制造路线经济性的策略,为生物技术在燃料生产领域的商业化应用提供参考。

关键词: 沼气, 光能自养微生物, 好氧性嗜甲烷菌, 合成生物, 生物航煤, 生物制造

CLC Number: