Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (6): 1246-1258.DOI: 10.12211/2096-8280.2023-048
• Invited Review • Previous Articles Next Articles
Chenyue ZHANG1, Yingqun MA1,2, Xing WANG3, Rongzhan FU4, Jiwei HUANG5, Xiufu HUA6, Daidi FAN4, Qiang FEI1,2
Received:
2023-07-02
Revised:
2023-09-07
Online:
2024-01-19
Published:
2023-12-31
Contact:
Qiang FEI
张晨悦1, 马英群1,2, 王兴3, 傅容湛4, 黄技伟5, 花秀夫6, 范代娣4, 费强1,2
通讯作者:
费强
作者简介:
基金资助:
CLC Number:
Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel[J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258.
张晨悦, 马英群, 王兴, 傅容湛, 黄技伟, 花秀夫, 范代娣, 费强. 全碳素生物转化沼气制备生物航煤制造路线研究进展[J]. 合成生物学, 2023, 4(6): 1246-1258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-048
Fig. 3 Lipid biosynthesis pathway by methane fixation in aerobic methanotrophs[10, 60-62]MMO—methane monooxygenase; pMMO—particulate methane monooxygenase; sMMO—soluble methane monooxygenase; MDH—methanol dehydrogenase; FADH—formaldehyde dehydrogenase; FDH—formate dehydrogenase; F6P—fructose-6-phosphate; X5P—xylulose-5-phosphate; FPkt—F6P phosphoketolase; XPkt—X5P phosphoketolase; Ack—acetate kinase; ACC—acetyl-CoA carboxylase; PG—1,2-dioctadecanoyl-sn-glycero-3-phospho-(1′-sn-glycerol); PE—1,2-di-(11Z-hexadecenoyl)-sn-glycero-3-phosphoethanolamine; PME—1-(9Z-octadecenoyl)-2-hexadecanoyl-sn-glycero-3-phospho-N-methylethanolamine; PDME—1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-N,N-dimethylethanolamine
回收技术 | 优点 | 缺点 | 影响成本的关键因素 |
---|---|---|---|
混凝/絮凝 | 回收率较高、简便快捷、能耗低 | 絮凝剂的使用可能影响下游加工 | 絮凝剂添加 |
浮选 | 回收率较高、快速、占地面积小 | 表面活性剂可能影响下游加工 | 表面活性剂添加 |
离心 | 回收率较高、快速 | 能耗高、经济可行性低 | 能源密集型工艺 |
过滤 | 能耗低、小规模应用时经济性好 | 回收率低、容易造成膜污染/堵塞、需提供压力差、不适用于小尺寸微生物或高浓度菌液 | 滤膜更换昂贵 |
重力沉降 | 操作简便 | 回收率低、耗时 | 回收效率低下 |
絮凝+离心 | 回收率高、快速 | 能耗高 | 絮凝剂的添加、能耗高 |
絮凝+浮选 | 回收率高、快速、占地面积小 | 工艺复杂 | 絮凝剂和表面活性剂的添加 |
Table 1 Comparisons of different lipid recovery technologies [73-76]
回收技术 | 优点 | 缺点 | 影响成本的关键因素 |
---|---|---|---|
混凝/絮凝 | 回收率较高、简便快捷、能耗低 | 絮凝剂的使用可能影响下游加工 | 絮凝剂添加 |
浮选 | 回收率较高、快速、占地面积小 | 表面活性剂可能影响下游加工 | 表面活性剂添加 |
离心 | 回收率较高、快速 | 能耗高、经济可行性低 | 能源密集型工艺 |
过滤 | 能耗低、小规模应用时经济性好 | 回收率低、容易造成膜污染/堵塞、需提供压力差、不适用于小尺寸微生物或高浓度菌液 | 滤膜更换昂贵 |
重力沉降 | 操作简便 | 回收率低、耗时 | 回收效率低下 |
絮凝+离心 | 回收率高、快速 | 能耗高 | 絮凝剂的添加、能耗高 |
絮凝+浮选 | 回收率高、快速、占地面积小 | 工艺复杂 | 絮凝剂和表面活性剂的添加 |
技术路线 | 方法 | 优点 | 缺点 | 商业化项目 |
---|---|---|---|---|
HEFA | 280~340 ℃、5~10 MPa条件下,通过加氢脱氧、异构化、裂化和分馏去除油品中的氧,将直链石蜡分子裂解并异构为SAF | 可利用现有炼油设备,技术成熟 | 依赖催化剂和H2 | UOP Honeywell、Neste、 Haldor Topsoe、Axens |
F-T合成 | 600~1000 ℃下将菌体转化为合成气,再升级为SAF | 产品脱硫,芳烃含量低于化石燃料 | 对合成气清洁程度要求高(无固体、焦油、含氮和含硫化合物) | Sierra BioFuels、BioTfueL、 Velocys/Red Rock Biofuels |
ATJ | 1.4 MPa,288~343 ℃条件下,添加H2和PtO2催化剂完成脱水、低聚和氢化生产SAF | 产品选择性、收率高 | 昂贵复杂,对催化剂和原料要求高 | UOP Honeywell、LanzaTech、 Coskata、Cobalt/Navy |
HFS | 酶水解和发酵精炼糖,再通过分馏和加氢裂化生产SAF | 产率和回收率高 | 研究少,大规模应用困难 | Amyris、Total |
Table 2 Comparisons of different lipid upgrading routes and their applications [75,83-84]
技术路线 | 方法 | 优点 | 缺点 | 商业化项目 |
---|---|---|---|---|
HEFA | 280~340 ℃、5~10 MPa条件下,通过加氢脱氧、异构化、裂化和分馏去除油品中的氧,将直链石蜡分子裂解并异构为SAF | 可利用现有炼油设备,技术成熟 | 依赖催化剂和H2 | UOP Honeywell、Neste、 Haldor Topsoe、Axens |
F-T合成 | 600~1000 ℃下将菌体转化为合成气,再升级为SAF | 产品脱硫,芳烃含量低于化石燃料 | 对合成气清洁程度要求高(无固体、焦油、含氮和含硫化合物) | Sierra BioFuels、BioTfueL、 Velocys/Red Rock Biofuels |
ATJ | 1.4 MPa,288~343 ℃条件下,添加H2和PtO2催化剂完成脱水、低聚和氢化生产SAF | 产品选择性、收率高 | 昂贵复杂,对催化剂和原料要求高 | UOP Honeywell、LanzaTech、 Coskata、Cobalt/Navy |
HFS | 酶水解和发酵精炼糖,再通过分馏和加氢裂化生产SAF | 产率和回收率高 | 研究少,大规模应用困难 | Amyris、Total |
原料 | -20 ℃运动 黏度/(mm2/s) | 15 ℃密度 /(kg/m3) | 闪点 /℃ | 凝固点 /℃ | 热值 /(MJ/kg) |
---|---|---|---|---|---|
ASTM D1655 | <8 | 775~840 | >38 | <-40 | >42.8 |
Jet A/A-1 | 8 | 775~840 | 38 | -47 | 42.8 |
大豆 | — | 775 | 38 | -47 | 43.4 |
椰子 | 6.52 | 788 | 55 | -16 | 43.5 |
麻风树 | 3.66 | 751~840 | 46.5 | -57 | 44.3 |
亚麻荠 | 3.3 | 751 | 43 | -77 | 44.1 |
蓖麻 | 5.3 | 758 | 55 | -62 | — |
桐树 | — | 839 | 39 | -66 | 42.3 |
牛油 | 5.3 | 758 | 55 | -62 | 44 |
废弃食用油 | 3.8 | 760 | 42 | -54.3 | 44 |
Chlorella pyrenoidosa | 2.9 | 856 | 68 | -38 | 44 |
Nannochloropsis sp. | 2.8 | 1380 | 68 | -30 | 44 |
Table 3 Summary of SAF physical properties from different raw materials [89-90, 92-93]
原料 | -20 ℃运动 黏度/(mm2/s) | 15 ℃密度 /(kg/m3) | 闪点 /℃ | 凝固点 /℃ | 热值 /(MJ/kg) |
---|---|---|---|---|---|
ASTM D1655 | <8 | 775~840 | >38 | <-40 | >42.8 |
Jet A/A-1 | 8 | 775~840 | 38 | -47 | 42.8 |
大豆 | — | 775 | 38 | -47 | 43.4 |
椰子 | 6.52 | 788 | 55 | -16 | 43.5 |
麻风树 | 3.66 | 751~840 | 46.5 | -57 | 44.3 |
亚麻荠 | 3.3 | 751 | 43 | -77 | 44.1 |
蓖麻 | 5.3 | 758 | 55 | -62 | — |
桐树 | — | 839 | 39 | -66 | 42.3 |
牛油 | 5.3 | 758 | 55 | -62 | 44 |
废弃食用油 | 3.8 | 760 | 42 | -54.3 | 44 |
Chlorella pyrenoidosa | 2.9 | 856 | 68 | -38 | 44 |
Nannochloropsis sp. | 2.8 | 1380 | 68 | -30 | 44 |
原料 | GWP/ | 与石油基对比GWP减排量 |
---|---|---|
大豆 | 64.9 | 27.1% |
玉米 | 17.2 | 80.7% |
菜籽油 | 47.4 | 46.7% |
亚麻荠 | 42.0 | 52.8% |
废弃食用油 | 13.9 | 84.3% |
微藻 | 14.1 | 84.2% |
Table 4 Global warming potential of SAF production using different feedstock by HEFA[94-96]
原料 | GWP/ | 与石油基对比GWP减排量 |
---|---|---|
大豆 | 64.9 | 27.1% |
玉米 | 17.2 | 80.7% |
菜籽油 | 47.4 | 46.7% |
亚麻荠 | 42.0 | 52.8% |
废弃食用油 | 13.9 | 84.3% |
微藻 | 14.1 | 84.2% |
1 | POUR F H, MAKKAWI Y T. A review of post-consumption food waste management and its potentials for biofuel production[J]. Energy Reports, 2021, 7: 7759-7784. |
2 | FAO. Towards the future we want: end hunger and make the transition to sustainable agricultural and food systems[EB/OL]. 2012[2023-06-01]. . |
3 | 李晨曦, 王铭娅, 吴春东, 等. 餐厨垃圾厌氧消化残余物的利用现状及展望[J]. 中国沼气, 2023, 41(2): 3-8. |
LI C X, WANG M Y, WU C D, et al. Utilization status and prospect of anaerobic digestion residue of food waste[J]. China Biogas, 2023, 41(2): 3-8. | |
4 | 中华人民共和国国家发展和改革委员会. "十四五"城镇生活垃圾分类和处理设施发展规划[EB/OL]. (2021-05-06)[2023-06-01]. . |
National Development and Reform Commission of the People's Republic of China. Development plan for urban domestic waste classification and treatment facilities during the 14th Five Year Plan[EB/OL]. (2021-05-06)[2023-06-01]. . | |
5 | LI Y Y, JIN Y Y, BORRION A, et al. Current status of food waste generation and management in China[J]. Bioresource Technology, 2019, 273: 654-665. |
6 | JIN C X, SUN S Q, YANG D H, et al. Anaerobic digestion: an alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146397. |
7 | AHMED S F, MOFIJUR M, TARANNUM K, et al. Biogas upgrading, economy and utilization: a review[J]. Environmental Chemistry Letters, 2021, 19(6): 4137-4164. |
8 | KAPOOR R, GHOSH P, TYAGI B, et al. Advances in biogas valorization and utilization systems: a comprehensive review[J]. Journal of Cleaner Production, 2020, 273: 123052. |
9 | MEIER L, PÉREZ R, AZÓCAR L, et al. Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading[J]. Biomass and Bioenergy, 2015, 73: 102-109. |
10 | FEI Q, GUARNIERI M T, TAO L, et al. Bioconversion of natural gas to liquid fuel: opportunities and challenges[J]. Biotechnology Advances, 2014, 32(3): 596-614. |
11 | FU R Z, KANG L X, ZHANG C Y, et al. Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals[J]. Green Chemical Engineering, 2023, 4(2): 189-198. |
12 | FAGEDA X, TEIXIDÓ J J. Pricing carbon in the aviation sector: evidence from the European emissions trading system[J]. Journal of Environmental Economics and Management, 2022, 111: 102591. |
13 | HUANG W Q, WANG Q F, LI H, et al. Review of recent progress of emission trading policy in China[J]. Journal of Cleaner Production, 2022, 349: 131480. |
14 | IPCC. AR6 climate change 2021: the physical science basis[R/OL]. 2021[2023-06-01]. . |
15 | YANG L S, HU Y J, WANG H L, et al. Uncertainty quantification of CO2 emissions from China's civil aviation industry to 2050[J]. Journal of Environmental Management, 2023, 336: 117624. |
16 | LIANG B B, FU R Z, MA Y Q, et al. Turning C1-gases to isobutanol towards great environmental and economic sustainability via innovative biological routes: two birds with one stone[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 107. |
17 | WEUSTER-BOTZ D. Process engineering aspects for the microbial conversion of C1 gases[M/OL]//ZENG A P, CLAASSENS N J. One-carbon feedstocks for sustainable bioproduction. Cham: Springer International Publishing, 2022: 33-56 [2023-06-01]. . |
18 | DALKE R, DEMRO D, KHALID Y, et al. Current status of anaerobic digestion of food waste in the United States[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111554. |
19 | KOBAYASHI T, XU K Q, LI Y Y, et al. Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen-methane fermentation process treating food wastes[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5602-5611. |
20 | WU C F, HUANG Q Q, YU M, et al. Effects of digestate recirculation on a two-stage anaerobic digestion system, particularly focusing on metabolite correlation analysis[J]. Bioresource Technology, 2018, 251: 40-48. |
21 | HENARD C A, WU C, XIONG W, et al. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is essential for growth of the methanotroph Methylococcus capsulatus strain bath[J]. Applied and Environmental Microbiology, 2021, 87(18): e00881-21. |
22 | BARTON L L, FARDEAU M L, FAUQUE G D. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation[M/OL]//KRONECK P, TORRES M. The metal-driven biogeochemistry of gaseous compounds in the environment. Dordrecht: Springer, 2014: 237-277 [2023-06-01]. . |
23 | CLAASSENS N J, SOUSA D Z, DOS SANTOS V A P M, et al. Harnessing the power of microbial autotrophy[J]. Nature Reviews Microbiology, 2016, 14(11): 692-706. |
24 | SRISAWAT P, HIGUCHI-TAKEUCHI M, NUMATA K. Microbial autotrophic biorefineries: perspectives for biopolymer production[J]. Polymer Journal, 2022, 54(10): 1139-1151. |
25 | 赵青云, 韩飞, 石向星, 等. 微藻生物柴油固碳减排和经济效益研究[J/OL]. 工业水处理[2023-06-01]. . |
ZHAO Q Y, HAN F, SHI X X, et al. Research on carbon sequestration, emission reduction and economic benefit of microalgae biodiesel[J/OL]. Industrial Water Treatment[2023-06-01]. . | |
26 | 张艺博, 薛永常, 刘长斌. 转录因子在调控微藻油脂合成中的作用[J/OL]. 中国油脂[2023-06-01]. . |
ZHANG Y B, XUE Y C, LIU C B. The important role of transcription factors in the regulation of lipid synthesis in microalgae[J/OL]. China Oils and Fats[2023-06-01]. . | |
27 | BEHERA B, UNPAPROM Y, RAMARAJ R, et al. Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111270. |
28 | ZENG X H, DANQUAH M K, CHEN X D, et al. Microalgae bioengineering: from CO2 fixation to biofuel production[J]. Renewable and Sustainable Energy Reviews, 2011, 15(6): 3252-3260. |
29 | MIAO R, XIE H, LIU X F, et al. Current processes and future challenges of photoautotrophic production of acetyl-CoA-derived solar fuels and chemicals in cyanobacteria[J]. Current Opinion in Chemical Biology, 2020, 59: 69-76. |
30 | MUÑOZ C F, SÜDFELD C, NADUTHODI M I S, et al. Genetic engineering of microalgae for enhanced lipid production[J]. Biotechnology Advances, 2021, 52: 107836. |
31 | MA X M, MI Y W, ZHAO C, et al. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production[J]. Science of the Total Environment, 2022, 806: 151387. |
32 | KNOOT C J, UNGERER J, WANGIKAR P P, et al. Cyanobacteria: promising biocatalysts for sustainable chemical production[J]. Journal of Biological Chemistry, 2018, 293(14): 5044-5052. |
33 | YUNUS I S, JONES P R. Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols[J]. Metabolic Engineering, 2018, 49: 59-68. |
34 | VELMURUGAN R, INCHAROENSAKDI A. Metabolic transformation of cyanobacteria for biofuel production[J]. Chemosphere, 2022, 299: 134342. |
35 | CAI Z, LIU G X, ZHANG J L, et al. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of rubisco[J]. Protein & Cell, 2014, 5(7): 552-562. |
36 | GUPTA J K, RAI P, JAIN K K, et al. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation[J]. Biotechnology for Biofuels, 2020, 13: 17. |
37 | KAMENNAYA N A, AHN S, PARK H, et al. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production[J]. Metabolic Engineering, 2015, 29: 76-85. |
38 | TOWIJIT U, SONGRUK N, LINDBLAD P, et al. Co-overexpression of native phospholipid-biosynthetic genes plsX and plsC enhances lipid production in Synechocystis sp. PCC 6803[J]. Scientific Reports, 2018, 8: 13510. |
39 | EUNGRASAMEE K, MIAO R, INCHAROENSAKDI A, et al. Improved lipid production via fatty acid biosynthesis and free fatty acid recycling in engineered Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2019, 12(1): 8. |
40 | ISKANDAROV U, SITNIK S, SHTAIDA N, et al. Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production[J]. Journal of Applied Phycology, 2016, 28(2): 907-919. |
41 | NIU Y F, WANG X, HU D X, et al. Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum [J]. Biotechnology for Biofuels, 2016, 9: 60. |
42 | BALAMURUGAN S, WANG X, WANG H L, et al. Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum [J]. Biotechnology for Biofuels, 2017, 10: 97. |
43 | HUNG C H, HO M Y, KANEHARA K, et al. Functional study of diacylglycerol acyltransferase type 2 family in Chlamydomonas reinhardtii [J]. FEBS Letters, 2013, 587(15): 2364-2370. |
44 | LI D W, CEN S Y, LIU Y H, et al. A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica [J]. Journal of Biotechnology, 2016, 229: 65-71. |
45 | YAO L, QI F X, TAN X M, et al. Improved production of fatty alcohols in cyanobacteria by metabolic engineering[J]. Biotechnology for Biofuels, 2014, 7: 94. |
46 | KAISER B K, CARLETON M, HICKMAN J W, et al. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products[J]. PLoS One, 2013, 8(3): e58307. |
47 | NIU Y F, ZHANG M H, LI D W, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum [J]. Marine Drugs, 2013, 11(11): 4558-4569. |
48 | WEI H H, SHI Y, MA X N, et al. A type-Ⅰ diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica [J]. Biotechnology for Biofuels, 2017, 10: 174. |
49 | 王何瑜, 龚一富, 郑小恽, 等. 三角褐指藻DGAT1基因生物信息学分析及表达调控研究[J]. 宁波大学学报(理工版), 2021, 34(4): 1-7. |
WANG H Y, GONG Y F, ZHENG X Y, et al. Bioinformation analysis and expression regulation of DGAT1 gene in Phaeodactylum tricornutum[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2021, 34(4): 1-7. | |
50 | PARMAR A, SINGH N K, PANDEY A, et al. Cyanobacteria and microalgae: a positive prospect for biofuels[J]. Bioresource Technology, 2011, 102(22): 10163-10172. |
51 | SIROHI R, KUMAR PANDEY A, RANGANATHAN P, et al. Design and applications of photobioreactors- a review[J]. Bioresource Technology, 2022, 349: 126858. |
52 | KHATOON N, PAL R. Microalgae in biotechnological application: a commercial approach[M/OL]//BAHADUR B, VENKAT RAJAM M, SAHIJRAM L, et al. Plant Biology and Biotechnology. New Delhi: Springer, 2015: 27-47 [2023-06-01]. . |
53 | HU Q, SOMMERFELD M, JARVIS E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances[J]. The Plant Journal, 2008, 54(4): 621-639. |
54 | PATHAK J, RAJNEESH, MAURYA P K, et al. Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives[J]. Frontiers in Environmental Science, 2018, 6: 7. |
55 | NAGAPPAN S, DEVENDRAN S, TSAI P C, et al. Potential of two-stage cultivation in microalgae biofuel production[J]. Fuel, 2019, 252: 339-349. |
56 | NAGAPPAN S, DEVENDRAN S, TSAI P C, et al. Metabolomics integrated with transcriptomics and proteomics: evaluation of systems reaction to nitrogen deficiency stress in microalgae[J]. Process Biochemistry, 2020, 91: 1-14. |
57 | WIDJAJA A, CHIEN C C, JU Y H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris [J/OL]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 13-20[2023-06-01]. . |
58 | RODOLFI L, CHINI ZITTELLI G, BASSI N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology and Bioengineering, 2009, 102(1): 100-112. |
59 | 刘丰源, 辛嘉英, 孙立瑞, 等. 甲烷氧化菌的高密度培养及其在生物柴油炼制中的应用[J]. 分子催化, 2018, 32(4): 370-381. |
LIU F Y, XIN J Y, SUN L R, et al. High density culture of methane oxidizing bacteria and its application in biodiesel refining[J]. Journal of Molecular Catalysis (China), 2018, 32(4): 370-381. | |
60 | DEMIDENKO A, AKBERDIN I R, ALLEMANN M, et al. Fatty acid biosynthesis pathways in methylomicrobium buryatense 5G(B1)[J]. Frontiers in Microbiology, 2017, 7: 2167. |
61 | GĘSICKA A, OLESKOWICZ-POPIEL P, ŁĘŻYK M. Recent trends in methane to bioproduct conversion by methanotrophs[J]. Biotechnology Advances, 2021, 53: 107861. |
62 | HENARD C A, SMITH H K, GUARNIERI M T. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst[J]. Metabolic Engineering, 2017, 41: 152-158. |
63 | CULPEPPER M A, ROSENZWEIG A C. Architecture and active site of particulate methane monooxygenase[J]. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47(6): 483-492. |
64 | KHIDER M L K, BRAUTASET T, IRLA M. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications[J]. World Journal of Microbiology and Biotechnology, 2021, 37(4): 72. |
65 | ZENG A P, CLAASSENS N J. One-carbon feedstocks for sustainable bioproduction[M/OL]. 2022[2023-06-01]. . |
66 | FEI Q, PURI A W, SMITH H, et al. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense [J]. Biotechnology for Biofuels, 2018, 11(1): 129. |
67 | HENARD C A, SMITH H, DOWE N, et al. Bioconversion of methane to lactate by an obligate methanotrophic bacterium[J]. Scientific Reports, 2016, 6: 21585. |
68 | HWANG I Y, NGUYEN A D, NGUYEN T T, et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 3071-3080. |
69 | GHODDOSI F, GOLZAR H, YAZDIAN F, et al. Effect of carbon sources for PHB production in bubble column bioreactor: emphasis on improvement of methane uptake[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102978. |
70 | RAHNAMA F, VASHEGHANI-FARAHANI E, YAZDIAN F, et al. PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor[J]. Biochemical Engineering Journal, 2012, 65: 51-56. |
71 | GHAZ-JAHANIAN M ALI, KHOSHFETRAT A B, HOSSEINIAN ROSTAMI M, et al. An innovative bioprocess for methane conversion to methanol using an efficient methane transfer chamber coupled with an airlift bioreactor[J]. Chemical Engineering Research and Design, 2018, 134: 80-89. |
72 | TIMMERS P H A, GIETELING J, WIDJAJA-GREEFKES H C A, et al. Growth of anaerobic methane-oxidizing Archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor[J]. Applied and Environmental Microbiology, 2015, 81(4): 1286-1296. |
73 | MOLINA GRIMA E, BELARBI E H, ACIÉN FERNÁNDEZ F G, et al. Recovery of microalgal biomass and metabolites: process options and economics[J]. Biotechnology Advances, 2003, 20(7/8): 491-515. |
74 | MATA T M, MARTINS A A, CAETANO N S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 217-232. |
75 | MARTINEZ-VILLARREAL S, BREITENSTEIN A, NIMMEGEERS P, et al. Drop-in biofuels production from microalgae to hydrocarbons: microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation[J]. Biomass and Bioenergy, 2022, 165: 106555. |
76 | VENKATA SUBHASH G, RAJVANSHI M, RAJA KRISHNA KUMAR G, et al. Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem[J]. Bioresource Technology, 2022, 343: 126155. |
77 | YOO G, PARK M S, YANG J W. Chemical pretreatment of algal biomass[M/OL]//Pretreatment of biomass. Amsterdam: Elsevier, 2015: 227-258 [2023-06-01]. . |
78 | MISHRA V, DUBEY A, PRAJAPTI S K. Algal biomass pretreatment for improved biofuel production[M/OL]//GUPTA S, MALIK A, BUX F. Algal biofuels. Cham: Springer, 2017: 259-280 [2023-06-01]. . |
79 | DONG T, FEI Q, GENELOT M, et al. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense [J]. Energy Conversion and Management, 2017, 140: 62-70. |
80 | SIDDIKI S Y A, MOFIJUR M, KUMAR P S, et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: an integrated biorefinery concept[J]. Fuel, 2022, 307: 121782. |
81 | GRIMA E M, GONZÁLEZ M J I, GIMÉNEZ A G. Solvent extraction for microalgae lipids[M/OL]//BOROWITZKA M, MOHEIMANI N. Algae for biofuels and energy. Dordrecht: Springer, 2013: 187-205 [2023-06-01]. . |
82 | SATHISH A, SIMS R C. Biodiesel from mixed culture algae via a wet lipid extraction procedure[J]. Bioresource Technology, 2012, 118: 643-647. |
83 | NG K S, FAROOQ D, YANG A D. Global biorenewable development strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502. |
84 | RONY Z I, MOFIJUR M, HASAN M M, et al. Unanswered issues on decarbonizing the aviation industry through the development of sustainable aviation fuel from microalgae[J]. Fuel, 2023, 334: 126553. |
85 | Airbus. Sustainable aviation fuel: a "drop-in" fuel with reduced lifecycle emissions[EB/OL].2023[2023-06-01]. . |
86 | MAWHOOD R, GAZIS E, DE JONG S, et al. Production pathways for renewable jet fuel: a review of commercialization status and future prospects[J]. Biofuels, Bioproducts and Biorefining, 2016, 10(4): 462-484. |
87 | SHIN H Y, SHIM S H, RYU Y J, et al. Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures[J]. Biotechnology and Bioprocess Engineering, 2018, 23(1): 16-22. |
88 | DEERFIELD I. Selected by air New Zealand and New Zealand government to undertake study for domestic sustainable aviation fuel production in New Zealand[EB/OL]. (2023-06-15)[2023-06-18]. . |
89 | HEYNE J, RAUCH B, LE CLERCQ P, et al. Sustainable aviation fuel prescreening tools and procedures[J]. Fuel, 2021, 290: 120004. |
90 | RUMIZEN M A. Qualification of alternative jet fuels[J]. Frontiers in Energy Research, 2021, 9: 760713. |
91 | LIU Z H, WANG K, CHEN Y, et al. Third-generation biorefineries as the means to produce fuels and chemicals from CO2 [J]. Nature Catalysis, 2020, 3(3): 274-288. |
92 | LIM J H K, GAN Y Y, ONG H C, et al. Utilization of microalgae for bio-jet fuel production in the aviation sector: challenges and perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111396. |
93 | SAID Z, NGUYEN T H, SHARMA P, et al. Multi-attribute optimization of sustainable aviation fuel production-process from microalgae source[J]. Fuel, 2022, 324: 124759. |
94 | CAPAZ R S, SEABRA J E A. Life cycle assessment of biojet fuels[M/OL]//CHUCK C J. Biofuels for aviation. New York: Academic Press, 2016: 279-294 [2023-06-01]. . |
95 | STRATTON R W, WONG H M, JAMES I H. Life cycle greenhouse gas emissions from alternative jet fuels[R/OL]. 2023[2023-6-01]. . |
96 | VARDON D R, SHERBACOW B J, GUAN K Y, et al. Realizing "net-zero-carbon" sustainable aviation fuel[J]. Joule, 2022, 6(1): 16-21. |
97 | GATES D. New $800M sustainable aviation fuel plant planned for Washington state[EB/OL]. (2023-05-18)[2023-06-01]. . |
98 | SAPP M. Chinese company to use honeywell ecofining technology for SAF production[EB/OL]. 2023[2023-06-01]. . |
99 | 北京大学能源研究所. 中国可持续航空燃料发展研究报告现状与展望[R/OL]. 2022[2023-06-01]. . |
Institute of Energy, Peking University. The present and future of sustainable aviation fuels in China[R/OL]. 2022[2023-06-01]. . | |
100 | KARGBO H, HARRIS J S, PHAN A N. "Drop-in" fuel production from biomass: critical review on techno-economic feasibility and sustainability[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110168. |
101 | PENG K, LI J S, JIAO K L, et al. The bioeconomy of microalgal biofuels[M/OL]//JACOB-LOPES E, QUEIROZ ZEPKA L, QUEIROZ M I. Energy from microalgae. Cham: Springer International Publishing. 2018: 157-169 [2023-06-01]. . |
102 | SINGH J, GU S. Commercialization potential of microalgae for biofuels production[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2596-2610. |
[1] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[2] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[3] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[4] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[5] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[6] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[7] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[8] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[9] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[10] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[11] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[12] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[13] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[14] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[15] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||