Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (6): 1231-1241.DOI: 10.12211/2096-8280.2023-066
• Perspective • Previous Articles Next Articles
Yi-Heng P. Job ZHANG1,2,3
Received:
2023-09-14
Revised:
2023-12-08
Online:
2025-01-10
Published:
2024-12-31
Contact:
Yi-Heng P. Job ZHANG
张以恒1,2,3
通讯作者:
张以恒
作者简介:
基金资助:
CLC Number:
Yi-Heng P. Job ZHANG. The enlightenment of the Chinese philosophy “Tao-Fa-Shu-Qi” to industrial biomanufacturing[J]. Synthetic Biology Journal, 2024, 5(6): 1231-1241.
张以恒. 中国哲学思想“道法术器”对生物制造的启示[J]. 合成生物学, 2024, 5(6): 1231-1241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-066
Fig. 1 Scheme of the relationship among “Tao-Fa-Shu-Qi” in ancient Chinese philosophy, wherein “Tao is a way or direction, Fa is rules, Shu is techniques, and Qi is tools for accomplishing goals”. In a word, the way is simple, from top to down, the way guides techniques and tools.
Fig. 2 Scheme of the logic relationship between Tao and Fa, wherein Tao of industrial biomanufacturing is the selection of the right biomanufacturing way from natural collection, planting-extraction, cultivating-extraction, microbial fermentation, enzymatic biocatalysis to in vitro Biotransformation; and Fa is rules that determine limitations of biomanufacturing involving the principle of conversation of mass, the principles of thermodynamics, the principles of enzymology, kinetics, bioenergetics, reaction and reactor engineering; the prices, renewability, limits and scalability of natural resources, as well as selling prices, market size, profitability, market size of manufactured products.
1 | ZHANG Y H P, SUN J B, MA Y H. Biomanufacturing: history and perspective[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(4): 773-784. |
2 | 李寅. 合成生物制造2022[J]. 生物工程学报, 2023, 39(3): 807-841. |
LI Y. Biomanufacturing driven by engineered organisms(2022)[J]. Chinese Journal of Biotechnology, 2023, 39(3): 807-841. | |
3 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN T W, CHEN B Q, ZHANG H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
4 | 马延和. 生物制造产业是生物经济重点发展方向[J]. 中国生物工程杂志, 2022, 42(5): 4-5. |
MA Y H. Bio-manufacturing industry is the key development direction of bio-economy[J]. China Biotechnology, 2022, 42(5): 4-5. | |
5 | 张媛媛, 曾艳, 王钦宏. 合成生物制造进展[J]. 合成生物学, 2021, 2(2): 145-160. |
ZHANG Y Y, ZENG Y, WANG Q H. Advances in synthetic biomanufacturing[J]. Synthetic Biology Journal, 2021, 2(2): 145-160. | |
6 | 金城. 微生物酶工程: 绿色生物制造的基石[J]. 微生物学通报, 2020, 47(7): 2001-2002. |
JIN C. Microbial enzyme engineering: ornerstone of biological manufacturing[J]. Microbiology China, 2020, 47(7): 2001-2002. | |
7 | ZHANG Y H P. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: Challenges and opportunities[J]. Biotechnology and Bioengineering, 2010, 105(4): 663-677. |
8 | 刘建明, 曾安平. 无细胞多酶分子机器赋能二氧化碳的高值利用及其挑战[J]. 合成生物学, 2022, 3(5): 825-832. |
LIU J M, ZENG A P. Cell-free multi-enzyme machines for CO2 capture, utilization and its associated challenges[J]. Synthetic Biology Journal, 2022, 3(5): 825-832. | |
9 | ZHANG Y H P J, ZHU Z G, YOU C, et al. In vitro BioTransformation (ivBT): definitions, opportunities, and challenges[J]. Synthetic Biology and Engineering, 2023, 1(2): 10013. |
10 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
11 | XU X X, ZHANG W, YOU C, et al. Biosynthesis of artificial starch and microbial protein from agricultural residue[J]. Science Bulletin, 2023, 68(2): 214-223. |
12 | YOU C, CHEN H G, MYUNG S, et al. Enzymatic transformation of nonfood biomass to starch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18): 7182-7187. |
13 | HAN P P, WANG X Y, LI Y J, et al. Synthesis of a healthy sweetener D-tagatose from starch catalyzed by semiartificial cell factories[J]. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3813-3820. |
14 | LI Y J, SHI T, HAN P P, et al. Thermodynamics-driven production of value-added D-allulose from inexpensive starch by an in vitro enzymatic synthetic biosystem[J]. ACS Catalysis, 2021, 11(9): 5088-5099. |
15 | YANG J G, SONG W, CAI T, et al. De novo artificial synthesis of hexoses from carbon dioxide[J]. Science Bulletin, 2023, 68(20): 2370-2381. |
16 | YOU C, SHI T, LI Y J, et al. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch[J]. Biotechnology and Bioengineering, 2017, 114(8): 1855-1864. |
17 | ZHANG Y H P, EVANS B R, MIELENZ J R, et al. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway[J]. PLoS One, 2007, 2(5): e456. |
18 | 宋云洪, 吴冉冉, 魏欣蕾, 等. 电-氢-糖循环的新能源体系研究进展[J]. 生物工程学报, 2022, 38(11): 4081-4100. |
SONG Y H, WU R R, WEI X L, et al. Advances in a new energy system based on electricity-hydrogen-carbohydrate cycle[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4081-4100. | |
19 | KIM E J, KIM J E, ZHANG Y H P J. Ultra-rapid rates of water splitting for biohydrogen gas production through in vitro artificial enzymatic pathways[J]. Energy & Environmental Science, 2018, 11(8): 2064-2072. |
20 | ZHU Z G, KIN TAM T, SUN F F, et al. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway[J]. Nature Communications, 2014, 5: 3026. |
21 | 熊检. “中国制造2025”和德国“工业4.0”对比研究[J]. 中国集体经济, 2019(10): 86-87. |
XIONG J. A comparative study of “made in China 2025” and “industry 4.0” in Germany[J]. China Collective Economy, 2019(10): 86-87. | |
22 | 韩祺, 姜江, 汪琪琦, 等. 我国工业生物技术和产业的现状、差距与任务[J]. 生物工程学报, 2022, 38(11): 4035-4042. |
HAN Q, JIANG J, WANG Q Q, et al. The Current situation and developmental trends of industrial biotechnology and biomanufacturing in China[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4035-4042. | |
23 | HEUX S, MEYNIAL-SALLES I, O’DONOHUE M J, et al. White biotechnology: state of the art strategies for the development of biocatalysts for biorefining[J]. Biotechnology Advances, 2015, 33(8): 1653-1670. |
24 | DEMAIN A L. Pickles, pectin, and penicillin[J]. Annual Review of Microbiology, 2004, 58: 1-42. |
25 | DEMAIN A L. Microbial biotechnology[J]. Trends in Biotechnology, 2000, 18(1): 26-31. |
26 | DEMAIN A L, VAISHNAV P. Production of recombinant proteins by microbes and higher organisms[J]. Biotechnology Advances, 2009, 27(3): 297-306. |
27 | CHEN K, ARNOLD F H. Engineering new catalytic activities in enzymes[J]. Nature Catalysis, 2020, 3(3): 203-213. |
28 | 吴明蔚, 罗中华. 中国哲学思维模式下“道”“法”“术”的研究[J]. 文化学刊, 2021(9): 93-96. |
WU M W, LUO Z H. A study of Tao, law and skill in China’s philosophical thinking mode[J]. Culture Journal, 2021(9): 93-96. | |
29 | 刘宽庆, 张以恒. 木质素的生物降解和生物利用[J]. 合成生物学, 2024,5(6): 1264-1278. |
LIU K Q, ZHANG Y-H P J. Biological degradation and utilization of lignin[J]. Synthetic Biology Journal, 2024,5(6): 1264-1278. | |
30 | HAN P P, YOU C, LI Y J, et al. High-titer production of myo-inositol by a co-immobilized four-enzyme cocktail in biomimetic mineralized microcapsules[J]. Chemical Engineering Journal, 2023, 461: 141946. |
31 | YOU R, WANG L, SHI C R, et al. Efficient production of myo-inositol in Escherichia coli through metabolic engineering[J]. Microbial Cell Factories, 2020, 19(1): 109. |
32 | ZHANG Q Q, WANG X L, LUO H Y, et al. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism[J]. Microbial Cell Factories, 2022, 21(1): 112. |
33 | TANG E J, SHEN X L, WANG J, et al. Synergetic utilization of glucose and glycerol for efficient myo-inositol biosynthesis[J]. Biotechnology and Bioengineering, 2020, 117(4): 1247-1252. |
34 | ZHANG Y H P. What is vital (and not vital) to advance economically-competitive biofuels production[J]. Process Biochemistry, 2011, 46(11): 2091-2110. |
35 | SMIL V. Energies: an illustrated guide to the biosphere and civilization[M/OL]. Cambridge, Massachusetts: MIT Press, 1998[2023-09-01]. . |
36 | ZHU X G, LONG S P, ORT D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?[J]. Current Opinion in Biotechnology, 2008, 19(2): 153-159. |
37 | ZHANG Y H P, YOU C, CHEN H G, et al. Surpassing photosynthesis: high-efficiency and scalable CO2 utilization through artificial photosynthesis[M/OL]// ACS Symposium Series. Recent advances in post-combustion CO2 capture chemistry. Washington, DC: American Chemical Society, 2012: 275-292 [2023-09-01]. . |
38 | REECE S Y, HAMEL J A, SUNG K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334(6056): 645-648. |
39 | ESSWEIN A J, NOCERA D G. Hydrogen production by molecular photocatalysis[J]. Chemical Reviews, 2007, 107(10): 4022-4047. |
40 | ZHANG Y H P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus[J]. Energy Science & Engineering, 2013, 1(1): 27-41. |
41 | LE B WILLIAMS P J, LAURENS L M L. Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics[J]. Energy & Environmental Science, 2010, 3(5): 554-590. |
42 | HAMMARSTRÖM L, WINKLER J R, GRAY H B, et al. Shedding light on solar fuel efficiencies[J]. Science, 2011, 333(6040): 288. |
43 | GRAY H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009, 1(1): 7. |
44 | 王中林. 纳米发电机将改变世界[J]. 电力设备管理, 2019(1): 96. |
WANG Z L. Nanogenerators will change the world[J]. Power Equipment Management, 2019(1): 96. | |
45 | 刘邦凡, 栗俊杰, 王玲玉. 我国潮汐能发电的研究与发展[J]. 水电与新能源, 2018, 32(11): 1-6. |
LIU B F, LI J J, WANG L Y. Research and development of tidal power generation in China[J]. Hydropower and New Energy, 2018, 32(11): 1-6. | |
46 | CHHEDA J, HUBER G, DUMESIC J. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie International Edition, 2007, 46(38): 7164-7183. |
47 | HUANG W D, ZHANG Y H. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems[J]. PLoS One, 2011, 6(7): e22113. |
48 | LYND L R, WYMAN C E, GERNGROSS T U. Biocommodity engineering[J]. Biotechnology Progress, 1999, 15(5): 777-793. |
49 | HUANG W D, ZHANG Y H P. Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation[J]. Energy & Environmental Science, 2011, 4(3): 784-792. |
50 | STEEN E J, KANG Y S, BOKINSKY G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463(7280): 559-562. |
51 | ZHONG C, WEI P, ZHANG Y H P. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons[J]. Biotechnology and Bioengineering, 2017, 114(5): 1054-1064. |
52 | 刘阳, 郭小翠, 耿金慧, 等. 体外合成生物学: 无细胞蛋白合成系统研究进展[J]. 科学通报, 2017, 62(33): 3851-3860. |
LIU Y, GUO X C, GENG J H, et al. In vitro synthetic biology: cell-free protein synthesis[J]. Chinese Science Bulletin, 2017, 62(33): 3851-3860. | |
53 | RO D K, PARADISE E M, OUELLET M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. |
54 | GALANIE S, THODEY K, TRENCHARD I J, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252): 1095-1100. |
55 | PERALTA-YAHYA P P, ZHANG F Z, DEL CARDAYRE S B, et al. Microbial engineering for the production of advanced biofuels[J]. Nature, 2012, 488(7411): 320-328. |
56 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature, 2008, 451(7174): 86-89. |
57 | LUO X Z, REITER M A, D’ESPAUX L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126. |
58 | FAO. Population nutrient intake goals for preventing diet-related chronic diseases[EB/OL][2023-09-01]. . |
59 | 闫琰, 王秀东, 王济民, 等. “双循环”背景下国家粮食安全战略研究[J]. 中国工程科学, 2023, 25(4): 14-25. |
YAN Y, WANG X D, WANG J M, et al. National food security strategy against the backdrop of domestic and international dual circulation[J]. Strategic Study of CAE, 2023, 25(4): 14-25. | |
60 | 邹碧颖. 中国食物自给率65.8%, 如何构建安全稳定粮食供应保障?[EB/OL]. 观察者.(2022-05-03)[2023-09-01]. . |
ZOU B Y. China’s food self-sufficiency rate is 65. 8 %. How to build a safe and stable food supply guarantee?[EB/OL]. Observer. (2022-05-03)[2023-09-01]. . | |
61 | CHOI C. Could wood feed the world? Researchers develop way to turn inedible plants into food[EB/OL]. Science. (2013-04-15)[2023-09-01]. . |
62 | 张以恒. 忆王义翘教授对生物炼制的贡献和我对此领域未来发展的观点[J]. 合成生物学, 2021, 2(4): 497-508. |
ZHANG Y H. Remembering Professor Daniel I. C. Wang’s contribution to biorefining and my perspective on the progress[J]. Synthetic Biology Journal, 2021, 2(4): 497-508. |
[1] | Feng CHENG, Shuping ZOU, Jianmiao XU, Heng TANG, Yaping XUE, Yuguo ZHENG. BioHPP®: a benchmark of biomanufacturing for high optically pure L-phosphinothricin [J]. Synthetic Biology Journal, 2024, 5(6): 1404-1418. |
[2] | Jianming LIU, Chijian ZHANG, Bing ZHANG, Anping ZENG. Clostridium pasteurianum as an industrial chassis for efficient production of 1,3-propanediol: from metabolic engineering to fermentation and product separation [J]. Synthetic Biology Journal, 2024, 5(6): 1386-1403. |
[3] | Liang ZHAO, Zhenshuai LI, Liping FU, Ming LYU, Shi’an WANG, Quan ZHANG, Licheng LIU, Fuli LI, Ziyong LIU. Progress in biomanufacturing of lipids and single cell protein from one-carbon compounds [J]. Synthetic Biology Journal, 2024, 5(6): 1300-1318. |
[4] | Meng CHAI, Fengqing WANG, Dongzhi WEI. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[5] | Ting SHI, Zhan SONG, Shiyi SONG, Yi-Heng P. Job ZHANG. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[6] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[7] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[8] | Jinyu CUI, Aidi ZHANG, Guodong LUAN, Xuefeng LYU. Engineering microalgae for photosynthetic biosynthesis: progress and prospect [J]. Synthetic Biology Journal, 2022, 3(5): 884-900. |
[9] | Can ZHANG, Liyang SHI, Jianwu DAI. Cultured meat from biomaterials: challenges and prospects [J]. Synthetic Biology Journal, 2022, 3(4): 676-689. |
[10] | Jie REN, Anping ZENG. CO2 based biomanufacturing: from basic research to industrial application [J]. Synthetic Biology Journal, 2021, 2(6): 854-862. |
[11] | Xiaolong ZHANG, Chenyun WANG, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Research progress of constructing efficient biomanufacturing system based on synthetic biotechnology [J]. Synthetic Biology Journal, 2021, 2(6): 863-875. |
[12] | Liangbin XIONG, Lu SONG, Yunqiu ZHAO, Kun LIU, Yongjun LIU, Fengqing WANG, Dongzhi WEI. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
[13] | Yi-Heng ZHANG. Remembering Professor Daniel I.C. Wang’s contribution to biorefining and my perspective on the progress [J]. Synthetic Biology Journal, 2021, 2(4): 497-508. |
[14] | Yuanyuan ZHANG, Yan ZENG, Qinhong WANG. Advances in synthetic biomanufacturing [J]. Synthetic Biology Journal, 2021, 2(2): 145-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||