Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (2): 352-368.DOI: 10.12211/2096-8280.2021-045
• Invited Review • Previous Articles Next Articles
Shilin XU, Haiyan XU
Received:
2021-04-13
Revised:
2021-07-29
Online:
2022-05-11
Published:
2022-04-30
Contact:
Haiyan XU
许仕琳, 许海燕
通讯作者:
许海燕
作者简介:
基金资助:
CLC Number:
Shilin XU, Haiyan XU. Progress of bispecific antibodies and nanotechnology in tumor immunotherapies[J]. Synthetic Biology Journal, 2022, 3(2): 352-368.
许仕琳, 许海燕. 双特异性抗体及纳米技术在肿瘤免疫治疗中的应用进展[J]. 合成生物学, 2022, 3(2): 352-368.
1 | TAN X, LETENDRE J H, COLLINS J J, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4): 881-898. |
2 | YANG Y P. Cancer immunotherapy: harnessing the immune system to battle cancer[J]. The Journal of Clinical Investigation, 2015, 125(9): 3335-3337. |
3 | CHESTER C, MARABELLE A, HOUOT R, et al. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors[J]. Current Opinion in Immunology, 2015, 33: 1-8. |
4 | REICHERT J M. Antibody-based therapeutics to watch in 2011[J]. mAbs, 2011, 3(1): 76-99. |
5 | NELSON A L, DHIMOLEA E, REICHERT J M. Development trends for human monoclonal antibody therapeutics[J]. Nature Reviews Drug Discovery, 2010, 9(10): 767-774. |
6 | VEEKEN J VAN DER, OLIVEIRA S, SCHIFFELERS R M, et al. Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy[J]. Current Cancer Drug Targets, 2009, 9(6): 748-760. |
7 | JONES H E, GEE J M W, HUTCHESON I R, et al. Growth factor receptor interplay and resistance in cancer[J]. Endocrine-Related Cancer, 2006, 13(S1): S45-S51. |
8 | DHIMOLEA E, REICHERT J M. World bispecific antibody summit, September 27-28, 2011, Boston, MA[J]. mAbs, 2012, 4(1): 4-13. |
9 | STAERZ U D, KANAGAWA O, BEVAN M J. Hybrid antibodies can target sites for attack by T cells[J]. Nature, 1985, 314(6012): 628-631. |
10 | BRENNAN M, DAVISON P F, PAULUS H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments[J]. Science, 1985, 229(4708): 81-83. |
11 | FAN G W, WANG Z J, HAO M J, et al. Bispecific antibodies and their applications[J]. Journal of Hematology & Oncology, 2015, 8: 130. |
12 | SUURS F V, LUB-DE HOOGE M N, DE VRIES E G E, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges[J]. Pharmacology & Therapeutics, 2019, 201: 103-119. |
13 | IRVINE D J, DANE E L. Enhancing cancer immunotherapy with nanomedicine[J]. Nature Reviews Immunology, 2020, 20(5): 321-334. |
14 | HUANG L F, HUANG J, HUANG J B, et al. Nanomedicine - a promising therapy for hematological malignancies[J]. Biomaterials Science, 2020, 8(9): 2376-2393. |
15 | HOSSEINI S S, KHALILI S, BARADARAN B, et al. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: recent advances and clinical trials[J]. International Journal of Biological Macromolecules, 2021, 167: 1030-1047. |
16 | BRINKMANN U, KONTERMANN R E. The making of bispecific antibodies[J]. mAbs, 2017, 9(2): 182-212. |
17 | SHIM H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations[J]. Biomolecules, 2020, 10(3): 360. |
18 | SPIESS C, ZHAI Q T, CARTER P J. Alternative molecular formats and therapeutic applications for bispecific antibodies[J]. Molecular Immunology, 2015, 67(2): 95-106. |
19 | KONTERMANN R E, BRINKMANN U. Bispecific antibodies[J]. Drug Discovery Today, 2015, 20(7): 838-847. |
20 | ESTEY E, DÖHNER H. Acute myeloid leukaemia[J]. The Lancet, 2006, 368(9550): 1894-1907. |
21 | DOMBRET H, GARDIN C. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016, 127(1): 53-61. |
22 | SUN S L, ZOU H X, LI L, et al. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape[J]. International Journal of Pharmaceutics, 2019, 568: 118518. |
23 | FRIEDRICH M, HENN A, RAUM T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia[J]. Molecular Cancer Therapeutics, 2014, 13(6): 1549-1557. |
24 | LEONG S R, SUKUMARAN S, HRISTOPOULOS M, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia[J]. Blood, 2017, 129(5): 609-618. |
25 | JITSCHIN R, SAUL D, BRAUN M, et al. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells[J]. Journal for Immunotherapy of Cancer, 2018, 6(1): 116. |
26 | RAVANDI F, WALTER R B, SUBKLEWE M, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML)[J]. Journal of Clinical Oncology, 2020, 38(): 7508. |
27 | UY G L, ALDOSS I, FOSTER M C, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia[J]. Blood, 2021, 137(6): 751-762. |
28 | UY G L, RETTIG M P, VEY N, et al. Phase 1 cohort expansion of flotetuzumab, a CD123 × CD3 bispecific Dart® protein in patients with relapsed/refractory acute myeloid leukemia (AML)[J]. Blood, 2018, 132(): 764. |
29 | CHU S Y, PONG E, CHEN H, et al. Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia[J]. Blood, 2014, 124(21): 2316. |
30 | RAVANDI F, BASHEY A, STOCK W, et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 × CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study[J]. Blood, 2020, 136: 4-5. |
31 | GAUDET F, NEMETH J F, MCDAID R, et al. Development of a CD123×CD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML)[J]. Blood, 2016, 128(22): 2824. |
32 | GUY D G, UY G L. Bispecific antibodies for the treatment of acute myeloid leukemia[J]. Current Hematologic Malignancy Reports, 2018, 13(6): 417-425. |
33 | SCHUBERT I, KELLNER C, STEIN C, et al. A recombinant triplebody with specificity for CD19 and HLA-DR mediates preferential binding to antigen double-positive cells by dual-targeting[J]. mAbs, 2012, 4(1): 45-56. |
34 | KÜGLER M, STEIN C, KELLNER C, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting[J]. British Journal of Haematology, 2010, 150(5): 574-586. |
35 | SINGER H, KELLNER C, LANIG H, et al. Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16[J]. Journal of Immunotherapy, 2010, 33(6): 599-608. |
36 | BRACIAK T A, ROSKOPF C C, WILDENHAIN S, et al. Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells[J]. OncoImmunology, 2018, 7(9): e1472195. |
37 | SEIFERT M, SCHOLTYSIK R, KÜPPERS R. Origin and pathogenesis of B cell lymphomas[M]// Lymphoma. Totowa: Humana Press, 2019: 1-25. |
38 | FOWLER N, OKI Y. Developing novel strategies to target B-cell malignancies[J]. American Society of Clinical Oncology Educational Book, 2013(33): 366-372. |
39 | ZIMMERMAN Z, MANIAR T, NAGORSEN D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy[J]. International Immunology, 2014, 27(1): 31-37. |
40 | BUATOIS V, JOHNSON Z, SALGADO-PIRES S, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia[J]. Molecular Cancer Therapeutics, 2018, 17(8): 1739-1751. |
41 | TITA-NWA F, MOLDENHAUER G, HERBST M, et al. Cytokine-induced killer cells targeted by the novel bispecific antibody CD19×CD5 (HD37×T5.16) efficiently lyse B-lymphoma cells[J]. Cancer Immunology, Immunotherapy, 2007, 56(12): 1911-1920. |
42 | LIU L Q, LAM C Y K, LONG V, et al. MGD011, A CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating half-life for the treatment of B-cell malignancies[J]. Clinical Cancer Research, 2017, 23(6): 1506-1518. |
43 | PRZEPIORKA D, KO C W, DEISSEROTH A, et al. FDA approval: Blinatumomab[J]. Clinical Cancer Research, 2015, 21(18): 4035-4039. |
44 | BARGOU R, LEO E, ZUGMAIER G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody[J]. Science, 2008, 321(5891): 974-977. |
45 | GOEBELER M E, KNOP S, VIARDOT A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study[J]. Journal of Clinical Oncology, 2016, 34(10): 1104-1111. |
46 | VIARDOT A, GOEBELER M E, HESS G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma[J]. Blood, 2016, 127(11): 1410-1416. |
47 | EINSELE H, BORGHAEI H, ORLOWSKI R Z, et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types[J]. Cancer, 2020, 126(14): 3192-3201. |
48 | WATKINS M P, BARTLETT N L. CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas[J]. Expert Opinion on Investigational Drugs, 2018, 27(7): 601-611. |
49 | IZHAK L, CULLEN D E, ELGAWLY M, et al. Potent antitumor activity of duvortuxizumab, a CD19×CD3 DART® molecule, in lymphoma models[J]. Cancer Research, 2017, 77: 3636. |
50 | SZCZEPANOWSKI M, RICHTER J, KEHDEN B, et al. CD20 expression and response to rituximab treatment in B-cell precursor lymphoblastic leukemia-results of the GMALL 08/2013 trial[J]. Blood, 2018, 132(S1): 1409. |
51 | DWORZAK M N, SCHUMICH A, PRINTZ D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy[J]. Blood, 2008, 112(10): 3982-3988. |
52 | DICKINSON M J, MORSCHHAUSER F, IACOBONI G, et al. Cd20-tcb (Rg6026), a novel “2: 1” format t-cell-engaging bispecific antibody, induces complete remissions in relapsed/refractory B-cell non-Hodgkin’s lymphoma[J]. Hematological Oncology, 2019, 37: 92-93. |
53 | BANNERJI R, ARNASON J E, ADVANI R, et al. Emerging clinical activity of REGN1979, an anti-CD20 × anti-CD3 bispecific antibody, in patients with relapsed/refractory follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and other B-cell non-Hodgkin lymphoma (B-NHL) subtypes[J]. Blood, 2018, 132: 1690. |
54 | KIESLICH A, RUF P, LINDHOFER H, et al. Immunotherapy with the trifunctional anti-CD20×anti-CD3 antibody FBTA05 in a patient with relapsed t(8;14)-positive post-transplant lymphoproliferative disease[J]. Leukemia & Lymphoma, 2017, 58(8): 1989-1992. |
55 | BACAC M, COLOMBETTI S, HERTER S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies[J]. Clinical Cancer Research, 2018, 24(19): 4785-4797. |
56 | BUHMANN R, MICHAEL S, JUERGEN H, et al. Immunotherapy with FBTA05 (Bi20), a trifunctional bispecific anti-CD3 × anti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating Phase I/II-trial[J]. Journal of Translational Medicine, 2013, 11: 160. |
57 | BROWN E J, FRAZIER W A. Integrin-associated protein (CD47) and its ligands[J]. Trends in Cell Biology, 2001, 11(3): 130-135. |
58 | JAISWAL S, JAMIESON C H M, PANG W W, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis[J]. Cell, 2009, 138(2): 271-285. |
59 | BARCLAY A N, BROWN M H. The SIRP family of receptors and immune regulation[J]. Nature Reviews Immunology, 2006, 6(6): 457-464. |
60 | PICCIONE E C, JUAREZ S, LIU J, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells[J]. mAbs, 2015, 7(5): 946-956. |
61 | LEJEUNE M, KÖSE M C, DURAY E, et al. Bispecific, T-cell-recruiting antibodies in B-cell malignancies[J]. Frontiers in Immunology, 2020, 11: 762. |
62 | 赫捷, 陈万青, 李霓, 等. 中国女性乳腺癌筛查与早诊早治指南(2021,北京)[J]. 中国肿瘤, 2021, 30(3): 161-191. |
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of female breast cancer (2021, Beijing)[J]. China Cancer, 2021, 30(3): 161-191. | |
63 | SLAMON D J, CLARK G M, WONG S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785): 177-182. |
64 | DAWOOD S, SIROHI B. Pertuzumab: a new anti-HER2 drug in the management of women with breast cancer[J]. Future Oncology, 2015, 11(6): 923-931. |
65 | VAZQUEZ-MARTIN A, OLIVERAS-FERRAROS C, CUFÍ S, et al. Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth[J]. Journal of Cellular Physiology, 2011, 226(1): 52-57. |
66 | BEDARD P L, DE AZAMBUJA E, CARDOSO F. Beyond trastuzumab: overcoming resistance to targeted HER-2 therapy in breast cancer[J]. Current Cancer Drug Targets, 2009, 9(2): 148-162. |
67 | KIEWE P, THIEL E. Ertumaxomab: a trifunctional antibody for breast cancer treatment[J]. Expert Opinion on Investigational Drugs, 2008, 17(10): 1553-1558. |
68 | YU S N, ZHANG J, YAN Y X, et al. A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells[J]. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 355. |
69 | KOL A, SCHELTINGA A G T T VAN, TIMMER-BOSSCHA H, et al. HER3, serious partner in crime: therapeutic approaches and potential biomarkers for effect of HER3-targeting[J]. Pharmacology & Therapeutics, 2014, 143(1): 1-11. |
70 | MCDONAGH C F, HUHALOV A, HARMS B D, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3[J]. Molecular Cancer Therapeutics, 2012, 11(3): 582-593. |
71 | KIROUAC D C, DU J Y, LAHDENRANTA J, et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors[J]. Science Signaling, 2013, 6(288): ra68. |
72 | IMAI S, NAGANO K, YOSHIDA Y, et al. Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins[J]. Biomaterials, 2011, 32(1): 162-169. |
73 | TAKI S, KAMADA H, INOUE M, et al. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy[J]. PLoS One, 2015, 10(12): e0144712. |
74 | LIU B N, GUO H Z, XU J, et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses[J]. mAbs, 2018, 10(2): 315-324. |
75 | IIZUKA A, NONOMURA C, ASHIZAWA T, et al. A T-cell-engaging B7-H4/CD3-bispecific Fab-scFv antibody targets human breast cancer[J]. Clinical Cancer Research, 2019, 25(9): 2925-2934. |
76 | GILL S, PESTON D, VONDERHAAR B K, et al. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study[J]. Journal of Clinical Pathology, 2001, 54(12): 956-960. |
77 | ZHOU Y X, ZONG H F, HAN L, et al. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer[J]. Journal of Experimental & Clinical Cancer Research, 2020, 39(1): 87. |
78 | 张文文, 姜亮亮, 王晶. CAR-T疗法在卵巢癌中的应用前景[J]. 实用肿瘤学杂志, 2021, 35(1): 59-63. |
ZHANG W W, JIANG L L, WANG J. Application prospect of CAR-T therapy in ovarian cancer[J]. Practical Oncology Journal, 2021, 35(1): 59-63. | |
79 | MANTIA-SMALDONE G M, CORR B, CHU C S. Immunotherapy in ovarian cancer[J]. Human Vaccines & Immunotherapeutics, 2012, 8(9):1179-1191. |
80 | WEI H F, ZHAO L K, HELLSTROM I, et al. Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy[J]. OncoImmunology, 2014, 3: e28248. |
81 | SPIZZO G, WENT P, DIRNHOFER S, et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer[J]. Gynecologic Oncology, 2006, 103(2): 483-488. |
82 | WENT P, VASEI M, BUBENDORF L, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers[J]. British Journal of Cancer, 2006, 94(1): 128-135. |
83 | SEIMETZ D, LINDHOFER H, BOKEMEYER C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy[J]. Cancer Treatment Reviews, 2010, 36(6): 458-467. |
84 | BURGES A, WIMBERGER P, KÜMPER C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM×anti-CD3 antibody: a phase Ⅰ/Ⅱ study[J]. Clinical Cancer Research, 2007, 13(13): 3899-3905. |
85 | SEHOULI J, REINTHALLER A, MARTH C, et al. Intra- and postoperative catumaxomab in patients with epithelial ovarian cancer: safety and two-year efficacy results from a multicentre, single-arm, phase II study[J]. British Journal of Cancer, 2014, 111(8): 1519-1525. |
86 | BRISCHWEIN K, SCHLERETH B, GULLER B, et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors[J]. Molecular Immunology, 2006, 43(8): 1129-1143. |
87 | FERRARI F, BELLONE S, BLACK J, et al. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE®), is highly active against primary uterine and ovarian carcinosarcoma cell lines in vitro [J]. Journal of Experimental & Clinical Cancer Research, 2015, 34: 123. |
88 | ENGLISH D P, BELLONE S, SCHWAB C L, et al. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo [J]. Cancer, 2015, 121(3): 403-412. |
89 | KEBENKO M, GOEBELER M E, WOLF M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors[J]. OncoImmunology, 2018, 7(8): e1450710. |
90 | WALSENG E, NELSON C G, QI J P, et al. Chemically programmed bispecific antibodies in diabody format[J]. Journal of Biological Chemistry, 2016, 291(37): 19661-19673. |
91 | QI J P, HYMEL D, NELSON C G, et al. Conventional and chemically programmed asymmetric bispecific antibodies targeting folate receptor 1[J]. Frontiers in Immunology, 2019, 10: 1994. |
92 | SHIVANGE G, URBANEK K, PRZANOWSKI P, et al. A single-agent dual-specificity targeting of FOLR1 and DR5 as an effective strategy for ovarian cancer[J]. Cancer Cell, 2018, 34(2): 331-345.e11. |
93 | CHEN C, ZHANG Y Y, ZHANG Y, et al. Superior antitumor activity of a novel bispecific antibody cotargeting human epidermal growth factor receptor 2 and type I insulin-like growth factor receptor[J]. Molecular Cancer Therapeutics, 2014, 13(1): 90-100. |
94 | SALOMON D S, BRANDT R, CIARDIELLO F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies[J]. Critical Reviews in Oncology/Hematology, 1995, 19(3): 183-232. |
95 | TABERNERO J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents[J]. Molecular Cancer Research, 2007, 5(3): 203-220. |
96 | ZHANG H Z, YUN S J, BATUWANGALA T D, et al. A dual-targeting antibody against EGFR-VEGF for lung and head and neck cancer treatment[J]. International Journal of Cancer, 2012, 131(4): 956-969. |
97 | HURWITZ S J, ZHANG H Z, YUN S J, et al. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice[J]. Cancer Chemotherapy and Pharmacology, 2012, 69(3): 577-590. |
98 | LI C R, HUANG S, ARMSTRONG E A, et al. Antitumor effects of MEHD7945A, a dual-specific antibody against EGFR and HER3, in combination with radiation in lung and head and neck cancers[J]. Molecular Cancer Therapeutics, 2015, 14(9): 2049-2059. |
99 | SCHAEFER G, HABER L, CROCKER L M, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies[J]. Cancer Cell, 2011, 20(4): 472-486. |
100 | HUANG S, LI C R, ARMSTRONG E A, et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation[J]. Cancer Research, 2013, 73(2): 824-833. |
101 | JIMENO A, MACHIELS J P, WIRTH L, et al. Phase Ib study of duligotuzumab (MEHD7945A) plus cisplatin/5-fluorouracil or carboplatin/paclitaxel for first-line treatment of recurrent/metastatic squamous cell carcinoma of the head and neck[J]. Cancer, 2016, 122(24): 3803-3811. |
102 | FAYETTE J, WIRTH L, OPREAN C, et al. Randomized phase II study of duligotuzumab (MEHD7945A) vs. cetuximab in squamous cell carcinoma of the head and neck (MEHGAN study)[J]. Frontiers in Oncology, 2016, 6: 232. |
103 | CROASDALE R, WARTHA K, SCHANZER J M, et al. Development of tetravalent IgG1 dual targeting IGF-1R-EGFR antibodies with potent tumor inhibition[J]. Archives of Biochemistry and Biophysics, 2012, 526(2): 206-218. |
104 | GUO H F, VANDER KOOI C W. Neuropilin functions as an essential cell surface receptor[J]. Journal of Biological Chemistry, 2015, 290(49): 29120-29126. |
105 | PRUD'HOMME G J, GLINKA Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity[J]. Oncotarget, 2012, 3(9): 921-939. |
106 | HONG T M, CHEN Y L, WU Y Y, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer[J]. Clinical Cancer Research, 2007, 13(16): 4759-4768. |
107 | KIM Y J, BAEK D S, LEE S, et al. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer[J]. Cancer Letters, 2019, 466: 23-34. |
108 | ANDERSON D M, MARASKOVSKY E, BILLINGSLEY W L, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature, 1997, 390(6656): 175-179. |
109 | AHERN E, HARJUNPÄÄ H, BARKAUSKAS D, et al. Co-administration of RANKL and CTLA4 antibodies enhances lymphocyte-mediated antitumor immunity in mice[J]. Clinical Cancer Research, 2017, 23(19): 5789-5801. |
110 | AHERN E, HARJUNPÄÄ H, O'DONNELL J S, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer[J]. OncoImmunology, 2018, 7(6): e1431088. |
111 | BAKHRU P, ZHU M L, WANG H H, et al. Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity[J]. JCI Insight, 2017, 2(18): e93265. |
112 | DOUGALL W C, ROMAN AGUILERA A, SMYTH M J. Retracted: dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity[J]. Clinical & Translational Immunology, 2019, 8(10): e01081. |
113 | ZHAO L, YANG Y D, ZHOU P F, et al. Targeting CD133 high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody[J]. Journal of Immunotherapy, 2015, 38(6): 217-228. |
114 | DONG J Y, SERENO A, AIVAZIAN D, et al. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity[J]. mAbs, 2011, 3(3): 273-288. |
115 | CAMBLIN A J, PACE E A, ADAMS S, et al. Dual inhibition of IGF-1R and ErbB3 enhances the activity of gemcitabine and nab-paclitaxel in preclinical models of pancreatic cancer[J]. Clinical Cancer Research, 2018, 24(12): 2873-2885. |
116 | KUNDRANDA M, GRACIAN A C, ZAFAR S F, et al. Randomized, double-blind, placebo-controlled phase II study of istiratumab (MM-141) plus nab-paclitaxel and gemcitabine versus nab-paclitaxel and gemcitabine in front-line metastatic pancreatic cancer (CARRIE)[J]. Annals of Oncology, 2020, 31(1): 79-87. |
117 | SONG W T, DAS M, CHEN X S. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms[J]. Trends in Cancer, 2020, 6(4): 288-298. |
118 | KAO C H, WANG J Y, CHUANG K H, et al. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles[J]. Biomaterials, 2014, 35(37): 9930-9940. |
119 | CHENG Y A, CHEN I J, SU Y C, et al. Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer[J]. Biomaterials Science, 2019, 7(8): 3404-3417. |
120 | CHENG Y A, WU T H, WANG Y M, et al. Humanized bispecific antibody (mPEG×HER2) rapidly confers PEGylated nanoparticles tumor specificity for multimodality imaging in breast cancer[J]. Journal of Nanobiotechnology, 2020, 18(1): 118. |
121 | XU Y D, WANG D D, MASON B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies[J]. mAbs, 2019, 11(2): 239-264. |
122 | SCHROEDER H W JR, CAVACINI L. Structure and function of immunoglobulins[J]. Journal of Allergy and Clinical Immunology, 2010, 125(2): S41-S52. |
123 | JIANG C T, CHEN K G, LIU A, et al. Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy[J]. Nature Communications, 2021, 12: 1359. |
124 | BAI C, HU P C, ZHANG W, et al. Modular design of bi-specific nanoplatform engaged in malignant lymphoma immunotherapy[J]. Nanoscale, 2020, 12(35): 18418-18428. |
125 | DING L, TIAN C P, FENG S, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy[J]. Theranostics, 2015, 5(4): 378-398. |
126 | XU M, WEN Y Y, LIU Y N, et al. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy[J]. Nanoscale, 2019, 11(19): 9661-9678. |
127 | ALHALLAK K, SUN J, WASDEN K, et al. Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy[J]. Leukemia, 2021, 35(8): 2346-2357. |
128 | SCHOLZEN T, GERDES J. The Ki-67 protein: from the known and the unknown[J]. Journal of Cellular Physiology, 2000, 182(3): 311-322. |
129 | WANG S, HÜTTMANN G, SCHOLZEN T, et al. A light-controlled switch after dual targeting of proliferating tumor cells via the membrane receptor EGFR and the nuclear protein Ki-67[J]. Scientific Reports, 2016, 6: 27032. |
130 | CHANG K, PASTAN I, WILLNGHAM M C. Frequent expression of the tumor antigen cak1 in squamous-cell carcinomas[J]. International Journal of Cancer, 1992, 51(4): 548-554. |
131 | BANO J DEL, FLORÈS-FLORÈS R, JOSSELIN E, et al. A bispecific antibody-based approach for targeting mesothelin in triple negative breast cancer[J]. Frontiers in Immunology, 2019, 10: 1593. |
132 | ZHANG X L, YANG Y Y, FAN D M, et al. The development of bispecific antibodies and their applications in tumor immune escape[J]. Experimental Hematology & Oncology, 2017, 6: 12. |
133 | THAKUR A, LUM L G. “NextGen” biologics: bispecific antibodies and emerging clinical results[J]. Expert Opinion on Biological Therapy, 2016, 16(5): 675-688. |
134 | LAMERIS R, DE BRUIN R C G, SCHNEIDERS F L, et al. Bispecific antibody platforms for cancer immunotherapy[J]. Critical Reviews in Oncology/Hematology, 2014, 92(3): 153-165. |
135 | ALIBAKHSHI A, KAHAKI F A, AHANGARZADEH S, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines[J]. Journal of Controlled Release, 2017, 268: 323-334. |
[1] | Shasha JIANG, Chen WANG, Ran LU, Fengjun LIU, Jun LI, Bin WANG. Applications of vector vaccines developed through T-cell immune responses in preventing and treating human diseases [J]. Synthetic Biology Journal, 2024, 5(2): 294-309. |
[2] | Zibin TAN, Kang LIANG, Youhai CHEN. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. |
[3] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[4] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[5] | Mengdan MA, Mengyu SHANG, Yuchen LIU. Application and prospect of CRISPR-Cas9 system in tumor biology [J]. Synthetic Biology Journal, 2023, 4(4): 703-719. |
[6] | Jiawen CHEN, Jiandong HUANG, Haitao SUN. Current developments in the use of engineered bacteria for cancer therapy [J]. Synthetic Biology Journal, 2023, 4(4): 690-702. |
[7] | Junhong XIE, Jingjing HE, Penghui ZHOU. Synthetic biology and engineered T cell therapy [J]. Synthetic Biology Journal, 2023, 4(2): 373-393. |
[8] | Qian SHI, Yuanyuan WU, yang YANG. DNA nanotechnology and synthetic biology [J]. Synthetic Biology Journal, 2022, 3(2): 302-319. |
[9] | Hanqi ZHENG, Qing WU, Hongjun LI, Zhen GU. Integration of synthetic biology and nanobiotechnology for biomedical applications [J]. Synthetic Biology Journal, 2022, 3(2): 279-301. |
[10] | Fei SONG, Yuchen LIU, Zhiming CAI, Weiren HUANG. Construction of tumor gene circuits using CRISPR/Cas tool and their applications [J]. Synthetic Biology Journal, 2022, 3(1): 53-65. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1789
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1937
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||