Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (1): 141-164.DOI: 10.12211/2096-8280.2022-050
• Invited Review • Previous Articles Next Articles
Renmei LIU1,2,3, Leshi LI1,2, Xiaoyan YANG1,2, Xianjun CHEN1,2, Yi YANG1,2
Received:
2022-09-13
Revised:
2022-11-18
Online:
2023-03-07
Published:
2023-02-28
Contact:
Yi YANG
刘韧玫1,2,3, 李乐诗1,2, 杨小燕1,2, 陈显军1,2, 杨弋1,2
通讯作者:
杨弋
作者简介:
基金资助:
CLC Number:
Renmei LIU, Leshi LI, Xiaoyan YANG, Xianjun CHEN, Yi YANG. Technologies for precise spatiotemporal control of post-transcriptional RNA metabolism[J]. Synthetic Biology Journal, 2023, 4(1): 141-164.
刘韧玫, 李乐诗, 杨小燕, 陈显军, 杨弋. RNA转录后代谢时空精密控制技术[J]. 合成生物学, 2023, 4(1): 141-164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-050
项目 | 基于调节RNA的RNA效应因子 | 基于RNA结合蛋白的RNA效应因子 | 基于光化学修饰的核苷酸 | 基于光笼蛋白质或其配体 | 基于光诱导蛋白异二聚化和RNA结合蛋白 | 基于光控RNA结合蛋白PAL的RNA效应因子 | 基于光控RNA结合蛋白LicV的RNA效应因子 |
---|---|---|---|---|---|---|---|
工作原理 | 自带或招募内源功能蛋白或空间位阻效应 | RNA结合蛋白与不同功能结构域融合获得系列人工合成RNA效应因子 | DNA/RNA中引入光化学修饰的寡核苷酸,光照调控DNA/RNA活性 | 利用光可移除的囚笼基团对RNA结合蛋白或其配体活性进行调控 | 光诱导蛋白异二聚化来调控RNA结合蛋白的活性 | 光诱导的PAL蛋白与RNA适配体的结合 | 光诱导的LicV与RAT RNA的结合 |
诱导条件 | 无 | 无 | 多数为UV光,少量为可见光 | UV光 | 蓝光 | 蓝光 | 蓝光 |
细胞毒性 | 低 | 低 | 高 | 高 | 低 | 低 | 低 |
制备方法 | 遗传编码 | 遗传编码 | 体外合成 | 体外合成 | 遗传编码 | 遗传编码 | 遗传编码 |
或体外合成 | |||||||
可调性 | 难 | 难 | 适中 | 适中 | 容易 | 容易 | 容易 |
时间分辨率 | 低 | 低 | 适中 | 适中 | 高 | 高 | 高 |
空间分辨率 | 低 | 低 | 高 | 高 | 高 | 高 | 高 |
普适性 | 高 | 高 | 低 | 低 | 未知 | 未知 | 高 |
项目 | 基于调节RNA的RNA效应因子 | 基于RNA结合蛋白的RNA效应因子 | 基于光化学修饰的核苷酸 | 基于光笼蛋白质或其配体 | 基于光诱导蛋白异二聚化和RNA结合蛋白 | 基于光控RNA结合蛋白PAL的RNA效应因子 | 基于光控RNA结合蛋白LicV的RNA效应因子 |
---|---|---|---|---|---|---|---|
工作原理 | 自带或招募内源功能蛋白或空间位阻效应 | RNA结合蛋白与不同功能结构域融合获得系列人工合成RNA效应因子 | DNA/RNA中引入光化学修饰的寡核苷酸,光照调控DNA/RNA活性 | 利用光可移除的囚笼基团对RNA结合蛋白或其配体活性进行调控 | 光诱导蛋白异二聚化来调控RNA结合蛋白的活性 | 光诱导的PAL蛋白与RNA适配体的结合 | 光诱导的LicV与RAT RNA的结合 |
诱导条件 | 无 | 无 | 多数为UV光,少量为可见光 | UV光 | 蓝光 | 蓝光 | 蓝光 |
细胞毒性 | 低 | 低 | 高 | 高 | 低 | 低 | 低 |
制备方法 | 遗传编码 | 遗传编码 | 体外合成 | 体外合成 | 遗传编码 | 遗传编码 | 遗传编码 |
或体外合成 | |||||||
可调性 | 难 | 难 | 适中 | 适中 | 容易 | 容易 | 容易 |
时间分辨率 | 低 | 低 | 适中 | 适中 | 高 | 高 | 高 |
空间分辨率 | 低 | 低 | 高 | 高 | 高 | 高 | 高 |
普适性 | 高 | 高 | 低 | 低 | 未知 | 未知 | 高 |
Fig. 3 Regulation technology based on photochemical modifications of nucleotides(a) Different approaches for regulating oligonucleotide functions by light. (b) Regulation of RNA metabolism by photoswitchable o-nitrobenzyl (oNB) or azobenzene (AzoB). ① Regulation of RNA splicing by oNB-modified LDSSOs; ② Light-activation of gene silencing through nucleobase-caged antisense agents; ③ Optochemical deactivation of an antisense agent through light-induced hairpin formation; ④ Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides; ⑤ Light-mediated reversible activation of translation via PC-cap; ⑥ Photoinduced inactivation and reactivation of siRNAzos. (c) Translation regulation by the Were-1 riboswitch. In absence of the ligand, the ribosomal binding site (RBS) is exposed, and luciferase is translated, whereas in presence of amino-tSS, the RBS is sequestered, repressing the expression of Fluc. With light (342 nm) irradiation, amino-tSS is switched to amino-cSS conformation, causing theconformation change of Were-1 to activate RBS activities.
Fig. 4 Regulatory technology based on photocage protein ligands(a) Photocaged small effector molecules. (b) Photocaged amino acids. (c) Light-inducible translational activation by split CaVT systems and photocaged trimethoprim-HaloTag ligand through light-mediated removal of the photocage from TMP-HL to enable the TMP-HL-mediated interactions between MS2CP-eDHFR and HaloTag-VPg(FCV), resulting MS2CP-eDHFR-HaloTag-VPg (FCV) complex to activate the translation of target modRNA containing a motif (1xMS2(U)site1-hmAG1). (d) Light-inducible translational activation by photocaged TMP and TMP-responsive destabilizing domain-fused CaVT (DD-CaVT) through light-mediated removal of the photocage from TMP to enable the interaction between TMP and DD-CaVT, preventing the rapid degradation of DD-CaVT for binding to a target modRNA with a weak binding motif (1xMS2(U) site2-hmAG1) and activate its translation.
Fig. 7 Optogenetic control of RNA function and metabolism based on light-induced homodimerization of LicVBlue light induced homodimerization of LicV for its binding to RAT short hairpin RNA (a). Optogenetic control of RNA through light-induced LicV-RAT interaction for localization (b), splicing (c), translation (d), and degradation (e). The LA-CRISPR system based on the introduction of the light-induced LicV-RAT interaction into the CRISPR-Cas system to enable optogenetic control of gene transcription (f)..
1 | CECH T R, STEITZ J A. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94. |
2 | BHATTI G K, KHULLAR N, SIDHU I S, et al. Emerging role of non-coding RNA in health and disease[J]. Metabolic Brain Disease, 2021, 36(6): 1119-1134. |
3 | ESTELLER M. Non-coding RNAs in human disease[J]. Nature Reviews Genetics, 2011, 12(12): 861-874. |
4 | MONTES M, SANFORD B L, COMISKEY D F, et al. RNA splicing and disease: animal models to therapies[J]. Trends in Genetics: TIG, 2019, 35(1): 68-87. |
5 | BATTICH N, STOEGER T, PELKMANS L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution[J]. Nature Methods, 2013, 10(11): 1127-1133. |
6 | WANG K C, CHANG H Y. Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell, 2011, 43(6): 904-914. |
7 | BUXBAUM A R, HAIMOVICH G, SINGER R H. In the right place at the right time: visualizing and understanding mRNA localization[J]. Nature Reviews Molecular Cell Biology, 2015, 16(2): 95-109. |
8 | Method of the year 2011[J]. Nature Methods, 2012, 9(1): 1. |
9 | KHAN S H. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Molecular Therapy Nucleic Acids, 2019, 16: 326-334. |
10 | DE MENA L, RIZK P, RINCON-LIMAS D E. Bringing light to transcription: the optogenetics repertoire[J]. Frontiers in Genetics, 2018, 9: 518. |
11 | TAN P, HE L, HUANG Y, et al. Optophysiology: iIlluminating cell physiology with optogenetics[J]. Physiological Reviews, 2022, 102(3): 1263-1325. |
12 | XU X S, QI L S. A CRISPR-dCas toolbox for genetic engineering and synthetic biology[J]. Journal of Molecular Biology, 2019, 431(1): 34-47. |
13 | KONERMANN S, BRIGHAM M D, TREVINO A, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. |
14 | WARYAH C B, MOSES C, AROOJ M, et al. Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing[J]. Methods in Molecular Biology, 2018, 1767: 19-63. |
15 | LO C L, CHOUDHURY S R, IRUDAYARAJ J, et al. Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics[J]. Scientific Reports, 2017, 7: 42047. |
16 | CORBETT A H. Post-transcriptional regulation of gene expression and human disease[J]. Current Opinion in Cell Biology, 2018, 52: 96-104. |
17 | ZACCARA S, RIES R J, JAFFREY S R. Reading, writing and erasing mRNA methylation[J]. Nature Reviews Molecular Cell Biology, 2019, 20(10): 608-624. |
18 | GERSTBERGER S, HAFNER M, TUSCHL T. A census of human RNA-binding proteins[J]. Nature Reviews Genetics, 2014, 15(12): 829-845. |
19 | MORRIS K V, MATTICK J S. The rise of regulatory RNA[J]. Nature Reviews Genetics, 2014, 15(6): 423-437. |
20 | IWASAKI Y W, SIOMI M C, SIOMI H. PIWI-interacting RNA: its biogenesis and functions[J]. Annual Review of Biochemistry, 2015, 84: 405-433. |
21 | PANNI S, LOVERING R C, PORRAS P, et al. Non-coding RNA regulatory networks[J]. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2020, 1863(6): 194417. |
22 | GOODALL G J, WICKRAMASINGHE V O. RNA in cancer[J]. Nature Reviews Cancer, 2021, 21(1): 22-36. |
23 | JONKHOUT N, TRAN J, SMITH M A, et al. The RNA modification landscape in human disease[J]. RNA, 2017, 23(12): 1754-1769. |
24 | HUANG Y, ZHANG J L, YU X L, et al. Molecular functions of small regulatory noncoding RNA[J]. Biochemistry Biokhimiia, 2013, 78(3): 221-230. |
25 | GUO S, KEMPHUES K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-620. |
26 | ZHAO J H, GUO H S. RNA silencing: from discovery and elucidation to application and perspectives[J]. Journal of Integrative Plant Biology, 2022, 64(2): 476-498. |
27 | GHILDIYAL M, ZAMORE P D. Small silencing RNAs: an expanding universe[J]. Nature Reviews Genetics, 2009, 10(2): 94-108. |
28 | DANG Y K, YANG Q Y, XUE Z H, et al. RNA interference in fungi: Pathways, functions, and applications[J]. Eukaryotic Cell, 2011, 10(9): 1148-1155. |
29 | MORAN Y H, AGRON M, PRAHER D, et al. The evolutionary origin of plant and animal microRNAs[J]. Nature Ecology & Evolution, 2017, 1: 27. |
30 | OPHINNI Y, PALATINI U, HAYASHI Y, et al. piRNA-guided CRISPR-like immunity in eukaryotes[J]. Trends in Immunology, 2019, 40(11): 998-1010. |
31 | LIU H C, RAUCH S, DICKINSON B C. Programmable technologies to manipulate gene expression at the RNA level[J]. Current Opinion in Chemical Biology, 2021, 64: 27-37. |
32 | MERKLE T, MERZ S, REAUTSCHNIG P, et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides[J]. Nature Biotechnology, 2019, 37(2): 133-138. |
33 | QU L, YI Z Y, ZHU S Y, et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs[J]. Nature Biotechnology, 2019, 37(9): 1059-1069. |
34 | CROOKE S T, WITZTUM J L, BENNETT C F, et al. RNA-targeted therapeutics[J]. Cell Metabolism, 2018, 27(4): 714-739. |
35 | KOLE R, KRIEG A M. Exon skipping therapy for Duchenne muscular dystrophy[J]. Advanced Drug Delivery Reviews, 2015, 87(4): 104-107. |
36 | ZHONG G C, WANG H M, HE W H, et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo [J]. Nature Biotechnology, 2020, 38(2): 169-175. |
37 | ZHAO E M, MAO A S, DE PUIG H, et al. RNA-responsive elements for eukaryotic translational control[J]. Nature Biotechnology, 2022, 40(4): 539-545. |
38 | HOSEINPOOR R, KAZEMI B, RAJABIBAZL M, et al. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency[J]. Journal of Biotechnology, 2020, 324: 112-120. |
39 | BON C, LUFFARELLI R, RUSSO R, et al. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich's Ataxia[J]. Nucleic Acids Research, 2019, 47(20): 10728-10743. |
40 | TOKI N, TAKAHASHI H, SHARMA H, et al. SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies[J]. Nucleic Acids Research, 2020, 48(20): 11626-11644. |
41 | SCHEITL C P M, GHAEM MAGHAMI M, LENZ A K, et al. Site-specific RNA methylation by a methyltransferase ribozyme[J]. Nature, 2020, 587(7835): 663-667. |
42 | AGRAWAL N, DASARADHI P V N, MOHMMED A, et al. RNA interference: biology, mechanism, and applications[J]. Microbiology and Molecular Biology Reviews: MMBR, 2003, 67(4): 657-685. |
43 | KELLEHER A D, CORTEZ-JUGO C, CAVALIERI F, et al. RNAi therapeutics: an antiviral strategy for human infections[J]. Current Opinion in Pharmacology, 2020, 54: 121-129. |
44 | CORBETT K S, EDWARDS D K, LEIST S R, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness[J]. Nature, 2020, 586(7830): 567-571. |
45 | MULLIGAN M J, LYKE K E, KITCHIN N, et al. Publisher Correction: Phase Ⅰ/Ⅱ study of COVID-19 RNA vaccine BNT162b1 in adults[J]. Nature, 2021, 590(7844): E26. |
46 | REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12): 770-788. |
47 | ROBERTS T C, LANGER R, WOOD M J A. Advances in oligonucleotide drug delivery[J]. Nature Reviews Drug Discovery, 2020, 19(10): 673-694. |
48 | PICHON X, WILSON L A, STONELEY M, et al. RNA binding protein/RNA element interactions and the control of translation[J]. Current Protein & Peptide Science, 2012, 13(4): 294-304. |
49 | ABIL Z, DENARD C A, ZHAO H M. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA[J]. Journal of Biological Engineering, 2014, 8(1): 7. |
50 | QUERIDO E, Chartrand P. Using fluorescent proteins to study mRNA trafficking in living cells[J]. Methods in Cell Biology, 2008, 85: 273-292. |
51 | BERTRAND E, CHARTRAND P, SCHAEFER M, et al. Localization of ASH1 mRNA particles in living yeast[J]. Molecular Cell, 1998, 2(4): 437-445. |
52 | MA H H, TU L C, NASERI A, et al. CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging[J]. Nature Methods, 2018, 15(11): 928-931. |
53 | QIN P W, PARLAK M, KUSCU C, et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9[J]. Nature Communications, 2017, 8: 14725. |
54 | FUJII S, SMALL I. The evolution of RNA editing and pentatricopeptide repeat genes[J]. New Phytologist, 2011, 191(1): 37-47. |
55 | AZAD M T A, BHAKTA S, TSUKAHARA T. Site-directed RNA editing by adenosine deaminase acting on RNA for correction of the genetic code in gene therapy[J]. Gene Therapy, 2017, 24(12): 779-786. |
56 | SHAO J W, WANG M Y, YU G L, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): E6722-E6730. |
57 | ZALATAN J G, LEE M E, ALMEIDA R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2): 339-350. |
58 | CZAPLINSKI K. Techniques for single-molecule mRNA imaging in living cells[J]. Advances in Experimental Medicine and Biology, 2017, 978: 425-441. |
59 | CHAO J A, PATSKOVSKY Y, ALMO S C, et al. Structural basis for the coevolution of a viral RNA-protein complex[J]. Nature Structural & Molecular Biology, 2008, 15(1): 103-105. |
60 | MA H H, TU L C, NASERI A, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow[J]. Nature Biotechnology, 2016, 34(5): 528-530. |
61 | SHAO S P, ZHANG W W, HU H, et al. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system[J]. Nucleic Acids Research, 2016, 44(9): e86. |
62 | KARAGIANNIS P, FUJITA Y, SAITO H. RNA-based gene circuits for cell regulation[J]. Proceedings of the Japan Academy Series B, Physical and Biological Sciences, 2016, 92(9): 412-422. |
63 | KOPNICZKY M B, MOORE S J, FREEMONT P S. Multilevel regulation and translational switches in synthetic biology[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(4): 485-496. |
64 | LILLEY D M J. The K-turn motif in riboswitches and other RNA species[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2014, 1839(10): 995-1004. |
65 | SAITO H, KOBAYASHI T, HARA T, et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch[J]. Nature Chemical Biology, 2010, 6(1): 71-78. |
66 | STAPLETON J A, ENDO K, FUJITA Y, et al. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition[J]. ACS Synthetic Biology, 2012, 1(3): 83-88. |
67 | ZHAO Y Y, MAO M W, ZHANG W J, et al. Expanding RNA binding specificity and affinity of engineered PUF domains[J]. Nucleic Acids Research, 2018, 46(9): 4771-4782. |
68 | JAMIESON A C, MILLER J C, PABO C O. Drug discovery with engineered zinc-finger proteins[J]. Nature Reviews Drug Discovery, 2003, 2(5): 361-368. |
69 | MACKAY J P, FONT J, SEGAL D J. The prospects for designer single-stranded RNA-binding proteins[J]. Nature Structural & Molecular Biology, 2011, 18(3): 256-261. |
70 | FERRÉ-D'AMARÉ A R, DOUDNA J A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module[J]. Journal of Molecular Biology, 2000, 295(3): 541-556. |
71 | SHAV-TAL Y, DARZACQ X, SHENOY S M, et al. Dynamics of single mRNPs in nuclei of living cells[J]. Science, 2004, 304(5678): 1797-1800. |
72 | FERRÉ-D'AMARÉ A R. Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs[J]. Methods, 2010, 52(2): 159-167. |
73 | GOLDING I PAULSSON J, ZAWILSKI S M, et al. Real-time kinetics of gene activity in individual bacteria[J]. Cell, 2005, 123(6): 1025-1036. |
74 | VASUDEVAN S, STEITZ J A. AU-rich-element-mediated upregulation of translation by FXR1 and argonaute 2[J]. Cell, 2007, 128(6): 1105-1118. |
75 | WANG Y, CHEONG C G, TANAKA HALL T M, et al. Engineering splicing factors with designed specificities[J]. Nature Methods, 2009, 6(11): 825-830. |
76 | NELLES D A, FANG M Y, O'CONNELL M R, et al. Programmable RNA tracking in live cells with CRISPR/Cas9[J]. Cell, 2016, 165(2): 488-496. |
77 | BATRA R, NELLES D A, PIRIE E, et al. Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9[J]. Cell, 2017, 170(5): 899-912.e10. |
78 | KERYER-BIBENS C, BARREAU C, OSBORNE H B. Tethering of proteins to RNAs by bacteriophage proteins[J]. Biology of the Cell, 2008, 100(2): 125-138. |
79 | RAUCH S, HE C, DICKINSON B C. Targeted m6A reader proteins to study epitranscriptomic regulation of single RNAs[J]. Journal of the American Chemical Society, 2018, 140(38): 11974-11981. |
80 | COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-cas13[J]. Science, 2017, 358(6366): 1019-1027. |
81 | GOLDFLESS S J, BELMONT B J, DE PAZ A M, et al. Direct and specific chemical control of eukaryotic translation with a synthetic RNA-protein interaction[J]. Nucleic Acids Research, 2012, 40(9): e64. |
82 | DU M, JILLETTE N, ZHU J J, et al. CRISPR artificial splicing factors[J]. Nature Communications, 2020, 11(1): 2973. |
83 | PASTRANA E. Optogenetics: controlling cell function with light[J]. Nature Methods, 2011, 8(1): 24-25. |
84 | DEISSEROTH K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26-29. |
85 | LIU X, TONEGAWA S. Optogenetics 3.0[J]. Cell, 2010, 141(1): 22-24. |
86 | NOWAK V A, PEREIRA E A C, GREEN A L, et al. Optogenetics—shining light on neurosurgical conditions[J]. British Journal of Neurosurgery, 2010, 24(6): 618-624. |
87 | TISCHER D, WEINER O D. Illuminating cell signalling with optogenetic tools[J]. Nature Reviews Molecular Cell Biology, 2014, 15(8): 551-558 |
88 | REPINA N A, ROSENBLOOM A, MUKHERJEE A, et al. At light speed: Advances in optogenetic systems for regulating cell signaling and behavior[J]. Annual Review of Chemical and Biomolecular Engineering, 2017, 8: 13-39. |
89 | SOMUNCU Ö S, BERNS H M, SANCHEZ J G. New pioneers of optogenetics in neuroscience[J]. Advances in Experimental Medicine and Biology, 2020, 1288: 47-60. |
90 | REDCHUK T A, KARASEV M M, VERKHUSHA P V, et al. Optogenetic regulation of endogenous proteins[J]. Nature Communications, 2020, 11: 605. |
91 | GOGLIA A G, TOETTCHER J E. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior[J]. Current Opinion in Chemical Biology, 2019, 48: 106-113. |
92 | TAVAKOLI A, MIN J H. Photochemical modifications for DNA/RNA oligonucleotides[J]. RSC Advances, 2022, 12(11): 6484-6507. |
93 | LIU Q Y, DEITERS A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach[J]. Accounts of Chemical Research, 2014, 47(1): 45-55. |
94 | DUSSY A, MEYER C, QUENNET E, et al. New light-sensitive nucleosides for caged DNA strand breaks[J]. ChemBioChem, 2002, 3(1): 54-60. |
95 | TANG X J, SU M, YU L L, et al. Photomodulating RNA cleavage using photolabile circular antisense oligodeoxynucleotides[J]. Nucleic Acids Research, 2010, 38(11): 3848-3855. |
96 | GOVAN J M, UPRETY R, THOMAS M, et al. Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy[J]. ACS Chemical Biology, 2013, 8(10): 2272-2282. |
97 | MCCONNELL E M, COZMA I, MOU Q B, et al. Biosensing with DNAzymes[J]. Chemical Society Reviews, 2021, 50(16): 8954-8994. |
98 | HWANG K, WU P W, KIM T, et al. Photocaged DNAzymes as a general method for sensing metal ions in living cells[J]. Angewandte Chemie International Edition, 2014, 53(50): 13798-13802. |
99 | YOUNG D D, GOVAN J M, LIVELY M O, et al. Photochemical regulation of restriction endonuclease activity[J]. ChemBioChem, 2009, 10(10): 1612-1616. |
100 | TANG X J, MAEGAWA S, WEINBERG E S, et al. Regulating gene expression in zebrafish embryos using light-activated, negatively charged peptide nucleic acids[J]. Journal of the American Chemical Society, 2007, 129(36): 11000-11001. |
101 | KIMURA Y, SHU Z M, ITO M, et al. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors[J]. Chemical Communications (Cambridge, England), 2020, 56(3): 466-469. |
102 | WU L, PEI F, ZHANG J H, et al. Synthesis of site-specifically phosphate-caged siRNAs and evaluation of their RNAi activity and stability[J]. Chemistry, 2014, 20(38): 12114-12122. |
103 | GOVAN J M, YOUNG D D, LUSIC H, et al. Optochemical control of RNA interference in mammalian cells[J]. Nucleic Acids Research, 2013, 41(22): 10518-10528. |
104 | KALA A, JAIN P K, KARUNAKARAN D, et al. The synthesis of tetra-modified RNA for the multidimensional control of gene expression via light-activated RNA interference[J]. Nature Protocols, 2014, 9(1): 11-20. |
105 | CARLSON-STEVERMER J, KELSO R, KADINA A, et al. CRISPRoff enables spatio-temporal control of CRISPR editing[J]. Nature Communications, 2020, 11: 5041. |
106 | ZOU R S, LIU Y, WU B, et al. Cas9 deactivation with photocleavable guide RNAs[J]. Molecular Cell, 2021, 81(7): 1553-1565.e8. |
107 | LIU Y, ZOU R S, HE S X, et al. Very fast CRISPR on demand[J]. Science, 2020, 368(6496): 1265-1269. |
108 | HEMPHILL J, LIU Q Y, UPRETY R, et al. Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides[J]. Journal of the American Chemical Society, 2015, 137(10): 3656-3662. |
109 | GOVAN J M, YOUNG D D, LIVELY M O, et al. Optically triggered immune response through photocaged oligonucleotides[J]. Tetrahedron Letters, 2015, 56(23): 3639-3642. |
110 | YOUNG D D, LIVELY M O, DEITERS A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells[J]. Journal of the American Chemical Society, 2010, 132(17): 6183-6193. |
111 | LUBBE A S, SZYMANSKI W, FERINGA B L. Recent developments in reversible photoregulation of oligonucleotide structure and function[J]. Chemical Society Reviews, 2017, 46(4): 1052-1079. |
112 | WU L, HE Y, TANG X J, et al. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides[J]. Bioconjugate Chemistry, 2015, 26(6): 1070-1079. |
113 | OGASAWARA S. Duration control of protein expression in vivo by light-mediated reversible activation of translation[J]. ACS Chemical Biology, 2017, 12(2): 351-356. |
114 | HAMMILL M L, ISLAM G, DESAULNIERS J P. Controlling gene-silencing with azobenzene-containing siRNAs (siRNAzos)[J]. Current Protocols in Nucleic Acid Chemistry, 2020, 83(1): e119. |
115 | RESENDIZ M J E, SCHÖN A, FREIRE E, et al. Photochemical control of RNA structure by disrupting π-stacking[J]. Journal of the American Chemical Society, 2012, 134(30): 12478-12481. |
116 | ANHÄUSER L, KLÖCKER N, MUTTACH F, et al. A benzophenone-based photocaging strategy for the N7 position of guanosine[J]. Angewandte Chemie International Edition, 2020, 59(8): 3161-3165. |
117 | JAKUBOVSKA J, TAURAITĖ D, MEŠKYS R. A versatile method for the UVA-induced cross-linking of acetophenone- or benzophenone-functionalized DNA[J]. Scientific Reports, 2018, 8: 16484. |
118 | ANDO H, FURUTA T, TSIEN R Y, et al. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos[J]. Nature Genetics, 2001, 28(4): 317-325. |
119 | SAKAMOTO T, SHIGENO A, OHTAKI Y, et al. Photo-regulation of constitutive gene expression in living cells by using ultrafast photo-cross-linking oligonucleotides[J]. Biomaterials Science, 2014, 2(9): 1154-1157. |
120 | CHOUDHARY A, VANICHKINA D P, ENDER C, et al. Identification of miR-29b targets using 3-cyanovinylcarbazole containing mimics[J]. RNA, 2018, 24(4): 597-608. |
121 | WATANABE Y, FUJIMOTO K. Complete photochemical regulation of 8-17 DNAzyme activity by using reversible DNA photo-crosslinking[J]. ChemBioChem, 2020, 21(22): 3244-3248. |
122 | OGASAWARA S, MAEDA M. Photoresponsive 5′-cap for the reversible photoregulation of gene expression[J]. Bioorganic & Medicinal Chemistry Letters, 2011, 21(18): 5457-5459. |
123 | OGASAWARA S. Control of cellular function by reversible photoregulation of translation[J]. ChemBioChem, 2014, 15(18): 2652-2655. |
124 | ROTSTAN K A, ABDELSAYED M M, PASSALACQUA L F, et al. Regulation of mRNA translation by a photoriboswitch[J]. eLife, 2020, 9: e51737. |
125 | GONZAGA E R. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection[J]. American Journal of Clinical Dermatology, 2009, 10(S1): 19-24. |
126 | YOU M X, JAFFREY S R. Designing optogenetically controlled RNA for regulating biological systems[J]. Annals of the New York Academy of Sciences, 2015, 1352(1): 13-19. |
127 | HAMMILL M L, ISLAM G, DESAULNIERS J P. Synthesis, derivatization and photochemical control of ortho-functionalized tetrachlorinated azobenzene-modified siRNAs[J]. ChemBioChem, 2020, 21(16): 2367-2372. |
128 | YOUNG D D, DEITERS A. Photochemical control of biological processes[J]. Organic & Biomolecular Chemistry, 2007, 5(7): 999-1005. |
129 | MAYER G, HECKEL A. Biologically active molecules with a "light switch"[J]. Angewandte Chemie International Edition, 2006, 45(30): 4900-4921. |
130 | LEE H M, LARSON D R, LAWRENCE D S. Illuminating the chemistry of life: Design, synthesis, and applications of "caged" and related photoresponsive compounds[J]. ACS Chemical Biology, 2009, 4(6): 409-427. |
131 | DEITERS A. Principles and applications of the photochemical control of cellular processes[J]. ChemBioChem, 2010, 11(1): 47-53. |
132 | DEITERS A. Light activation as a method of regulating and studying gene expression[J]. Current Opinion in Chemical Biology, 2009, 13(5/6): 678-686. |
133 | RIGGSBEE C W, DEITERS A. Recent advances in the photochemical control of protein function[J]. Trends in Biotechnology, 2010, 28(9): 468-475. |
134 | ADAMS S R, TSIEN R Y. Controlling cell chemistry with caged compounds[J]. Annual Review of Physiology, 1993, 55: 755-784. |
135 | ZHU Y, PAVLOS C M, TOSCANO J P, et al. 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope[J]. Journal of the American Chemical Society, 2006, 128(13): 4267-4276. |
136 | MOMOTAKE A, LINDEGGER N, NIGGLI E, et al. The nitrodibenzofuran chromophore:a new caging group for ultra-efficient photolysis in living cells[J]. Nature Methods, 2006, 3(1): 35-40. |
137 | FURUTA T, WANG S S, DANTZKER J L, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1193-1200. |
138 | FURUTA T, TAKEUCHI H, ISOZAKI M, et al. Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one- and two-photon excitation[J]. ChemBioChem, 2004, 5(8): 1119-1128. |
139 | NAKANISHI H, YOSHII T, KAWASAKI S, et al. Light-controllable RNA-protein devices for translational regulation of synthetic mRNAs in mammalian cells[J]. Cell Chemical Biology, 2021, 28(5): 662-674.e5. |
140 | LIU H T, YU X H, LI K W, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis [J]. Science, 2008, 322(5907): 1535-1539. |
141 | CAO J C, ARHA M, SUDRIK C, et al. Light-inducible activation of target mRNA translation in mammalian cells[J]. Chemical Communications (Cambridge, England), 2013, 49(75): 8338-8340. |
142 | CAO J C, ARHA M, SUDRIK C, et al. Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains[J]. Angewandte Chemie International Edition, 2014, 53(19): 4900-4904. |
143 | KIM N Y, LEE S, YU J, et al. Optogenetic control of mRNA localization and translation in live cells[J]. Nature Cell Biology, 2020, 22(3): 341-352. |
144 | WEBER A M, KAISER J, ZIEGLER T, et al. A blue light receptor that mediates RNA binding and translational regulation[J]. Nature Chemical Biology, 2019, 15(11): 1085-1092. |
145 | RENZL C, KAKOTI A, MAYER G. Aptamer-mediated reversible transactivation of gene expression by light[J]. Angewandte Chemie International Edition, 2020, 59(50): 22414-22418. |
146 | PILSL S, MORGAN C, CHOUKEIFE M, et al. Optoribogenetic control of regulatory RNA molecules[J]. Nature Communications, 2020, 11: 4825. |
147 | LIU R M, YANG J, YAO J, et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins[J]. Nature Biotechnology, 2022, 40(5): 779-786. |
148 | HÜBNER S, DECLERCK N, DIETHMAIER C, et al. Prevention of cross-talk in conserved regulatory systems: Identification of specificity determinants in RNA-binding anti-termination proteins of the BglG family[J]. Nucleic Acids Research, 2011, 39(10): 4360-4372. |
149 | DECLERCK N, VINCENT F, HOH F, et al. RNA recognition by transcriptional antiterminators of the BglG/SacY family: Functional and structural comparison of the CAT domain from SacY and LicT[J]. Journal of Molecular Biology, 1999, 294(2): 389-402. |
150 | ZOLTOWSKI B D, SCHWERDTFEGER C, WIDOM J, et al. Conformational switching in the fungal light sensor Vivid[J]. Science, 2007, 316(5827): 1054-1057. |
151 | SHARMA E, STERNE-WEILER T, O'HANLON D, et al. Global mapping of human RNA-RNA interactions[J]. Molecular Cell, 2016, 62(4): 618-626. |
152 | WAN R X, BAI R, SHI Y G. Molecular choreography of pre-mRNA splicing by the spliceosome[J]. Current Opinion in Structural Biology, 2019, 59: 124-133. |
153 | DOUDNA J A, RATH V L. Structure and function of the eukaryotic ribosome: The next frontier[J]. Cell, 2002, 109(2): 153-156. |
154 | HENTZE M W, CASTELLO A, SCHWARZL T, et al. A brave new world of RNA-binding proteins[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5): 327-341. |
155 | OPLÄNDER C, HIDDING S, WERNERS F B, et al. Effects of blue light irradiation on human dermal fibroblasts[J]. Journal of Photochemistry and Photobiology B: Biology, 2011, 103(2): 118-125. |
156 | NGUYEN N T, HUANG K, ZENG H X, et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety[J]. Nature Nanotechnology, 2021, 16(12): 1424-1434. |
157 | LI T, CHEN X J, QIAN Y J, et al. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice[J]. Nature Communications, 2021, 12: 615. |
158 | MÜLLER K, ENGESSER R, METZGER S, et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells[J]. Nucleic Acids Research, 2013, 41(7): e77. |
159 | ASH C, DUBEC M, DONNE K, et al. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods[J]. Lasers in Medical Science, 2017, 32(8): 1909-1918. |
[1] | Yuanhuan YU, Yang ZHOU, Xinyi WANG, Deqiang KONG, Haifeng YE. Advances in optogenetics for biomedical research [J]. Synthetic Biology Journal, 2023, 4(1): 102-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||