Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (3): 672-693.DOI: 10.12211/2096-8280.2023-097
• Invited Review • Previous Articles
Yingying CHEN1, Yang LIU1, Junjie SHI1, Junying MA1, Jianhua JU1,2
Received:
2023-12-01
Revised:
2024-03-08
Online:
2024-07-12
Published:
2024-06-30
Contact:
Junying MA, Jianhua JU
陈盈盈1, 刘扬1, 史俊杰1, 马俊英1, 鞠建华1,2
通讯作者:
马俊英,鞠建华
作者简介:
基金资助:
CLC Number:
Yingying CHEN, Yang LIU, Junjie SHI, Junying MA, Jianhua JU. CRISPR/Cas systems and their applications in gene editing with filamentous fungi[J]. Synthetic Biology Journal, 2024, 5(3): 672-693.
陈盈盈, 刘扬, 史俊杰, 马俊英, 鞠建华. CRISPR/Cas基因编辑及其新兴技术在丝状真菌研究中的系统应用[J]. 合成生物学, 2024, 5(3): 672-693.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-097
蛋白名称 | 蛋白大小(AA) | PAM/TAM序列 | gRNA大小 | 剪切位点 | 参考文献 |
---|---|---|---|---|---|
SpCas9 | 1368 | NGG | 20 bp | 约3 bp 5′ of PAM | [ |
FnCas9 | 1629 | NGG | 20 bp | 约3 bp 5′ of PAM | [ |
SaCas9 | 1053 | NNGR RT | 21 bp | 约3 bp 5′ of PAM | [ |
NmCas9 | 1082 | NNNNG ATT | 24 bp | 约3 bp 5′ of PAM | [ |
St1Cas9 | 1121 | NNAGA AW | 20 bp | 约3 bp 5′ of PAM | [ |
St3Cas9 | 1409 | NGGNG | 20 bp | 约3 bp 5′ of PAM | [ |
CjCas9 | 984 | NNNNACAC | 22 bp | 约3 bp 5′ of PAM | [ |
CdCas9 | 1084 | NNRHHHY | 22 bp | 约3 bp 5′ of PAM | [ |
GeoCas9 | 1087 | NNNNCRAA | 21/22 bp | 约3 bp 5′ of PAM | [ |
AceCas9 | 1138 | NNNCC | 20 bp | 约3 bp 5′ of PAM | [ |
AsCas12a | 1307 | TTTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
LbCas12a | 1228 | TTTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
FnCas12a | 1307 | TTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
Cas12b | 1108/1130 | TTN | 23 bp | 约17/23 bp 5′ of PAM | [ |
Cas12f | 约400~600 | 5′ T/C-rich | 20 bp/33~39 bp | 约3/24 bp 3′ of PAM | [ |
CasX | 978 | TTCN | 20 bp | 约12/25 bp ′ of 3′ PAM | [ |
TnpB/IscB/IsrB | 约400 | TTGAT/ATAAA /ATGA/NNG | 15~45 bp | 约3/12 bp of 5′ TAM 约6/21 bp of 3′ TAM | [ |
Fz | 约500~800 | CATA/TTAAN /CCG/TAG | 7~21 bp | 约9/21 bp of 5′ TAM | [ |
Cas14 | 约400~700 | ssDNA | 20 bp | [ | |
Cas13 | 约900~1250 | RNA targeting | 28 bp | [ |
Table 1 Naturally occurring major Cas homologues
蛋白名称 | 蛋白大小(AA) | PAM/TAM序列 | gRNA大小 | 剪切位点 | 参考文献 |
---|---|---|---|---|---|
SpCas9 | 1368 | NGG | 20 bp | 约3 bp 5′ of PAM | [ |
FnCas9 | 1629 | NGG | 20 bp | 约3 bp 5′ of PAM | [ |
SaCas9 | 1053 | NNGR RT | 21 bp | 约3 bp 5′ of PAM | [ |
NmCas9 | 1082 | NNNNG ATT | 24 bp | 约3 bp 5′ of PAM | [ |
St1Cas9 | 1121 | NNAGA AW | 20 bp | 约3 bp 5′ of PAM | [ |
St3Cas9 | 1409 | NGGNG | 20 bp | 约3 bp 5′ of PAM | [ |
CjCas9 | 984 | NNNNACAC | 22 bp | 约3 bp 5′ of PAM | [ |
CdCas9 | 1084 | NNRHHHY | 22 bp | 约3 bp 5′ of PAM | [ |
GeoCas9 | 1087 | NNNNCRAA | 21/22 bp | 约3 bp 5′ of PAM | [ |
AceCas9 | 1138 | NNNCC | 20 bp | 约3 bp 5′ of PAM | [ |
AsCas12a | 1307 | TTTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
LbCas12a | 1228 | TTTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
FnCas12a | 1307 | TTV | 24 bp | 约19/24 bp 3′ of PAM | [ |
Cas12b | 1108/1130 | TTN | 23 bp | 约17/23 bp 5′ of PAM | [ |
Cas12f | 约400~600 | 5′ T/C-rich | 20 bp/33~39 bp | 约3/24 bp 3′ of PAM | [ |
CasX | 978 | TTCN | 20 bp | 约12/25 bp ′ of 3′ PAM | [ |
TnpB/IscB/IsrB | 约400 | TTGAT/ATAAA /ATGA/NNG | 15~45 bp | 约3/12 bp of 5′ TAM 约6/21 bp of 3′ TAM | [ |
Fz | 约500~800 | CATA/TTAAN /CCG/TAG | 7~21 bp | 约9/21 bp of 5′ TAM | [ |
Cas14 | 约400~700 | ssDNA | 20 bp | [ | |
Cas13 | 约900~1250 | RNA targeting | 28 bp | [ |
分类 | 筛选标记 | 表征或筛选条件 | 应用 |
---|---|---|---|
抗性基因标记 | Hygromycin (hyg) | Hph (编码潮霉素磷酸转移酶), 具有潮霉素抗性 | A. niger[ 本课题组各种海洋来源菌株 |
phosphinothricin (bar) | Bar (编码磷化麦黄酮乙酰转移酶),具有草胺膦抗性 | Myceliophthora thermophila[ Beauveria bassiana[ | |
Carboxin (cbx) | 点突变的SdhB (编码琥珀酸脱氢酶)可作为米曲霉的筛选标记,以醋酸盐作为碳源,可提高对萎锈灵的敏感性 | A. oryzae[ | |
Neomycin (neo) | Neo (编码氨基糖苷磷酸转移酶),具有G418 (新霉素衍生物)抗性 | Phytophthora sojae[ M. thermophila[ | |
Pyrithiamine (ptrA) | 点突变的PtrA (编码硫胺素噻唑合成酶基因),具有吡啶硫胺抗性 | A. oryzae[ | |
Chlorimuron (sur) | Sur (乙酰乳酸合成酶)具有氯嘧磺隆抗性 | Knufia petricola[ | |
Fenhexamid (Fenr) | 点突变的 ERG27 (编码酮还原酶),具有环酰菌胺抗性 | Botrytis cinerea[ | |
Nourseothricin (Nat) | Nat (编码N-乙酰转移酶),具有诺尔斯菌素抗性 | B. cinerea[ | |
营养缺陷型标记 | amdS | 带有amdS基因的菌株在以乙酰胺为唯一氮源的培养基上能够正常生长 | A. niger[ M. thermophila[ |
niaD | niaD功能缺陷突变株能够耐受高浓度氯盐 | A. oryzae[ | |
pyrG | pyrG功能缺失的突变株只能在含有尿苷或尿嘧啶的培养基上正常生长 | A. niger[ | |
argB | argB功能缺失的突变株只能在含有精氨酸的培养基上正常生长 | A. nidulans[ | |
adeA | adeA功能缺失的突变株只能在含有腺苷酸的培养基上正常生长 | A. oryzae[ | |
ppt1 | 缺失ppt1功能的突变体只能在添加赖氨酸的培养基上正常生长 | F. fujikuroi[ | |
表型报告基因 | fcc1 | fcc1基因的破坏可导致紫色色素的积累 | F. fujikuroi[ |
wA | wA突变体形成白色分生孢子 | A. oryzae[ | |
yA | yA突变体形成黄色分生孢子 | A. oryzae[ | |
fwnA | fwnA突变体形成白色分生孢子 | A. niger[ | |
albA | albA突变体形成白色分生孢子 | A. niger[ | |
pkaC | pkaC (编码camp依赖性蛋白激酶的催化亚单位)的破坏可导致平板上的菌落直径大大减小 | A. niger[ | |
creA | creA 敲除菌株产孢能力显著降低 | Spiromastix sp. [ | |
pksP | pksP敲除菌落具有明显的附白化表型 | A. fumigatus[ | |
cnaA | cnaA功能障碍导致菌丝生长缺陷显著,菌落表型非常小而密集 | A. fumigatus[ | |
ayg1 | ayg1 敲除可导致孢子的颜色从黑色变为黄色 | A. carbonarius[ | |
cbh1 | 破坏cbh1将导致SDS-PAGE凝胶上的主要条带丢失,从而有利于通过成功的基因编辑鉴定菌株 | Trichoderma reesei[ |
Table 2 Screening markers applied in CRISPR/Cas systems for engineering filamentous fungi
分类 | 筛选标记 | 表征或筛选条件 | 应用 |
---|---|---|---|
抗性基因标记 | Hygromycin (hyg) | Hph (编码潮霉素磷酸转移酶), 具有潮霉素抗性 | A. niger[ 本课题组各种海洋来源菌株 |
phosphinothricin (bar) | Bar (编码磷化麦黄酮乙酰转移酶),具有草胺膦抗性 | Myceliophthora thermophila[ Beauveria bassiana[ | |
Carboxin (cbx) | 点突变的SdhB (编码琥珀酸脱氢酶)可作为米曲霉的筛选标记,以醋酸盐作为碳源,可提高对萎锈灵的敏感性 | A. oryzae[ | |
Neomycin (neo) | Neo (编码氨基糖苷磷酸转移酶),具有G418 (新霉素衍生物)抗性 | Phytophthora sojae[ M. thermophila[ | |
Pyrithiamine (ptrA) | 点突变的PtrA (编码硫胺素噻唑合成酶基因),具有吡啶硫胺抗性 | A. oryzae[ | |
Chlorimuron (sur) | Sur (乙酰乳酸合成酶)具有氯嘧磺隆抗性 | Knufia petricola[ | |
Fenhexamid (Fenr) | 点突变的 ERG27 (编码酮还原酶),具有环酰菌胺抗性 | Botrytis cinerea[ | |
Nourseothricin (Nat) | Nat (编码N-乙酰转移酶),具有诺尔斯菌素抗性 | B. cinerea[ | |
营养缺陷型标记 | amdS | 带有amdS基因的菌株在以乙酰胺为唯一氮源的培养基上能够正常生长 | A. niger[ M. thermophila[ |
niaD | niaD功能缺陷突变株能够耐受高浓度氯盐 | A. oryzae[ | |
pyrG | pyrG功能缺失的突变株只能在含有尿苷或尿嘧啶的培养基上正常生长 | A. niger[ | |
argB | argB功能缺失的突变株只能在含有精氨酸的培养基上正常生长 | A. nidulans[ | |
adeA | adeA功能缺失的突变株只能在含有腺苷酸的培养基上正常生长 | A. oryzae[ | |
ppt1 | 缺失ppt1功能的突变体只能在添加赖氨酸的培养基上正常生长 | F. fujikuroi[ | |
表型报告基因 | fcc1 | fcc1基因的破坏可导致紫色色素的积累 | F. fujikuroi[ |
wA | wA突变体形成白色分生孢子 | A. oryzae[ | |
yA | yA突变体形成黄色分生孢子 | A. oryzae[ | |
fwnA | fwnA突变体形成白色分生孢子 | A. niger[ | |
albA | albA突变体形成白色分生孢子 | A. niger[ | |
pkaC | pkaC (编码camp依赖性蛋白激酶的催化亚单位)的破坏可导致平板上的菌落直径大大减小 | A. niger[ | |
creA | creA 敲除菌株产孢能力显著降低 | Spiromastix sp. [ | |
pksP | pksP敲除菌落具有明显的附白化表型 | A. fumigatus[ | |
cnaA | cnaA功能障碍导致菌丝生长缺陷显著,菌落表型非常小而密集 | A. fumigatus[ | |
ayg1 | ayg1 敲除可导致孢子的颜色从黑色变为黄色 | A. carbonarius[ | |
cbh1 | 破坏cbh1将导致SDS-PAGE凝胶上的主要条带丢失,从而有利于通过成功的基因编辑鉴定菌株 | Trichoderma reesei[ |
Fig. 2 Applications of different Cas9 with codons optimized in engineering filamentous fungi(Colors representing different Cas9 with codon sequences optimized)
类型 | 名称 | 来源 | 应用 |
---|---|---|---|
RNA聚合酶Ⅱ型启动子(组成型启动子) | Ptef1 | 转录延伸因子启动子 | A. niger[ |
PtrpC | 吲哚甘油磷酸合成酶启动子 | N. crassa[ | |
PgpdA | 3-磷酸甘油醛脱氢酶的启动子 | F. fujikuroi[ | |
Ppdc | 丙酮酸脱羧酶的启动子 | T. reesei[ | |
Pactin | 肌动蛋白的启动子 | Chaetomium globosum[ | |
Phsp70 | 热休克蛋白的启动子 | U. hordei[ | |
PpkiA | 丙酮酸激酶的启动子 | A. niger[ | |
Pef1α | 人延长因子1α的启动子 | Shiraia bambusicola[ | |
PmbfA | 多蛋白桥接因子的启动子 | A. niger[ | |
PcoxA | 细胞色素氧化酶的启动子 | A. niger[ | |
P40S | 40S 核糖体蛋白S8的启动子 | P.rubens[ | |
Pham34 | 莴苣盘霜霉来源启动子 | P.sojae[ | |
PoliC | ATP 合成酶亚基的启动子 | B.cinerea[ | |
RNA聚合酶Ⅱ型启动子(诱导型启动子) | PxylP/xlnA | 木聚糖酶的启动子 | P. chrysogenum[ |
Pcbh1 | 纤维素二糖水解酶Ⅰ的启动子 | T. reesei[ | |
PamyB | 淀粉酶的启动子 | A.oryzae[ | |
PtetON | 四环素诱导启动子 | A. fumigatus[ | |
PglaA | α-葡萄糖淀粉酶的启动子 | A. niger[ | |
niiA | 硝酸还原酶的启动子 | A. fumigatus[ | |
RNA聚合酶Ⅲ型启动子 | u6 | 人U6微核启动子 | A.oryzae[ |
5S rRNA | 5S rRNA基因启动子 | A. niger[ | |
tRNA | 转录转移核糖核酸启动子 | A. niger[ | |
SNR52 | 核仁小分子RNA 52启动子 | N. crassa[ | |
体外转录 | T7 | T7噬菌体衍生启动子 | T. reesei[ |
Table 3 Promoters for expressing Cas9/gRNA in filamentous fungi
类型 | 名称 | 来源 | 应用 |
---|---|---|---|
RNA聚合酶Ⅱ型启动子(组成型启动子) | Ptef1 | 转录延伸因子启动子 | A. niger[ |
PtrpC | 吲哚甘油磷酸合成酶启动子 | N. crassa[ | |
PgpdA | 3-磷酸甘油醛脱氢酶的启动子 | F. fujikuroi[ | |
Ppdc | 丙酮酸脱羧酶的启动子 | T. reesei[ | |
Pactin | 肌动蛋白的启动子 | Chaetomium globosum[ | |
Phsp70 | 热休克蛋白的启动子 | U. hordei[ | |
PpkiA | 丙酮酸激酶的启动子 | A. niger[ | |
Pef1α | 人延长因子1α的启动子 | Shiraia bambusicola[ | |
PmbfA | 多蛋白桥接因子的启动子 | A. niger[ | |
PcoxA | 细胞色素氧化酶的启动子 | A. niger[ | |
P40S | 40S 核糖体蛋白S8的启动子 | P.rubens[ | |
Pham34 | 莴苣盘霜霉来源启动子 | P.sojae[ | |
PoliC | ATP 合成酶亚基的启动子 | B.cinerea[ | |
RNA聚合酶Ⅱ型启动子(诱导型启动子) | PxylP/xlnA | 木聚糖酶的启动子 | P. chrysogenum[ |
Pcbh1 | 纤维素二糖水解酶Ⅰ的启动子 | T. reesei[ | |
PamyB | 淀粉酶的启动子 | A.oryzae[ | |
PtetON | 四环素诱导启动子 | A. fumigatus[ | |
PglaA | α-葡萄糖淀粉酶的启动子 | A. niger[ | |
niiA | 硝酸还原酶的启动子 | A. fumigatus[ | |
RNA聚合酶Ⅲ型启动子 | u6 | 人U6微核启动子 | A.oryzae[ |
5S rRNA | 5S rRNA基因启动子 | A. niger[ | |
tRNA | 转录转移核糖核酸启动子 | A. niger[ | |
SNR52 | 核仁小分子RNA 52启动子 | N. crassa[ | |
体外转录 | T7 | T7噬菌体衍生启动子 | T. reesei[ |
菌株 | CRISPR/Cas12a 存在形式 | 递送方式 | 表达策略 | 编辑效率 | 参考 文献 |
---|---|---|---|---|---|
嗜热毁丝霉 (M.thermophila) | PCR产物 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U6启动子驱动gRNA的表达 | 编辑单基因的效率为90%;编辑多个基因时,单基因发生编辑的效率为13%~41%; | [ |
稻瘟病菌 (M. oryzae ) | RNP | PEG介导的 原生质体转化 | 体外表达 | 50%~100%的编辑效率 | [ |
棘孢曲霉 (A. aculeatus) | 质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U3启动子 驱动gRNA的表达 | 接近100%的编辑效率 | [ |
阿舒氏囊霉 (A.gossypii) | 质粒 | 电转 | TSA1启动子驱动Cas12a的表达;SNR52启动子驱动gRNA的表达 | 编辑效率根据靶序列有显著不同(19.2%~77.2%) | [ |
构巢曲霉 (A. nidulans) 黑曲霉 (A. niger) | 质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U3启动子 驱动gRNA的表达 | 80%~100%的编辑效率 | [ |
嗜热毁丝霉 (T.thermophilus) | RNP/质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U6启动子驱动gRNA的表达 | 单基因编辑效率可达100%,双基因编辑效率为40%~56% | [ |
米曲霉 (A.oryzae); 酱油曲霉 (A. sojae) | 质粒 | PEG介导的 原生质体转化 | Ptef启动子驱动Cas12a的表达;PgpdA启动子驱动gRNA的表达 | 在米曲霉中基因编辑效率为60%~100%,在酱油霉中基因编辑效率为50%~70% | [ |
Table 4 Examples of the CRISPR/Cas12a system-assisted gene editing in filamentous fungi
菌株 | CRISPR/Cas12a 存在形式 | 递送方式 | 表达策略 | 编辑效率 | 参考 文献 |
---|---|---|---|---|---|
嗜热毁丝霉 (M.thermophila) | PCR产物 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U6启动子驱动gRNA的表达 | 编辑单基因的效率为90%;编辑多个基因时,单基因发生编辑的效率为13%~41%; | [ |
稻瘟病菌 (M. oryzae ) | RNP | PEG介导的 原生质体转化 | 体外表达 | 50%~100%的编辑效率 | [ |
棘孢曲霉 (A. aculeatus) | 质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U3启动子 驱动gRNA的表达 | 接近100%的编辑效率 | [ |
阿舒氏囊霉 (A.gossypii) | 质粒 | 电转 | TSA1启动子驱动Cas12a的表达;SNR52启动子驱动gRNA的表达 | 编辑效率根据靶序列有显著不同(19.2%~77.2%) | [ |
构巢曲霉 (A. nidulans) 黑曲霉 (A. niger) | 质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U3启动子 驱动gRNA的表达 | 80%~100%的编辑效率 | [ |
嗜热毁丝霉 (T.thermophilus) | RNP/质粒 | PEG介导的 原生质体转化 | Ptef 启动子驱动Cas12a 的表达;U6启动子驱动gRNA的表达 | 单基因编辑效率可达100%,双基因编辑效率为40%~56% | [ |
米曲霉 (A.oryzae); 酱油曲霉 (A. sojae) | 质粒 | PEG介导的 原生质体转化 | Ptef启动子驱动Cas12a的表达;PgpdA启动子驱动gRNA的表达 | 在米曲霉中基因编辑效率为60%~100%,在酱油霉中基因编辑效率为50%~70% | [ |
1 | MCCLUSKEY K, BAKER S E. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era[J]. Mycology, 2017, 8(2): 67-83. |
2 | ETXEBESTE O, ESPESO E A. Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms[J]. International Microbiology, 2020, 23(1): 5-22. |
3 | HYNES M J. The Neurospora crassa genome opens up the world of filamentous fungi[J]. Genome Biology, 2003, 4(6): 217. |
4 | GILES C, LAMONT-FRIEDRICH S J, MICHL T D, et al. The importance of fungal pathogens and antifungal coatings in medical device infections[J]. Biotechnology Advances, 2018, 36(1): 264-280. |
5 | KUN R S, GOMES A C S, HILDÉN K S, et al. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation[J]. Biotechnology Advances, 2019, 37(6): 107361. |
6 | URNOV F D, REBAR E J, HOLMES M C, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9): 636-646. |
7 | SHALEM O, SANJANA N E, ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5): 299-311. |
8 | BEDELL V M, WANG Y, CAMPBELL J M, et al. In vivo genome editing using a high-efficiency TALEN system[J]. Nature, 2012, 491(7422): 114-118. |
9 | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. |
10 | JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. |
11 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
12 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
13 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
14 | KOONIN E V, MAKAROVA K S. Origins and evolution of CRISPR-Cas systems[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1772): 20180087. |
15 | GASIUNAS G, YOUNG J K, KARVELIS T, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs[J]. Nature Communications, 2020, 11: 5512. |
16 | HIRANO H, GOOTENBERG J S, HORII T, et al. Structure and engineering of Francisella novicida Cas9[J]. Cell, 2016, 164(5): 950-961. |
17 | MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(Pt 3): 733-740. |
18 | HOU Z G, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(39): 15644-15649. |
19 | GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586. |
20 | KIM E J, KOO T Y, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni [J]. Nature Communications, 2017, 8: 14500. |
21 | HIRANO S, ABUDAYYEH O O, GOOTENBERG J S, et al. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9[J]. Nature Communications, 2019, 10(1): 1968. |
22 | HARRINGTON L B, PAEZ-ESPINO D, STAAHL B T, et al. A thermostable Cas9 with increased lifetime in human plasma[J]. Nature Communications, 2017, 8(1): 1424. |
23 | DAS A, HAND T H, SMITH C L, et al. The molecular basis for recognition of 5′-NNNCC-3′ PAM and its methylation state by Acidothermus cellulolyticus Cas9[J]. Nature Communications, 2020, 11(1): 6346. |
24 | YAMANO T, NISHIMASU H, ZETSCHE B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA[J]. Cell, 2016, 165(4): 949-962. |
25 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
26 | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications, 2019, 10(1): 212. |
27 | TENG F, CUI T T, FENG G H, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4: 63. |
28 | KARVELIS T, BIGELYTE G, YOUNG J K, et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage[J]. Nucleic Acids Research, 2020, 48(9): 5016-5023. |
29 | HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842. |
30 | WU Z W, ZHANG Y F, YU H P, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nature Chemical Biology, 2021, 17(11): 1132-1138. |
31 | XIN C C, YIN J H, YUAN S P, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J]. Nature Communications, 2022, 13(1): 5623. |
32 | LIU J J, ORLOVA N, OAKES B L, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors[J]. Nature, 2019, 566(7743): 218-223. |
33 | ALTAE-TRAN H, KANNAN S, DEMIRCIOGLU F E, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases[J]. Science, 2021, 374(6563): 57-65. |
34 | KARVELIS T, DRUTEIKA G, BIGELYTE G, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease[J]. Nature, 2021, 599(7886): 692-696. |
35 | SAITO M, XU P Y, FAURE G, et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease[J]. Nature, 2023, 620(7974): 660-668. |
36 | PERČULIJA V, LIN J Y, ZHANG B, et al. Functional features and current applications of the RNA-targeting type Ⅵ CRISPR-Cas systems[J]. Advanced Science, 2021, 8(13): 2004685. |
37 | FONFARA I, RICHTER H, BRATOVIČ M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA[J]. Nature, 2016, 532(7600): 517-521. |
38 | PAUL B, MONTOYA G. CRISPR-Cas12a: functional overview and applications[J]. Biomedical Journal, 2020, 43(1): 8-17. |
39 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. |
40 | LIU R, CHEN L, JIANG Y P, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discovery, 2015, 1: 15007. |
41 | SHEN J Y, ZHAO Q F, HE Q L. Application of CRISPR in filamentous fungi and macrofungi: from component function to development potentiality[J]. ACS Synthetic Biology, 2023, 12(7): 1908-1923. |
42 | SARKARI P, MARX H, BLUMHOFF M L, et al. An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger [J]. Bioresource Technology, 2017, 245(Pt B): 1327-1333. |
43 | FULLER K K, CHEN S, LOROS J J, et al. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus [J]. Eukaryotic Cell, 2015, 14(11): 1073-1080. |
44 | LIU Q, ZHANG Y L, LI F Y, et al. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila [J]. Biotechnology for Biofuels, 2019, 12: 293. |
45 | CHEN J J, LAI Y L, WANG L L, et al. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana [J]. Scientific Reports, 2017, 8: 45763. |
46 | SHIMA Y, ITO Y, KANEKO S, et al. Identification of three mutant loci conferring carboxin-resistance and development of a novel transformation system in Aspergillus oryzae [J]. Fungal Genetics and Biology, 2009, 46(1): 67-76. |
47 | FANG Y F, TYLER B M. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9[J]. Molecular Plant Pathology, 2016, 17(1): 127-139. |
48 | LIU Q, GAO R R, LI J G, et al. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering[J]. Biotechnology for Biofuels, 2017, 10: 1. |
49 | KATAYAMA T, NAKAMURA H, ZHANG Y, et al. Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae [J]. Applied and Environmental Microbiology, 2019, 85(3): e01896-18. |
50 | CHANG P K. A simple CRISPR/Cas9 system for efficiently targeting genes of Aspergillus section Flavi species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger [J]. Microbiology Spectrum, 2023, 11(1): e0464822. |
51 | ERDMANN E A, NITSCHE S, GORBUSHINA A A, et al. Genetic engineering of the rock inhabitant Knufia petricola provides insight into the biology of extremotolerant black fungi[J]. Frontiers in Fungal Biology, 2022, 3: 862429. |
52 | LEISEN T, BIETZ F, WERNER J, et al. CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors allows highly efficient marker-free and multiple genome editing in Botrytis cinerea [J]. PLoS Pathogens, 2020, 16(8): e1008326. |
53 | ZHENG X M, ZHENG P, ZHANG K, et al. 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger [J]. ACS Synthetic Biology, 2019, 8(7): 1568-1574. |
54 | YAO G S, CHEN X F, HAN Y J, et al. Development of versatile and efficient genetic tools for the marine-derived fungus Aspergillus terreus RA2905[J]. Current Genetics, 2022, 68(2): 153-164. |
55 | NØDVIGC S, NIELSENJ B, KOGLEM E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10(7): e0133085. |
56 | ZOU G, XIAO M L, CHAI S X, et al. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents[J]. Microbial Biotechnology, 2021, 14(6): 2343-2355. |
57 | SHI T Q, GAO J, WANG W J, et al. CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production[J]. ACS Synthetic Biology, 2019, 8(2): 445-454. |
58 | HUANG L G, DONG H Z, ZHENG J W, et al. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion[J]. Microbiological Research, 2019, 223-225: 44-50. |
59 | CHEN Y Y, CAI C L, YANG J F, et al. Development of the CRISPR-Cas9 system for the marine-derived fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7[J]. Journal of Fungi, 2022, 8(7): 715. |
60 | ZHANG C, MENG X H, WEI X L, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus [J]. Fungal Genetics and Biology, 2016, 86: 47-57. |
61 | WEYDA I, YANG L, VANG J, et al. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius [J]. Journal of Microbiological Methods, 2017, 135: 26-34. |
62 | HAO Z Z, SU X Y. Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex[J]. BMC Biotechnology, 2019, 19(1): 2. |
63 | GUO M, ZHU X L, LI H X, et al. Development of a novel strategy for fungal transformation based on a mutant locus conferring carboxin-resistance in Magnaporthe oryzae [J]. AMB Express, 2016, 6(1): 57. |
64 | YANG J F, ZHOU Z B, CHEN Y Y, et al. Characterization of the depsidone gene cluster reveals etherification, decarboxylation and multiple halogenations as tailoring steps in depsidone assembly[J]. Acta Pharmaceutica Sinica B, 2023, 13(9): 3919-3929. |
65 | PERFEITO L, FERNANDES L, MOTA C, et al. Adaptive mutations in bacteria: high rate and small effects[J]. Science, 2007, 317(5839): 813-815. |
66 | ROACH K C, HEITMAN J. Unisexual reproduction reverses Muller’s ratchet[J]. Genetics, 2014, 198(3): 1059-1069. |
67 | BOEKE J D, LACROUTE F, FINK G R. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance[J]. Molecular & General Genetics: MGG, 1984, 197(2): 345-346. |
68 | DONG H Z, ZHENG J W, YU D, et al. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes[J]. Journal of Microbiological Methods, 2019, 163: 105655. |
69 | NØDVIG C S, HOOF J B, KOGLE M E, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli[J]. Fungal Genetics and Biology, 2018, 115: 78-89. |
70 | CHENY Y, YANGJ F, CAIC L, et al. Development of marker recycling systems for sequential genetic manipulation in marine-derived fungi Spiromastix sp. SCSIO F190 and Aspergillus sp. SCSIO SX7S7[J]. Journal of Fungi, 2023, 9(3): 302. |
71 | FOSTER A J, MARTIN-URDIROZ M, YAN X, et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus[J]. Scientific Reports, 2018, 8(1): 14355. |
72 | HANDELMAN M, OSHEROV N. Efficient generation of multiple seamless point mutations conferring triazole resistance in Aspergillus fumigatus [J]. Journal of Fungi, 2023, 9(6): 644. |
73 | POHL C, KIEL J A, DRIESSEN A J, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum [J]. ACS Synthetic Biology, 2016, 5(7): 754-764. |
74 | KATAYAMA T, TANAKA Y, OKABE T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae [J]. Biotechnology Letters, 2016, 38(4): 637-642. |
75 | WANG Q, COBINE P A, COLEMAN J J. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes[J]. Fungal Genetics and Biology, 2018, 117: 21-29. |
76 | DAVIS K A, SAMPSON J K, PANACCIONE D G. Genetic reprogramming of the ergot alkaloid pathway of Metarhizium brunneum [J]. Applied and Environmental Microbiology, 2020, 86(19): e01251-20. |
77 | HICKS C, WITTE T E, SPROULE A, et al. CRISPR-Cas9 gene editing and secondary metabolite screening confirm Fusarium graminearum C16 biosynthetic gene cluster products as decalin-containing diterpenoid pyrones[J]. Journal of Fungi, 2023, 9(7): 695. |
78 | LI S J, SONG Z Y, LIU C Y, et al. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47762-47770. |
79 | CAIRNS T C, ZHENG X M, FEURSTEIN C, et al. A library of Aspergillus niger chassis strains for morphology engineering connects strain fitness and filamentous growth with submerged macromorphology[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 820088. |
80 | GUEGAN H, POIRIER W, RAVENEL K, et al. Deciphering the role of PIG1 and DHN-melanin in Scedosporium apiospermum conidia[J]. Journal of Fungi, 2023, 9(2): 134. |
81 | MATSU-URA T, BAEK M, KWON J, et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology, 2015, 2: 4. |
82 | JIANG C M, LV G B, TU Y Y, et al. Applications of CRISPR/Cas9 in the synthesis of secondary metabolites in filamentous fungi[J]. Frontiers in Microbiology, 2021, 12: 638096. |
83 | DONG L B, LIN X T, YU D, et al. High-level expression of highly active and thermostable trehalase from Myceliophthora thermophila in Aspergillus niger by using the CRISPR/Cas9 tool and its application in ethanol fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(1): 133-144. |
84 | ZHENG Y M, LIN F L, GAO H, et al. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology[J]. Scientific Reports, 2017, 7(1): 9250. |
85 | WEI T Y, WU Y J, XIE Q P, et al. CRISPR/Cas9-based genome editing in the filamentous fungus Glarea lozoyensis and its application in manipulating gloF [J]. ACS Synthetic Biology, 2020, 9(8): 1968-1977. |
86 | XIANG B Y, HAO X R, XIE Q H, et al. Deletion of a rare fungal PKS CgPKS11 promotes chaetoglobosin A biosynthesis, yet defers the growth and development of Chaetomium globosum [J]. Journal of Fungi, 2021, 7(9): 750. |
87 | ÖKMEN B, SCHWAMMBACH D, BAKKEREN G, et al. The Ustilago hordei-barley interaction is a versatile system for characterization of fungal effectors[J]. Journal of Fungi, 2021, 7(2): 86. |
88 | SONG L T, OUEDRAOGO J P, KOLBUSZ M, et al. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger [J]. PLoS One, 2018, 13(8): e0202868. |
89 | DENG H X, GAO R J, LIAO X R, et al. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system[J]. Journal of Biotechnology, 2017, 259: 228-234. |
90 | MÓZSIK L, HOEKZEMA M, DE KOK N A W, et al. CRISPR-based transcriptional activation tool for silent genes in filamentous fungi[J]. Scientific Reports, 2021, 11(1): 1118. |
91 | BALDIN C, KÜHBACHER A, MERSCHAK P, et al. Inducible selectable marker genes to improve Aspergillus fumigatus genetic manipulation[J]. Journal of Fungi, 2021, 7(7): 506. |
92 | WEBER J, VALIANTE V, NØDVIG C S, et al. Functional reconstitution of a fungal natural product gene cluster by advanced genome editing[J]. ACS Synthetic Biology, 2017, 6(1): 62-68. |
93 | KUN R S, MENG J L, SALAZAR-CEREZO S, et al. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass[J]. Enzyme and Microbial Technology, 2020, 136: 109508. |
94 | WANG Q, ZHAO Q Q, LIU Q, et al. CRISPR/Cas9-mediated genome editing in Penicillium oxalicum and Trichoderma reesei using 5S rRNA promoter-driven guide RNAs[J]. Biotechnology Letters, 2021, 43(2): 495-502. |
95 | LI J Y, WANG X, ZOU J H, et al. Identification and characterization of the determinants of copper resistance in the acidophilic fungus Acidomyces richmondensis MEY-1 using the CRISPR/Cas9 system[J]. Applied and Environmental Microbiology, 2023, 89(3): e0210722. |
96 | JARCZYNSKA Z D, GARCIA VANEGAS K, DEICHMANN M, et al. A versatile in vivo DNA assembly toolbox for fungal strain engineering[J]. ACS Synthetic Biology, 2022, 11(10): 3251-3263. |
97 | POHL C, MÓZSIK L, DRIESSEN A J M, et al. Genome editing in Penicillium chrysogenum using Cas9 ribonucleoprotein particles[J]. Methods in Molecular Biology, 2018, 1772: 213-232. |
98 | CHEN Z Q, ZHANG C, PEI L L, et al. Production of L-malic acid by metabolically engineered Aspergillus nidulans based on efficient CRISPR-Cas9 and cre-loxP systems[J]. Journal of Fungi, 2023, 9(7): 719. |
99 | 于鲲, 薛佳琪, 王进宽, 等. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
YU K, XUE J Q, WANG J K, et al. Research progress on application of CRISPR/Cas9 gene editing technique in filamentous fungi[J]. Current Biotechnology, 2022, 12(5): 696-704. | |
100 | LU S, SHEN X R, CHEN B S. Development of an efficient vector system for gene knock-out and near in-cis gene complementation in the sugarcane smut fungus[J]. Scientific Reports, 2017, 7(1): 3113. |
101 | VIEIRA A A, VIANNA G R, CARRIJO J, et al. Generation of Trichoderma harzianum with pyr4 auxotrophic marker by using the CRISPR/Cas9 system[J]. Scientific Reports, 2021, 11(1): 1085. |
102 | BRUNI G O, ZHONG K, LEE S C, et al. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar [J]. Fungal Genetics and Biology, 2019, 124: 1-7. |
103 | LI D D, TANG Y, LIN J, et al. Methods for genetic transformation of filamentous fungi[J]. Microbial Cell Factories, 2017, 16(1): 168. |
104 | STROHKENDL I, SAIFUDDIN F A, RYBARSKI J R, et al. Kinetic basis for DNA target specificity of CRISPR-Cas12a[J]. Molecular Cell, 2018, 71(5): 816-824.e3. |
105 | CAMPA C C, WEISBACH N R, SANTINHA A J, et al. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts[J]. Nature Methods, 2019, 16(9): 887-893. |
106 | JIMÉNEZ A, HOFF B, REVUELTA J L. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1[J]. New Biotechnology, 2020, 57: 29-33. |
107 | LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20. |
108 | MU K Q, REN X J, YANG H, et al. CRISPR-Cas12a-based diagnostics of wheat fungal diseases[J]. Journal of Agricultural and Food Chemistry, 2022, 70(23): 7240-7247. |
109 | HUANG J, ROWE D, SUBEDI P, et al. CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae [J]. Nature Communications, 2022, 13(1): 7168. |
110 | HUANG J, COOK D E. CRISPR-Cas12a ribonucleoprotein-mediated gene editing in the plant pathogenic fungus Magnaporthe oryzae [J]. STAR Protocols, 2022, 3(1): 101072. |
111 | ABDULRACHMAN D, EURWILAICHITR L, CHAMPREDA V, et al. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277[J]. BMC Biotechnology, 2021, 21(1): 15. |
112 | VANEGAS K G, JARCZYNSKA Z D, STRUCKO T, et al. Cpf1 enables fast and efficient genome editing in Aspergilli[J]. Fungal Biology and Biotechnology, 2019, 6: 6. |
113 | KWON M J, SCHÜTZE T, SPOHNER S, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi[J]. Fungal Biology and Biotechnology, 2019, 6: 15. |
114 | KATAYAMA T, MARUYAMA J I. CRISPR/Cpf1-mediated mutagenesis and gene deletion in industrial filamentous fungi Aspergillus oryzae and Aspergillus sojae [J]. Journal of Bioscience and Bioengineering, 2022, 133(4): 353-361. |
115 | CHEN T M, CHEN Z M, ZHANG H X, et al. Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae [J]. Folia Microbiologica, 2024, 69: 373-382. |
116 | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
117 | PORTO E M, KOMOR A C, SLAYMAKER I M, et al. Base editing: advances and therapeutic opportunities[J]. Nature Reviews Drug Discovery, 2020, 19(12): 839-859. |
118 | KOMOR A C, ZHAO K T, PACKER M S, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity[J]. Science Advances, 2017, 3(8): eaao4774. |
119 | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
WANG Y N, SUN Y H. Base editing technology and its application in microbial synthetic biology[J]. Synthetic Biology Journal, 2023,4(4): 720-737. | |
120 | UMEYAMA T, HAYASHI Y, SHIMOSAKA H, et al. CRISPR/Cas9 genome editing to demonstrate the contribution of Cyp51A Gly138Ser to azole resistance in Aspergillus fumigatus [J]. Antimicrobial Agents and Chemotherapy, 2018, 62(9): e00894-18. |
121 | KIM D S, LIM K Y, KIM S T, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases[J]. Nature Biotechnology, 2017, 35(5): 475-480. |
122 | LAHR W S, SIPE C J, SKEATE J G, et al. CRISPR-Cas9 base editors and their current role in human therapeutics[J]. Cytotherapy, 2023, 25(3): 270-276. |
123 | ZHANG C Y, LI N, RAO L, et al. Development of an efficient C-to-T base-editing system and its application to cellulase transcription factor precise engineering in thermophilic fungus Myceliophthora thermophila [J]. Microbiology Spectrum, 2022, 10(3): e0232121. |
124 | ZHAO F L, SUN C X, LIU Z W, et al. Multiplex base-editing enables combinatorial epigenetic regulation for genome mining of fungal natural products[J]. Journal of the American Chemical Society, 2023, 145(1): 413-421. |
125 | WANG J Y, DOUDNA J A. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643. |
126 | MÓZSIK L, POHL C, MEYER V, et al. Modular synthetic biology toolkit for filamentous fungi[J]. ACS Synthetic Biology, 2021, 10(11): 2850-2861. |
127 | CHAVEZ A, SCHEIMAN J, VORA S, et al. Highly efficient Cas9-mediated transcriptional programming[J]. Nature Methods, 2015, 12(4): 326-328. |
128 | GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. |
129 | CHEN M, QI L S. Repurposing CRISPR system for transcriptional activation[J]. Advances in Experimental Medicine and Biology, 2017, 983: 147-157. |
130 | ROUX I, WOODCRAFT C, HU J Y, et al. CRISPR-mediated activation of biosynthetic gene clusters for bioactive molecule discovery in filamentous fungi[J]. ACS Synthetic Biology, 2020, 9(7): 1843-1854. |
131 | DOMINGUEZ A A, LIM W A, QI L S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nature Reviews Molecular Cell Biology, 2016, 17(1): 5-15. |
132 | GHAVAMI S, PANDI A. CRISPR interference and its applications[J]. Progress in Molecular Biology and Translational Science, 2021, 180: 123-140. |
133 | LARSON M H, GILBERT L A, WANG X W, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression[J]. Nature Protocols, 2013, 8(11): 2180-2196. |
134 | ZHANG Y M, ZHENG L, XIE K B. CRISPR/dCas9-mediated gene silencing in two plant fungal pathogens[J]. mSphere, 2023, 8(1): e0059422. |
135 | NAKAMURA M, GAO Y C, DOMINGUEZ A A, et al. CRISPR technologies for precise epigenome editing[J]. Nature Cell Biology, 2021, 23(1): 11-22. |
136 | PULECIO J, VERMA N, MEJÍA-RAMÍREZ E, et al. CRISPR/Cas9-based engineering of the epigenome[J]. Cell Stem Cell, 2017, 21(4): 431-447. |
137 | HILTON I B, D’IPPOLITO A M, VOCKLEY C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J]. Nature Biotechnology, 2015, 33(5): 510-517. |
138 | LI X J, HUANG L G, PAN L J, et al. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite[J]. Microbiological Research, 2021, 245: 126694. |
139 | NUÑEZ J K, CHEN J, POMMIER G C, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing[J]. Cell, 2021, 184(9): 2503-2519.e17. |
140 | CHEN X Y, MORAN TORRES J P, LI Y L, et al. Inheritable CRISPR based epigenetic modification in a fungus[J]. Microbiological Research, 2023, 272: 127397. |
141 | LI X Y, AWAKAWA T, MORI T, et al. Heterodimeric non-heme iron enzymes in fungal meroterpenoid biosynthesis[J]. Journal of the American Chemical Society, 2021, 143(50): 21425-21432. |
142 | YE W, LIU T M, LIU Y P, et al. Enhancing gliotoxins production in deep-sea derived fungus Dichotomocyes cejpii by engineering the biosynthetic pathway[J]. Bioresource Technology, 2023, 377: 128905. |
143 | WANG D D, JIN S D, LU Q H, et al. Advances and challenges in CRISPR/Cas-based fungal genome engineering for secondary metabolite production: a review[J]. Journal of Fungi, 2023, 9(3): 362. |
144 | XIAO A, CHENG Z C, KONG L, et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool[J]. Bioinformatics, 2014, 30(8): 1180-1182. |
145 | LABUN K, MONTAGUE T G, GAGNON J A, et al. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering[J]. Nucleic Acids Research, 2016, 44(W1): W272-W276. |
146 | LEE J K, JEONG E, LEE J, et al. Directed evolution of CRISPR-Cas9 to increase its specificity[J]. Nature Communications, 2018, 9(1): 3048. |
147 | RABINOWITZ R, OFFEN D. Single-base resolution: increasing the specificity of the CRISPR-Cas system in gene editing[J]. Molecular Therapy, 2021, 29(3): 937-948. |
[1] | Zhimeng XU, Zhen XIE. Research progress and biotechnological applications of the prime editing [J]. Synthetic Biology Journal, 2024, 5(1): 1-15. |
[2] | Yaru CHEN, Yingxiu CAO, Hao SONG. Advances and applications of gene editing and transcriptional regulation in electroactive microorganisms [J]. Synthetic Biology Journal, 2023, 4(6): 1281-1299. |
[3] | Jicong LIN, Gen ZOU, Hongmin LIU, Yongjun WEI. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi [J]. Synthetic Biology Journal, 2023, 4(4): 738-755. |
[4] | Ke LIU, Guihong LIN, Kun LIU, Wei ZHOU, Fengqing WANG, Dongzhi WEI. Mining, engineering and functional expansion of CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 47-66. |
[5] | Liya LIANG, Rongming LIU. Protein engineering of DNA targeting type Ⅱ CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 86-101. |
[6] | Jiaxin LIU, Chi CHENG, Xinqi LI, Chaojun WANG, Ying ZHANG, Chuang XUE. Recent progress in the molecular genetic modification tools of Clostridium [J]. Synthetic Biology Journal, 2022, 3(6): 1201-1217. |
[7] | Jiacheng BI, Zhigang TIAN. Synthetic immunology and future NK cell immunotherapy [J]. Synthetic Biology Journal, 2022, 3(1): 22-34. |
[8] | Qian LIU, Jingen LI, Chenyang ZHANG, Fangya LI, Chaoguang TIAN. Research progress of genome editing technologies for industrial filamentous fungi [J]. Synthetic Biology Journal, 2021, 2(2): 256-273. |
[9] | Han XIAO, Yixin LIU. Progress and challenge of the CRISPR-Cas system in gene editing for filamentous fungi [J]. Synthetic Biology Journal, 2021, 2(2): 274-286. |
[10] | Yang LI, Xiaolin SHEN, Xinxiao SUN, Qipeng YUAN, Yajun YAN, Jia WANG. Advances of CRISPR gene editing in microbial synthetic biology [J]. Synthetic Biology Journal, 2021, 2(1): 106-120. |
[11] | Yongfu YANG, Binan GENG, Haoyue SONG, Qiaoning HE, Mingxiong HE, Jie BAO, Fengwu BAI, Shihui YANG. Progress and perspectives on developing Zymomonas mobilis as a chassis cell [J]. Synthetic Biology Journal, 2021, 2(1): 59-90. |
[12] | Zhongzheng CAO, Xinyi ZHANG, Yiyuan XU, Zhuo ZHOU, Wensheng WEI. Genome editing technology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 413-426. |
[13] | Lu LIN, Xueqin LV, Yanfeng LIU, Guocheng DU, Jian CHEN, Long LIU. Advances in design, construction and applications of Bacillus subtilis chassis cells [J]. Synthetic Biology Journal, 2020, 1(2): 247-265. |
[14] | Xuenian HUANG, Shen TANG, Xuefeng LV. Progress and prospect for synthetic biology research of the industrial filamentous fungi Aspergillus terreus [J]. Synthetic Biology Journal, 2020, 1(2): 187-211. |
[15] | Bo ZHANG, Yongshuo MA, Yi SHANG, Sanwen HUANG. Recent advances in plant synthetic biology [J]. Synthetic Biology Journal, 2020, 1(2): 121-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||