Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (5): 1021-1049.DOI: 10.12211/2096-8280.2024-005
• Invited Review • Previous Articles Next Articles
Yu FU1, Fangrui ZHONG2
Received:
2024-01-08
Revised:
2024-03-14
Online:
2024-11-20
Published:
2024-10-31
Contact:
Fangrui ZHONG
付雨1, 钟芳锐2
通讯作者:
钟芳锐
作者简介:
基金资助:
CLC Number:
Yu FU, Fangrui ZHONG. Recent advances in chemically driven enantioselective photobiocatalysis[J]. Synthetic Biology Journal, 2024, 5(5): 1021-1049.
付雨, 钟芳锐. 化学原理驱动的光生物不对称催化研究进展[J]. 合成生物学, 2024, 5(5): 1021-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-005
反应类型 | 作者/年份 | 酶的类型 | 参考文献 |
---|---|---|---|
α-卤代羰基化合物的不对称脱卤还原 | Emmanuel/2016 | 烟酰胺依赖型短链脱氢酶LKADH | [ |
Peng/2022 | 黄素依赖型环己酮单加氧酶CHMO | [ | |
烯烃的不对称氢烷基化 | Biegasiewicz/2019 | 黄素依赖型烯烃还原酶GluER | [ |
Huang/2020 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Li/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Huang/2022 | 烟酰胺依赖型酮还原酶KRED | [ | |
Zhu/2023 | 黄素依赖型烯烃还原酶GluER | [ | |
Duan/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Chen/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
烯烃的不对称烃基羟基化 | Ouyang/2023 | 黄素依赖型烯烃还原酶MorB | [ |
不对称C(sp3)-C(sp3)亲电试剂偶联 | Fu/2022 | 黄素依赖型烯烃还原酶CsER | [ |
Fu/2023 | 黄素依赖型烯烃还原酶GkOYE | [ |
Table 1 Summary of photoenzymatic asymmetric reactions driven by EDA complex excitation
反应类型 | 作者/年份 | 酶的类型 | 参考文献 |
---|---|---|---|
α-卤代羰基化合物的不对称脱卤还原 | Emmanuel/2016 | 烟酰胺依赖型短链脱氢酶LKADH | [ |
Peng/2022 | 黄素依赖型环己酮单加氧酶CHMO | [ | |
烯烃的不对称氢烷基化 | Biegasiewicz/2019 | 黄素依赖型烯烃还原酶GluER | [ |
Huang/2020 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Li/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Huang/2022 | 烟酰胺依赖型酮还原酶KRED | [ | |
Zhu/2023 | 黄素依赖型烯烃还原酶GluER | [ | |
Duan/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
Chen/2023 | 黄素依赖型烯烃还原酶OYE1 | [ | |
烯烃的不对称烃基羟基化 | Ouyang/2023 | 黄素依赖型烯烃还原酶MorB | [ |
不对称C(sp3)-C(sp3)亲电试剂偶联 | Fu/2022 | 黄素依赖型烯烃还原酶CsER | [ |
Fu/2023 | 黄素依赖型烯烃还原酶GkOYE | [ |
1 | NOYORI R. Asymmetric catalysis: science and opportunities (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2002, 41(12): 2008-2022. |
2 | YU X H, WANG W. Hydrogen‐bond‐mediated asymmetric catalysis[J]. Chemistry-An Asian Journal, 2008, 3(3): 516-532. |
3 | NGUYEN L A, HE H, PHAM-HUY C. Chiral drugs: an overview[J]. International Journal of Biomedical Science: IJBS, 2006, 2(2): 85-100. |
4 | DE ALBUQUERQUE N C P, CARRAO D B, HABENSCHUS M D, et al. Metabolism studies of chiral pesticides: a critical review[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 89-109. |
5 | GONG W, CHEN Z J, DONG J Q, et al. Chiral metal-organic frameworks[J]. Chemical Reviews, 2022, 122(9): 9078-9144. |
6 | FARINA V, REEVES J T, SENANAYAKE C H, et al. Asymmetric synthesis of active pharmaceutical ingredients[J]. Chemical Reviews, 2006, 106(7): 2734-2793. |
7 | KATSUKI T, SHARPLESS K B. The first practical method for asymmetric epoxidation[J]. Journal of the American Chemical Society, 1980, 102(18): 5974-5976. |
8 | ARNOLD F H. Innovation by evolution: bringing new chemistry to life (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2019, 58(41): 14420-14426. |
9 | SEAYAD J, LIST B. Asymmetric organocatalysis[J]. Organic & Biomolecular Chemistry, 2005, 3(5): 719-724. |
10 | MUKHERJEE S, YANG J W, HOFFMANN S, et al. Asymmetric enamine catalysis[J]. Chemical Reviews, 2007, 107(12): 5471-5569. |
11 | MACMILLAN D W C. The advent and development of organocatalysis[J]. Nature, 2008, 455(7211): 304-308. |
12 | PRIER C K, RANKIC D A, MACMILLAN D W C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis[J]. Chemical Reviews, 2013, 113(7): 5322-5363. |
13 | LI C J, TROST B M. Green chemistry for chemical synthesis[J]. Proceedings of the National Academy of Sciences, 2008, 105(36): 13197-13202. |
14 | ROSENTHALER L. Durch enzyme bewirkte asymmetrische synthesen[J]. Biochem Z, 1908, 14(1): 238-253. |
15 | ARNOLD F H. Directed evolution: creating biocatalysts for the future[J]. Chemical Engineering Science, 1996, 51(23): 5091-5102. |
16 | PACKER M S, LIU D R. Methods for the directed evolution of proteins[J]. Nature Reviews Genetics, 2015, 16(7): 379-394. |
17 | ZHANG R K, CHEN K, HUANG X Y, et al. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C-H functionalization[J]. Nature, 2019, 565(7737): 67-72. |
18 | PRIER C K, ZHANG R K, BULLER A R, et al. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme[J]. Nature Chemistry, 2017, 9(7): 629-634. |
19 | YI D, BAYER T, BADENHORST C P S, et al. Recent trends in biocatalysis[J]. Chemical Society Reviews, 2021, 50(14): 8003-8049. |
20 | CIAMICIAN G. The photochemistry of the future[J]. Science, 1912, 36(926): 385-394. |
21 | STEPHENSON C R J, YOON T P, MACMILLAN D W C. Visible light photocatalysis in organic chemistry[M]. John Wiley & Sons, 2018. |
22 | UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234-238. |
23 | LUO J, ZHANG J. Donor-acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)-C(sp2) cross-coupling[J]. ACS Catalysis, 2016, 6(2): 873-877. |
24 | YIN Y L, DAI Y T, JIA H S, et al. Conjugate addition-enantioselective protonation of N-aryl glycines to α-branched 2-vinylazaarenes via cooperative photoredox and asymmetric catalysis[J]. Journal of the American Chemical Society, 2018, 140(19): 6083-6087. |
25 | MACKENZIE I A, WANG L F, ONUSKA N P R, et al. Discovery and characterization of an acridine radical photoreductant[J]. Nature, 2020, 580(7801): 76-80. |
26 | NIKIAS N F, GKIZIS P L, KOKOTOS C G. Thioxanthone: a powerful photocatalyst for organic reactions[J]. Organic & Biomolecular Chemistry, 2021, 19(24): 5237-5253. |
27 | GROBKOPF J, KRATZ T, RIGOTTI T, et al. Enantioselective photochemical reactions enabled by triplet energy transfer[J]. Chemical Reviews, 2021, 122(2): 1626-1653. |
28 | BRETTEL K, BYRDIN M. Reaction mechanisms of DNA photolyase[J]. Current Opinion in Structural Biology, 2010, 20(6): 693-701. |
29 | SANCAR A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture)[J]. Angewandte Chemie International Edition, 2016, 55(30): 8502-8527. |
30 | GABRUK M, MYSLIWA-KURDZIEL B. Light-dependent protochlorophyllide oxidoreductase: phylogeny, regulation, and catalytic properties[J]. Biochemistry, 2015, 54(34): 5255-5262. |
31 | SORIGUE D, LEGERET B, CUINE S, et al. An algal photoenzyme converts fatty acids to hydrocarbons[J]. Science, 2017, 357(6354): 903-907. |
32 | PENG Y Z, CHEN Z C, XU J, et al. Recent advances in photobiocatalysis for selective organic synthesis[J]. Organic Process Research & Development, 2022, 26(7): 1900-1913. |
33 | EMMANUEL M A, BENDER S G, BILODEAU C. Photobiocatalytic strategies for organic synthesis[J]. Chemical Reviews, 2023, 123(9), 5459–5520. |
34 | 明阳, 陈彬, 黄小强. 光酶催化合成进展[J]. 合成生物学, 2023, 4(4): 651-675. |
MING Y, CHEN B, HUANG X Q. Recent advances in photoenzymatic synthesis[J]. Synthetic Biology Journal, 2023, 4(4): 651-675. | |
35 | ROMERO N A, NICEWICZ D A. Organic photoredox catalysis[J]. Chemical Reviews, 2016, 116(17): 10075-10166. |
36 | HUTTON G A M, MARTINDALE B C M, REISNER E. Carbon dots as photosensitisers for solar-driven catalysis[J]. Chemical Society Reviews, 2017, 46(20): 6111-6123. |
37 | PAL A K, HANAN G S. Design, synthesis and excited-state properties of mononuclear Ru(Ⅱ) complexes of tridentate heterocyclic ligands[J]. Chemical Society Reviews, 2014, 43(17): 6184-6197. |
38 | LI L L, DIAU E W G. Porphyrin-sensitized solar cells[J]. Chemical Society Reviews, 2013, 42(1): 291-304. |
39 | ZHANG S H, LIU S S, SUN Y Y, et al. Enzyme-photo-coupled catalytic systems[J]. Chemical Society Reviews, 2021, 50(24): 13449-13466. |
40 | TOOGOOD H S, SCRUTTON N S. Discovery, characterization, engineering, and applications of ene-reductases for industrial biocatalysis[J]. ACS catalysis, 2018, 8(4): 3532-3549. |
41 | KIM J, LEE S H, TIEVES F, et al. Biocatalytic C=C bond reduction through carbon nanodot‐sensitized regeneration of NADH analogues[J]. Angewandte Chemie, 2018, 130(42): 14021-14024. |
42 | BIEGASIEWICZ K F, COOPER S J, EMMANUEL M A, et al. Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases[J]. Nature Chemistry, 2018, 10(7): 770-775. |
43 | NAKANO Y, BLACK M J, MEICHAN A J, et al. Photoenzymatic hydrogenation of heteroaromatic olefins using ene‐reductases with photoredox catalysts[J]. Angewandte Chemie International Edition, 2020, 59(26): 10484-10488. |
44 | SANDOVAL B A, KURTOIC S I, CHUNG M M, et al. Photoenzymatic catalysis enables radical‐mediated ketone reduction in ene‐reductases[J]. Angewandte Chemie, 2019, 131(26): 8806-8810. |
45 | SUN S Z, NICHOLLS B T, BAIN D, et al. Enantioselective decarboxylative alkylation using synergistic photoenzymatic catalysis[J]. Nature Catalysis, 2023: 1-8. |
46 | KWON K, SIMONS R T, NANDAKUMAR M, et al. Strategies to generate nitrogen-centered radicals that may rely on photoredox catalysis: development in reaction methodology and applications in organic synthesis[J]. Chemical Reviews, 2021, 122(2): 2353-2428. |
47 | PRATLEY C, FENNER S, MURPHY J A. Nitrogen-centered radicals in functionalization of sp2 systems: generation, reactivity, and applications in synthesis[J]. Chemical Reviews, 2022, 122(9): 8181-8260. |
48 | YE Y X, CAO J Z, OBLINSKY D G, et al. Using enzymes to tame nitrogen-centred radicals for enantioselective hydroamination[J]. Nature Chemistry, 2023, 15(2): 206-212. |
49 | CHENG L, LI D, MAI B K, et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis[J]. Science, 2023, 381(6656): 444-451. |
50 | XU Y Y, CHEN H W, YU L, et al. A light-driven enzymatic enantioselective radical acylation[J]. Nature, 2024, 625: 74-78. |
51 | KLUGER R, TITTMANN K. Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates[J]. Chemical Reviews, 2008, 108(6): 1797-1833. |
52 | GIOVANNINI P P, BORTOLINI O, MASSI A. Thiamine-diphosphate-dependent enzymes as catalytic tools for the asymmetric benzoin-type reaction[J]. European Journal of Organic Chemistry, 2016, 2016(26): 4441-4459. |
53 | YANG Q, ZHAO F Q, ZHANG N, et al. Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis[J]. Chemical Communications, 2018, 54(100): 14065-14068. |
54 | LITMAN Z C, WANG Y J, ZHAO H M, et al. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis[J]. Nature, 2018, 560(7718): 355-359. |
55 | WANG Y J, HUANG X Q, HUI J S, et al. Stereoconvergent reduction of activated alkenes by a nicotinamide free synergistic photobiocatalytic system[J]. ACS Catalysis, 2020, 10(16): 9431-9437. |
56 | DING X, DONG C L, GUAN Z, et al. Concurrent asymmetric reactions combining photocatalysis and enzyme catalysis: direct enantioselective synthesis of 2,2-disubstituted indol‐3-ones from 2-arylindoles[J]. Angewandte Chemie International Edition, 2019, 58 (1): 118-124. |
57 | DEHOVITZ J S, LOH Y Y, KAUTZKY J A, et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones[J]. Science, 2020, 369(6507): 1113-1118. |
58 | LIU Y Y, ZHU L Y, LI X M, et al. Photoredox/enzymatic catalysis enabling redox-neutral decarboxylative asymmetric C-C coupling for asymmetric synthesis of chiral 1,2-amino alcohols[J]. JACS Au, 2023, 3(11): 3005-3013. |
59 | RUDZKA A, ANTOS N, REITER T, et al. One-pot sequential two-step photo-biocatalytic deracemization of sec-alcohols combining photocatalytic oxidation and bioreduction[J]. ACS Catalysis, 2024, 14(3): 1808-1823. |
60 | ZHANG W Y, FERNANDEZ-FUEYO E, NI Y, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations[J]. Nature Catalysis, 2018, 1(1): 55-62. |
61 | WORTMAN A K, STEPHENSON C R J. EDA photochemistry: mechanistic investigations and future opportunities[J]. Chem, 2023, 9(9): 2390-2415. |
62 | ARCEO E, JURBERG I D, ÁLVAREZ-FERNANDEZ A, et al. Photochemical activity of a key donor-acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes[J]. Nature Chemistry, 2013, 5(9): 750-756. |
63 | YUAN Y Q, MAJUMDER S, YANG M H, et al. Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process[J]. Tetrahedron Letters, 2020, 61(8): 151506. |
64 | HARRISON W, HUANG X Q, ZHAO H M. Photobiocatalysis for abiological transformations[J]. Accounts of Chemical Research, 2022, 55(8): 1087-1096. |
65 | EMMANUEL M A, GREENBERG N R, OBLINSKY D G, et al. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light[J]. Nature, 2016, 540(7633): 414-417. |
66 | PENG Y Z, WANG Z G, CHEN Y, et al. Photoinduced promiscuity of cyclohexanone monooxygenase for the enantioselective synthesis of α‐fluoroketones[J]. Angewandte Chemie International Edition, 2022, 61(50): e202211199. |
67 | BIEGASIEWICZ K F, COOPER S J, GAO X, et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization[J]. Science, 2019, 364(6446): 1166-1169. |
68 | HUANG X Q, WANG B J, WANG Y J, et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation[J]. Nature, 2020, 584(7819): 69-74. |
69 | LI M L, HARRISON W, ZHANG Z Y, et al. Remote stereocontrol with azaarenes via enzymatic hydrogen atom transfer[J]. Nature Chemistry, 2023: 1-8. |
70 | HUANG X Q, FENG J Q, CUI J W, et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition[J]. Nature Catalysis, 2022, 5(7): 586-593. |
71 | ZHU C T, YUAN Z B, DENG Z W, et al. Photoenzymatic enantioselective synthesis of oxygen‐containing benzo‐fused heterocycles[J]. Angewandte Chemie, 2023: e202311762. |
72 | DUAN X Y, CUI D, WANG Z G, et al. A photoenzymatic strategy for radical‐mediated stereoselective hydroalkylation with diazo compounds[J]. Angewandte Chemie International Edition, 2023, 62(5): e202214135. |
73 | CHEN X Y, ZHENG D N, JIANG L Y, et al. Photoenzymatic hydrosulfonylation for the stereoselective synthesis of chiral sulfones[J]. Angewandte Chemie International Edition, 2023: e202218140. |
74 | OUYANG Y, TUREK-HERMAN J, QIAO T Z, et al. Asymmetric carbohydroxylation of alkenes using photoenzymatic catalysis[J]. Journal of the American Chemical Society, 2023, 145(31): 17018-17022. |
75 | FU H G, CAO J Z, QIAO T Z, et al. An asymmetric sp3-sp3 cross-electrophile coupling using ene-reductases[J]. Nature, 2022, 610(7931): 302-307. |
76 | FU H G, QIAO T Z, CARCELLER J M, et al. Asymmetric C-alkylation of nitroalkanes via enzymatic photoredox catalysis[J]. Journal of the American Chemical Society, 2023, 145(2): 787-793. |
77 | SIEGEL L M. Quantitative determination of noncovalently bound flavins: types and methods of analysis[M]. Methods in Enzymology. Academic Press, 1978, 53: 419-429. |
78 | GROSHEVA D, HYSTER T K. Light‐driven flavin‐based biocatalysis[J]. Flavin‐Based Catalysis: Principles and Applications, 2021: 291-313. |
79 | SANCAR A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors[J]. Chemical Reviews, 2003, 103(6): 2203-2238. |
80 | ZHANG M, WANG L J, ZHONG D P. Photolyase: dynamics and electron-transfer mechanisms of DNA repair[J]. Archives of Biochemistry and Biophysics, 2017, 632: 158-174. |
81 | CONRAD K S, MANAHAN C C, CRANE B R. Photochemistry of flavoprotein light sensors[J]. Nature Chemical Biology, 2014, 10(10): 801-809. |
82 | SORIGUE D, HADJIDEMETRIOU K, BLANGY S, et al. Mechanism and dynamics of fatty acid photodecarboxylase[J]. Science, 2021, 372(6538): eabd5687. |
83 | ZHANG W Y, MA M, HUIJBERS M M E, et al. Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids[J]. Journal of the American Chemical Society, 2019, 141(7): 3116-3120. |
84 | XU J, FAN J J, LOU Y J, et al. Light-driven decarboxylative deuteration enabled by a divergently engineered photodecarboxylase[J]. Nature Communications, 2021, 12(1): 3983. |
85 | LI D Y, HAN T, XUE J D, et al. Engineering fatty acid photodecarboxylase to enable highly selective decarboxylation of trans fatty acids[J]. Angewandte Chemie, 2021, 133(38): 20863-20867. |
86 | AMER M, WOJCIK E Z, SUN C H, et al. Low carbon strategies for sustainable bio-alkane gas production and renewable energy[J]. Energy & Environmental Science, 2020, 13(6): 1818-1831. |
87 | QIN Z Y, ZHOU Y, LI Z, et al. Production of biobased ethylbenzene by cascade biocatalysis with an engineered photodecarboxylase[J]. Angewandte Chemie, e202314566. |
88 | XU J, HU Y J, FAN J J, et al. Light‐driven kinetic resolution of α‐functionalized carboxylic acids enabled by an engineered fatty acid photodecarboxylase[J]. Angewandte Chemie International Edition, 2019, 58(25): 8474-8478. |
89 | MOU K H, GUO Y, XU W H, et al. Stereodivergent protein engineering of fatty acid photodecarboxylase for light‐driven kinetic resolution of Sec‐alcohol oxalates[J]. Angewandte Chemie International Edition, 2024: e202318374. |
90 | ZHENG J, SHEN Z L, GAO J M, et al. Enzymatic photodecarboxylation on secondary and tertiary carboxylic acids[J]. Organic Letters, 2023, 25(48): 8564-8569. |
91 | BLACK M J, BIEGASIEWICZ K F, MEICHAN A J, et al. Asymmetric redox-neutral radical cyclization catalysed by flavin-dependent ene-reductases[J]. Nature Chemistry, 2020, 12(1): 71-75. |
92 | SANDOVAL B A, CLAYMAN P D, OBLINSKY D G, et al. Photoenzymatic reductions enabled by direct excitation of flavin-dependent ene-reductases[J]. Journal of the American Chemical Society, 2020, 143(4): 1735-1739. |
93 | ZHANG J W, ZHANG Q Y, CHEN B, et al. Photoenzymatic conversion of enamides to enantioenriched benzylic amines enabled by visible-light-induced single-electron reduction[J]. ACS Catalysis, 2023, 13(24): 15682-15690. |
94 | ZHAO B B, FENG J Q, YU L, et al. Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylation[J]. Nature Catalysis, 2023, 6(11): 996-1004. |
95 | SHI Q L, KANG X W, LIU Z Y, et al. Single-electron oxidation-initiated enantioselective hydrosulfonylation of olefins enabled by photoenzymatic catalysis[J]. Journal of the American Chemical Society, 2024, 146(4): 2748-2756. |
96 | DUTTA S, ERCHINGER J E, STRIETH-KALTHOFF F, et al. Energy transfer photocatalysis: exciting modes of reactivity[J]. Chemical Society Reviews, 2024, Advance Article. |
97 | POPLATA S, TROSTER A, ZOU Y Q, et al. Recent advances in the synthesis of cyclobutanes by olefin [2+2] photocycloaddition reactions[J]. Chemical Reviews, 2016, 116(17): 9748-9815. |
98 | KLEINMANS R, PINKERT T, DUTTA S, et al. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer[J]. Nature, 2022, 605(7910): 477-482. |
99 | MUNSTER N, PARKER N A, VAN DIJK L, et al. Visible light photocatalysis of 6π heterocyclization[J]. Angewandte Chemie International Edition, 2017, 56(32): 9468-9472. |
100 | HUANG M X, ZHANG L, PAN T R, et al. Deracemization through photochemical E/Z isomerization of enamines[J]. Science, 2022, 375(6583): 869-874. |
101 | BLUM T R, MILLER Z D, BATES D M, et al. Enantioselective photochemistry through lewis acid-catalyzed triplet energy transfer[J]. Science, 2016, 354(6318): 1391-1395. |
102 | ALONSO R, BACH T. A chiral thioxanthone as an organocatalyst for enantioselective [2+2] photocycloaddition reactions induced by visible light[J]. Angewandte Chemie, 2014, 126(17): 4457-4460. |
103 | LI X Y, GROBKOPF J, JANDL C, et al. Enantioselective, visible light mediated aza Paternò-Büchi reactions of quinoxalinones[J]. Angewandte Chemie, 2021, 133(5): 2716-2720. |
104 | HOLZL-HOBMEIER A, BAUER A, SILVA A V, et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light[J]. Nature, 2018, 564(7735): 240-243. |
105 | NOREN C J, ANTHONY-CAHILL S J, GRIFFITH M C, et al. A general method for site-specific incorporation of unnatural amino acids into proteins[J]. Science, 1989, 244(4901): 182-188. |
106 | WANG L, SCHULTZ P G. Expanding the genetic code[J]. Angewandte Chemie International Edition, 2005, 44(1): 34-66. |
107 | RYU Y, SCHULTZ P G. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli [J]. Nature Methods, 2006, 3(4): 263-265. |
108 | DRIENOVSKA I, ROELFES G. Expanding the enzyme universe with genetically encoded unnatural amino acids[J]. Nature Catalysis, 2020, 3(3): 193-202. |
109 | LANG K, CHIN J W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins[J]. Chemical Reviews, 2014, 114(9): 4764-4806. |
110 | YU Y, LIU X H, WANG J Y. Expansion of redox chemistry in designer metalloenzymes[J]. Accounts of Chemical Research, 2019, 52(3): 557-565. |
111 | STRIETH-KALTHOFF F, JAMES M J, TEDERS M, et al. Energy transfer catalysis mediated by visible light: principles, applications, directions[J]. Chemical Society Reviews, 2018, 47(19): 7190-7202. |
112 | LIU X H, KANG F Y, HU C, et al. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme[J]. Nature Chemistry, 2018, 10(12): 1201-1206. |
113 | FU Y, HUANG J, WU Y Z, et al. Biocatalytic cross-coupling of aryl halides with a genetically engineered photosensitizer artificial dehalogenase[J]. Journal of the American Chemical Society, 2021, 143(2): 617-622. |
114 | SUN N N, HUANG J J, QIAN J Y, et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes[J]. Nature, 2022, 611(7937): 715-720. |
115 | TRIMBLE J S, CRAWSHAW R, HARDY F J, et al. A designed photoenzyme for enantioselective [2+2] cycloadditions[J]. Nature, 2022, 611(7937): 709-714. |
116 | ROELFES G. LmrR: a privileged scaffold for artificial metalloenzymes[J]. Accounts of Chemical Research, 2019, 52(3): 545-556. |
117 | DRIENOVSKA I, MAYER C, DULSON C, et al. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue[J]. Nature Chemistry, 2018, 10(9): 946-952. |
118 | LEWIS J C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis[J]. Accounts of Chemical Research, 2019, 52(3): 576-584. |
119 | SANDOVAL B A, HYSTER T K. Emerging strategies for expanding the toolbox of enzymes in biocatalysis[J]. Current Opinion in Chemical Biology, 2020, 55: 45-51. |
120 | GU Y F, ELLIS‐GUARDIOLA K, SRIVASTAVA P, et al. Preparation, characterization, and oxygenase activity of a photocatalytic artificial enzyme[J]. ChemBioChem, 2015, 16(13): 1880-1883. |
121 | LIU B Q, ZUBI Y S, LEWIS J C. Iridium(Ⅲ) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution[J]. Dalton Transactions, 2023, 52(16): 5034-5038. |
122 | FU Y, LIU X H, XIA Y, et al. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase[J]. Chem, 2023, 9(7): 1897-1909. |
123 | WACHTMEISTER J, ROTHER D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale[J]. Current Opinion in Biotechnology, 2016, 42: 169-177. |
[1] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[2] | Mengchu SUN, Liangyu LU, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction [J]. Synthetic Biology Journal, 2023, 4(5): 947-965. |
[3] | Yang MING, Bin CHEN, Xiaoqiang HUANG. Recent advances in photoenzymatic synthesis [J]. Synthetic Biology Journal, 2023, 4(4): 651-675. |
[4] | Liqi KANG, Pan TAN, Liang HONG. Enzyme engineering in the age of artificial intelligence [J]. Synthetic Biology Journal, 2023, 4(3): 524-534. |
[5] | Qingyun RUAN, Xin HUANG, Zijun MENG, Shu QUAN. Computational design and directed evolution strategies for optimizing protein stability [J]. Synthetic Biology Journal, 2023, 4(1): 5-29. |
[6] | Yanping QI, Jin ZHU, Kai ZHANG, Tong LIU, Yajie WANG. Recent development of directed evolution in protein engineering [J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. |
[7] | Yuqi TANG, Songtao YE, Jia LIU, Xin ZHANG. Molecular chaperones promote protein stability and evolution [J]. Synthetic Biology Journal, 2022, 3(3): 445-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||