Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (4): 481-494.DOI: 10.12211/2096-8280.2020-033
• Invited Review • Previous Articles Next Articles
SHI Ran, JIANG Zhengqiang
Received:2020-03-23
															
							
																	Revised:2020-05-09
															
							
															
							
																	Online:2020-10-09
															
							
																	Published:2020-08-31
															
						Contact:
								JIANG Zhengqiang   
													史然, 江正强
通讯作者:
					江正强
							作者简介:史然(1987—),女,博士研究生,研究方向为食品酶的发掘与应用。E-mail:shiranb20153060234@cau.edu.cn基金资助:CLC Number:
SHI Ran, JIANG Zhengqiang. Enzymatic synthesis of 2'-fucosyllactose: advances and perspectives[J]. Synthetic Biology Journal, 2020, 1(4): 481-494.
史然, 江正强. 2'-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学, 2020, 1(4): 481-494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-033
| 分类 | 化合物 | 结构式 | 浓度范围 /g·L-1 | 摩尔 分数/% | 
|---|---|---|---|---|
| neutral fucosylated HMOs | 2'-FL | Fucα1,2Galβ1,4Glc | 0.06~3.93 | 31 | 
| 3-FL | Galβ1,4(Fucα1,3)Glc | 0.03~1.34 | 5 | |
| DFL (2',3-FL) | Fucα1,2Galβ1,4(Fucα1,3)Glc | 0.28~0.43 | 4 | |
| LNFP Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.001~2.08 | 8 | |
| LNFP Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc | 0.02~1.79 | 2 | |
| LNFP Ⅲ | Galβ1,4(Fucα1,3)GlcNAcβ1,3Galβ1,4Glc | 0.06~0.78 | 2 | |
| LNFP Ⅴ | Galβ1,3GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.06 | — | |
| LNFP Ⅵ | Galβ1,4GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.01 | — | |
| LNDFH Ⅰ | Fucα1,2Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc | 0.43~1.87 | 4 | |
| LNDFH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.02~0.25 | — | |
| F-LNH Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.2~2.62 | — | |
| F-LNH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4GlcNAcβ1-6Galβ1-4Glc | 0.18~1.06 | — | |
| DF-LNH Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 0.31 | — | |
| DF-LNH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1-6)Galβ1-4Glc | 0.12~1.02 | — | |
| TF-LNH | Fucα1,2Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 2.60~3.10 | — | |
| neutral non-fucosylated HMOs | LNT | Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.16~1.54 | 6 | 
| LNnT | Galβ1,4GlcNAcβ1,3Galβ1,4Glc | 0.04~2.04 | 6 | |
| LNH | Galβ1,3GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.05~0.17 | — | |
| LNnH | Galβ1,4GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.09~0.28 | — | |
| sialylated HMOs | 3'-SL | Neu5Acα2,3Galβ1,4Glc | 0.09~0.30 | 2 | 
| 6'-SL | Neu5Acα2,6Galβ1,4Glc | 0.07~0.59 | 6 | |
| LSTa | Neu5Acα2,3Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.01~0.18 | — | |
| LSTb | Galβ1,3(Neu5Acα2,6)GlcNAcβ1,3Galβ1,4Glc | 0.04~0.25 | — | |
| LSTc | Neu5Acα2,6Galβ1,4GlcNAcβ1,3Galβ1,4Glc | 0.05~1.05 | — | |
| DSLNT | Neu5Acα2,3Galβ1,3(Neu5Acα2,6)GlcNAcβ1,3Galβ1,4Glc | 0.10~0.80 | 2 | |
| FS-LNnH Ⅰ | Neu5Acα2,6Galβ1,4GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 0.26~0.55 | — | |
| other HMOs | 13 | 
Tab. 1 Structures and contents of major HMOs[4,6]
| 分类 | 化合物 | 结构式 | 浓度范围 /g·L-1 | 摩尔 分数/% | 
|---|---|---|---|---|
| neutral fucosylated HMOs | 2'-FL | Fucα1,2Galβ1,4Glc | 0.06~3.93 | 31 | 
| 3-FL | Galβ1,4(Fucα1,3)Glc | 0.03~1.34 | 5 | |
| DFL (2',3-FL) | Fucα1,2Galβ1,4(Fucα1,3)Glc | 0.28~0.43 | 4 | |
| LNFP Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.001~2.08 | 8 | |
| LNFP Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc | 0.02~1.79 | 2 | |
| LNFP Ⅲ | Galβ1,4(Fucα1,3)GlcNAcβ1,3Galβ1,4Glc | 0.06~0.78 | 2 | |
| LNFP Ⅴ | Galβ1,3GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.06 | — | |
| LNFP Ⅵ | Galβ1,4GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.01 | — | |
| LNDFH Ⅰ | Fucα1,2Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4Glc | 0.43~1.87 | 4 | |
| LNDFH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3Galβ1,4(Fucα1,3)Glc | 0.02~0.25 | — | |
| F-LNH Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.2~2.62 | — | |
| F-LNH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4GlcNAcβ1-6Galβ1-4Glc | 0.18~1.06 | — | |
| DF-LNH Ⅰ | Fucα1,2Galβ1,3GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 0.31 | — | |
| DF-LNH Ⅱ | Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1-6)Galβ1-4Glc | 0.12~1.02 | — | |
| TF-LNH | Fucα1,2Galβ1,3(Fucα1,4)GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 2.60~3.10 | — | |
| neutral non-fucosylated HMOs | LNT | Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.16~1.54 | 6 | 
| LNnT | Galβ1,4GlcNAcβ1,3Galβ1,4Glc | 0.04~2.04 | 6 | |
| LNH | Galβ1,3GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.05~0.17 | — | |
| LNnH | Galβ1,4GlcNAcβ1,3(Galβ1,4GlcNAcβ1,6)Galβ1,4Glc | 0.09~0.28 | — | |
| sialylated HMOs | 3'-SL | Neu5Acα2,3Galβ1,4Glc | 0.09~0.30 | 2 | 
| 6'-SL | Neu5Acα2,6Galβ1,4Glc | 0.07~0.59 | 6 | |
| LSTa | Neu5Acα2,3Galβ1,3GlcNAcβ1,3Galβ1,4Glc | 0.01~0.18 | — | |
| LSTb | Galβ1,3(Neu5Acα2,6)GlcNAcβ1,3Galβ1,4Glc | 0.04~0.25 | — | |
| LSTc | Neu5Acα2,6Galβ1,4GlcNAcβ1,3Galβ1,4Glc | 0.05~1.05 | — | |
| DSLNT | Neu5Acα2,3Galβ1,3(Neu5Acα2,6)GlcNAcβ1,3Galβ1,4Glc | 0.10~0.80 | 2 | |
| FS-LNnH Ⅰ | Neu5Acα2,6Galβ1,4GlcNAcβ1,3(Galβ1,4(Fucα1,3)GlcNAcβ1,6)Galβ1,4Glc | 0.26~0.55 | — | |
| other HMOs | 13 | 
| 1 | SOUSA Y R F, MEDEIROS L B, PINTADO M M E, et al. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties [J]. Trends in Food Science & Technology, 2019, 92: 152-161. | 
| 2 | HONG Q T, RUHAAK L R, TOTTEN S M, et al. Label free absolute quantitation of oligosaccharides using multiple reaction monitoring [J]. Analytical Chemistry, 2014, 86: 2640-2647. | 
| 3 | URASHIMA T, ASAKUMA S, LEO F, et al. The predominance of type I oligosaccharides is a feature specific to human breast milk [J]. Advances in Nutrition, 2012, 3: 473-482. | 
| 4 | BYCH K, MIKS M H, MARKUS T J, et al. Production of HMOs using microbial hosts — from cell engineering to large scale production [J]. Current Opinion in Biotechnology, 2019, 56C: 130-137. | 
| 5 | VANDENPLAS Y, BERGER B, CARNIELLI V P, et al. Human milk oligosaccharides: 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) in infant formula [J]. Nutrients, 2018, 10(9): 1161. | 
| 6 | FAIJES M, CASTEJON-VILATERSANA M, VAL-CID C, et al. Enzymatic and cell factory approaches to the production of human milk oligosaccharides [J]. Biotechnology Advances, 2019, 37: 667-697. | 
| 7 | MURATA T, MORIMOTO S, ZENG X X, et al. Enzymatic synthesis of α-L-fucosyl-N-acetyllac-tosamines and 3'-O-α-L-fucosyllactose utilizing α-L-fucosidases [J]. Carbohydrate Research, 1999, 320(3/4): 192-199. | 
| 8 | YAMASHITA K, TACHIBANA Y, KOBATA A. Oligosaccharides of human milk: isolation and characterization of three new disialylfucosyl hexasaccharides [J]. Archives of Biochemistry and Biophysics, 1976, 174(2): 582-591. | 
| 9 | MATSUKI T, YAHAGI K, MORI H, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development [J]. Nature Communications, 2016, 7: 11939. | 
| 10 | ASAKUMA S, HATAKEYAMA E, URASHIMA T, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated Bifidobacteria [J]. Journal of Biological Chemistry, 2011, 286: 34583-34592. | 
| 11 | FERGUSON S A, SIMS I M, BISWAS A, et al. Bifidobacterium bifidum ATCC 15696 and Bifidobacterium breve 24b metabolic interaction based on 2'-O-fucosyl-lactose studied in steady-state cultures in a freter-style chemostat [J]. Applied and Environmental Microbiology, 2019, 85(7): e02783-18. | 
| 12 | THONGARAM T, HOEFLINGER J L, CHOW J M, et al. Human milk oligosaccharide consumption by probiotic and human-associated Bifidobacteria and Lactobacilli [J]. Journal of Dairy Science, 2017, 100(10): 7825-7833. | 
| 13 | SAKANAKA M, GOTOH A, YOSHIDA K, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with Bifidobacteria-rich microbiota formation [J]. Nutrients, 2019, 12(1). | 
| 14 | GARRIDO D, BARILE D, MILLS D A. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract [J]. Advances in Nutrition, 2012, 3(3): 415S-421S. | 
| 15 | ZABEL B, YDE C C, ROOS P, et al. Novel genes and metabolite trends in Bifidobacterium longum subsp. infantis Bi-26 metabolism of human milk oligosaccharide 2'-fucosyllactose [J]. Scientific Reports, 2019, 9(1): 7983. | 
| 16 | HOEFLINGER J L, DAVIS S R, CHOW J M, et al. In vitro impact of human milk oligosaccharides on Enterobacteriaceae growth [J]. Journal of Agricultural and Food Chemistry, 2015, 63: 3295-3302. | 
| 17 | BODE L. The functional biology of human milk oligosaccharides [J]. Early Human Development, 2015, 91(11): 619-622. | 
| 18 | YU Z T, NANTHAKUMAR N N, NEWBURG D S. The human milk oligosaccharide 2'-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa [J]. Journal of Nutrition, 2016, 146: 1980-1990. | 
| 19 | MORROW A L, RUIZ-PALACIOS G M, ALTAYE M, et al. Human milk oligosaccharide blood group epitopes and innate immune protection against Campylobacter and calicivirus diarrhea in breastfed infants [J]. Advances in Experimental Medicine and Biology, 2004, 554: 443-446. | 
| 20 | KONG C L, ELDERMAN M, CHENG L H, et al. Modulation of intestinal epithelial glycocalyx development by human milk oligosaccharides and non-digestible carbohydrates [J]. Molecular Nutrition & Food Research, 2019, 63(17): e1900303. | 
| 21 | WEICHERT S, JENNEWEIN S, HUFNER E, et al. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines [J]. Nutrition Research, 2013, 33(10): 831-838. | 
| 22 | GOOD M, SODHI C P, YAMAGUCHI Y, et al. The human milk oligosaccharide 2'-fucosyllactose attenuates the severity of experimental NEC by enhancing mesenteric perfusion in the neonatal intestine [J]. British Journal of Nutrition, 2016, 116: 1175-1187. | 
| 23 | CASTILLO-COURTADE L, HAN S, LEE S, et al. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model [J]. Allergy, 2015, 70: 1091-1102. | 
| 24 | CHARBONNEAU M R, ÓDONNELL D, BLANTON L V, et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition [J]. Cell, 2016, 164: 859-871. | 
| 25 | WU K J, CHEN Y H, BAE E K, et al. Human milk oligosaccharide 2'-fucosyllactose reduces neurodegeneration in stroke brain [J]. Translational Stroke Research, 2020, 11: 1001-1011. | 
| 26 | VAZQUEZ E, BARRANCO A, RAMIREZ M, et al. Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents [J]. Journal of Nutritional Biochemistry, 2015, 26: 455-465. | 
| 27 | AGOSTION K, HEDEROS M J, BAJZA I, et al. Kilogram scale chemical synthesis of 2'-fucosyllactose [J]. Carbohydrate Research, 2019, 476: 71-77. | 
| 28 | JUNG S M, CHIN Y W, LEE Y G. Enhanced production of 2'-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli [J]. Biotechnology & Bioengineering, 2019, 116(9): 2412-2417. | 
| 29 | ALBERMANN C, PIEPERSBERG W, WEHMEIER U F. Synthesis of the milk oligosaccharide 2'-fucosyllactose using recombinant bacterial enzymes [J]. Carbohydrate Research, 2001, 334: 97-103. | 
| 30 | 陈坚, 邓洁莹, 李江华, 等. 母乳寡糖的生物合成研究进展[J]. 中国食品学报, 2016, 16(11): 1-8. | 
| CHEN Jian, DENG Jieying, LI Jianghua, et al. Advances in biosynthesis of breast milk oligosaccharides [J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(11): 1-8. | |
| 31 | HUANG Di, YANG Kexin, LIU Jia, et al. Metabolic engineering of Escherichia coli for the production of 2'-fucosyllactose and 3-fucosyllactose through modular pathway enhancement [J]. Metabolic Engineering, 2017, 41: 23-38. | 
| 32 | DUMON C, PRIEM B, MARTIN S L, et al. In vivo fucosylation of lacto-N-neotetraose and lacto-N-neohexaose by heterologous expression of Helicobacter pylori α-1,3 fucosyltransferase in engineered Escherichia coli [J]. Glycoconjugate Journal, 2001, 18: 465-474. | 
| 33 | CHIN Y W, SEO N, KIM J H, et al. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-L-fucose [J]. Biotechnology and Bioengineering, 2016, 113: 2443-2452. | 
| 34 | BAUMGÄRTNER F, SEITZ L, SPRENGER G A, et al. Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose [J]. Microbial Cell Factories, 2013, 12: 40. | 
| 35 | 王永胜, 王硕, 张慧林, 等. L-岩藻糖对母乳寡糖(HMOs)合成的意义及其产业化研究进展[J]. 中国农学通报, 2019, 35(11): 127-132. | 
| WANG Yongsheng, WANG Shuo, ZHANG Huilin, et al. L-fucose: the significance to synthesis of human milk oligosaccharides (HMOs) and its research progress of industrialization [J]. Chinese Agricultural Science Bulletin, 2019, 35(11): 127-132. | |
| 36 | PETSCHACHER B, NIDETZKY B. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems [J]. Journal of Biotechnology, 2016, 235: 61-83. | 
| 37 | DROUILLARD S, DRIGUEZ H, SAMAIN E. Large-scale synthesis of H-antigen oligosaccharides by expressing Helicobacter pylori α1,2-fucosyltransferase in metabolically engineered Escherichia coli cells [J]. Angewandte Chemie International Edition, 2006, 45: 1778-1780. | 
| 38 | MERIGHI M, MCCOY J M, HEIDTMAN M, et al. Biosynthesis of human milk oligosaccharides in engineered bacteria: US9970018 [P]. 2018-07-05. | 
| 39 | CHIN Y W, KIM J Y, LEE W H, et al. Enhanced production of 2'-fucosyllactose in engineered Escherichia coli BL21 star (DE3) by modulation of lactose metabolism and fucosyltransferase [J]. Journal of Biotechnology, 2015, 210: 107-115. | 
| 40 | DENG Jieying, GU Liuyan, CHEN Taichi, et al. Engineering the substrate transport and cofactor regeneration systems for enhancing 2'-fucosyllactose synthesis in Bacillus subtilis [J]. ACS Synthetic Biology, 2019, 8(10): 2418-2427. | 
| 41 | HOLLANDS K, BARONA C M, GIBSONB K J. Engineering two species of yeast as cell factories for 2'-fucosyllactose [J]. Metabolic Engineering, 2019, 52: 232-242. | 
| 42 | PALCIC M M. Glycosyltransferases as biocatalysts [J]. Current Opinion in Chemical Biology, 2011, 15: 226-233. | 
| 43 | CIPOLLA L. Carbohydrate chemistry: state of the art and challenges for drug development [M]. London: Imperial College Press, 2015: 215-245. | 
| 44 | CHOI Y H, KIM J H, PARK B S, et al. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency [J]. Biotechnology and Bioengineering, 2016, 113(8): 1666-1675. | 
| 45 | TAN Yumeng, ZHANG Yong, HAN Yunbin, et al. Directed evolution of an α1,3-fucosyltransferase using a single-cell ultrahigh-throughput screening method [J]. Science Advances, 2019, 5(10): eaaw8451. | 
| 46 | ZHAO Chao, WU Yijing, YU Hai, et al. One-pot multienzyme (OPME) synthesis of human blood group H antigens and a human milk oligosaccharide (HMOS) with highly active Thermosynechococcus elongatus α1,2-fucosyltransferase [J]. Chemical Communications, 2016, 52(20): 3899-3902. | 
| 47 | GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUI L, et al. Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential [J]. Applied Biochemistry and Biotechnology, 2019, 66: 172-191. | 
| 48 | ESCAMILLA-LOZANO Y, GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, et al. Synthesis of fucosyl-oligosaccharides using α-L-fucosidase from Lactobacillus rhamnosus GG [J]. Molecules, 2019, 24(13): 2402. | 
| 49 | GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUI L, et al. Synthesis of a fucosylated trisaccharide via transglycosylation by α-L-fucosidase from Thermotoga maritima [J]. Applied Biochemistry and Biotechnology, 2018, 186: 681-691. | 
| 50 | ZEUNER B, MUSCHIOL J, HOLCK J, et al. Substrate specificity and transfucosylation activity of GH 29 α-L-fucosidases for enzymatic production of human milk oligosaccharides [J]. New Biotechnology, 2018, 41: 34-45. | 
| 51 | LEZYK M, JERS C, KJAERULFF L, et al. Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides [J]. PLoS One, 2016, 11(1): e0147438. | 
| 52 | MACKENZIE L F, WANG Q P, WARREN R A J, et al. Glycosynthases: mutant glycosidases for oligosaccharide synthesis [J]. Journal of the American Chemical Society, 1998, 7863: 5583-5584. | 
| 53 | WADA J, HONDA Y, NAGAE M. 1, 2-α-L-Fucosynthase: a glycosynthase derived from an inverting α-glycosidase with an unusual reaction mechanism [J]. FEBS Letters, 2008, 582: 3739-3743. | 
| 54 | SUGIYAMA Y, GOTOH A, KATOH T. Introduction of H-antigens into oligosaccharides and sugar chains of glycoproteins using highly efficient 1,2-α-L-fucosynthase [J]. Glycobiology, 2016, 26(11): 1235-1247. | 
| 55 | OSANJO G, DION M, DRONE J, et al. Directed evolution of the α-L-fucosidase from Thermotoga maritima into an α-L-transfucosidase [J]. Biochemistry, 2007, 46(4): 1022-1033. | 
| 56 | SAUMONNEAU A, CHAMPION E, PELTIER-PAIN P, et al. Design of an α-L-transfucosidase for the synthesis of fucosylated HMOs [J]. Glycobiology, 2016, 26(3): 261-269. | 
| 57 | PAULY M, KEEGSTRA K. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan [J]. Annual Review of Plant Biology, 2016, 67: 235-59. | 
| 58 | KUSAYKIN M I, SILCHENKO A S, ZAKHARENKO A M, et al. Fucoidanases [J]. Glycobiology, 2016, 26(1): 3-12. | 
| 59 | BERTEAU O, MCCORT I, GOASDOUE N, et al. Characterization of a new α-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of α-L-fucose from algal fucoidan (Ascophyllum nodosum) [J]. Glycobiology, 2002, 12(4): 273-282. | 
| 60 | BERTEAU O, BIELICKI J, KILONDA A, et al. α-L-fucosidases: exoglycosidases with unusual transglycosylation properties [J]. Biochemistry, 2004, 43(24): 7881-7891. | 
| [1] | ZHANG Shouqi, WANG Tao, KONG Yao, ZOU Jiasheng, LIU Yuanning, XU Zhengren. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. | 
| [2] | CHENG Zhongyu, LI Fuzhuo. Recent advances in chemoenzymatic synthesis of natural products via site- selective P450 oxidation [J]. Synthetic Biology Journal, 2024, 5(5): 960-980. | 
| [3] | YANG Haoran, YE Farong, HUANG Ping, WANG Ping. Recent advances in glycoprotein synthesis [J]. Synthetic Biology Journal, 2024, 5(5): 1072-1101. | 
| [4] | ZHANG Jun, JIN Shixue, YUN Qian, QU Xudong. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. | 
| [5] | KANG Liqi, TAN Pan, HONG Liang. Enzyme engineering in the age of artificial intelligence [J]. Synthetic Biology Journal, 2023, 4(3): 524-534. | 
| [6] | CUI Xinyu, WU Ranran, WANG Yuanming, ZHU Zhiguang. Construction and enhancement of enzymatic bioelectrocatalytic systems [J]. Synthetic Biology Journal, 2022, 3(5): 1006-1030. | 
| [7] | ZHANG Faguang, QU Ge, SUN Zhoutong, MA Jun′an. From chemical synthesis to biosynthesis: trends toward total synthesis of natural products [J]. Synthetic Biology Journal, 2021, 2(5): 674-696. | 
| [8] | ZHANG Yi-Heng. Remembering Professor Daniel I.C. Wang’s contribution to biorefining and my perspective on the progress [J]. Synthetic Biology Journal, 2021, 2(4): 497-508. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||