Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (5): 1072-1101.DOI: 10.12211/2096-8280.2024-018
• Invited Review • Previous Articles Next Articles
Haoran YANG1, Farong YE1, Ping HUANG1, Ping WANG1,2
Received:
2024-02-04
Revised:
2024-03-20
Online:
2024-11-20
Published:
2024-10-31
Contact:
Ping HUANG, Ping WANG
杨皓然1, 叶发荣1, 黄平1, 王平1,2
通讯作者:
黄平,王平
作者简介:
基金资助:
CLC Number:
Haoran YANG, Farong YE, Ping HUANG, Ping WANG. Recent advances in glycoprotein synthesis[J]. Synthetic Biology Journal, 2024, 5(5): 1072-1101.
杨皓然, 叶发荣, 黄平, 王平. 糖蛋白合成的研究进展[J]. 合成生物学, 2024, 5(5): 1072-1101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-018
Fig.12 Total synthesis of glycosylated adiponectin collagen domain (GlyACD) using serine/threonine ligation strategy(Table and structure of glycosylated hydroxylysine excerpted from literature [84])
1 | BENKOVIC S J, HAMMES-SCHIFFER S. A perspective on enzyme catalysis[J]. Science, 2003, 301(5637): 1196-1202. |
2 | KOSTERLITZ H W. The effects of changes in dietary protein on the composition and structure of the liver cell[J]. The Journal of Physiology, 1947, 106(2): 194-210. |
3 | CAHILL D J. Protein and antibody arrays and their medical applications[J]. Journal of Immunological Methods, 2001, 250(1/2): 81-91. |
4 | KULKARNI S S, SAYERS J, PREMDJEE B, et al. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept[J]. Nature Reviews Chemistry, 2018, 2: 122. |
5 | KHOURY G A, BALIBAN R C, FLOUDAS C A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-prot database[J]. Scientific Reports, 2011, 1: 90. |
6 | HART G W, KELLY W G, BLOMBERG M A, et al. Glycosylation of nuclear and cytoplasmic proteins is as abundant and as dynamic as phosphorylation[C/OL]// WIELAND F, REUTTER W. Glyco-and cellbiology. Berlin, Heidelberg: Springer, 1994: 91-103 [2023-12-01]. . |
7 | SCHJOLDAGER K T, NARIMATSU Y, JOSHI H J, et al. Global view of human protein glycosylation pathways and functions[J]. Nature Reviews Molecular Cell Biology, 2020, 21(12): 729-749. |
8 | APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database[J]. Biochimica et Biophysica Acta - General Subjects, 1999, 1473(1): 4-8. |
9 | RAMAZI S, ZAHIRI J. Post-translational modifications in proteins: resources, tools and prediction methods[J]. Database, 2021, 2021: baab012. |
10 | REILY C, STEWART T J, RENFROW M B, et al. Glycosylation in health and disease[J]. Nature Reviews Nephrology, 2019, 15(6): 346-366. |
11 | CHIANG W F, CHENG T M, CHANG C C, et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation[J]. Oncogene, 2018, 37(1): 116-127. |
12 | WOLF B, PIKSA M, BELEY I, et al. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity[J]. Immunology, 2022, 166(3): 380-407. |
13 | BROCKHAUSEN I, SCHUTZBACH J, KUHNS W. Glycoproteins and their relationship to human disease[J]. Acta Anatomica, 1998, 161(1/2/3/4): 36-78. |
14 | SCHIEL J E. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity[J]. Analytical and Bioanalytical Chemistry, 2012, 404(4): 1141-1149. |
15 | FERNÁNDEZ-TEJADA A, BRAILSFORD J, ZHANG Q, et al. Total synthesis of glycosylated proteins[M]// LIU L. Protein ligation and total synthesisⅠ. Cham: Springer International Publishing, 2014: 1-26 [2023-12-01]. . |
16 | GROGAN M J, PRATT M R, MARCAURELLE L A, et al. Homogeneous glycopeptides and glycoproteins for biological investigation[J]. Annual Review of Biochemistry, 2002, 71: 593-634. |
17 | DAWSON P E, MUIR T W, CLARK-LEWIS I, et al. Synthesis of proteins by native chemical ligation[J]. Science, 1994, 266(5186): 776-779. |
18 | YAN L Z, DAWSON P E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization[J]. Journal of the American Chemical Society, 2001, 123(4): 526-533. |
19 | WANG S Y, THOPATE Y A, ZHOU Q Q, et al. Chemical protein synthesis by native chemical ligation and variations thereof[J]. Chinese Journal of Chemistry, 2019, 37(11): 1181-1193. |
20 | FANG G M, LI Y M, SHEN F, et al. Protein chemical synthesis by ligation of peptide hydrazides[J]. Angewandte Chemie International Edition, 2011, 50(33): 7645-7649. |
21 | ZHENG J S, TANG S, QI Y K, et al. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates[J]. Nature Protocols, 2013, 8(12): 2483-2495. |
22 | ZHANG Y F, XU C, LAM H Y, et al. Protein chemical synthesis by serine and threonine ligation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6657-6662. |
23 | MUIR T W, SONDHI D, COLE P A. Expressed protein ligation: a general method for protein engineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6705-6710. |
24 | BODE J W, FOX R M, BAUCOM K D. Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids[J]. Angewandte Chemie International Edition, 2006, 45(8): 1248-1252. |
25 | MITCHELL N J, MALINS L R, LIU X Y, et al. Rapid additive-free selenocystine-selenoester peptide ligation[J]. Journal of the American Chemical Society, 2015, 137(44): 14011-14014. |
26 | ZHANG B C, ZHENG Y P, CHU G C, et al. Backbone-installed split intein-assisted ligation for the chemical synthesis of mirror-image proteins[J]. Angewandte Chemie International Edition, 2023, 62(33): e202306270. |
27 | MERRIFIELD R B. Solid phase peptide synthesis.Ⅰ. The synthesis of a tetrapeptide[J]. Journal of the American Chemical Society, 1963, 85: 2149-2154. |
28 | BEHRENDT R, WHITE P, OFFER J. Advances in Fmoc solid-phase peptide synthesis[J]. Journal of Peptide Science, 2016, 22(1): 4-27. |
29 | WANG P, DONG S W, SHIEH J H, et al. Erythropoietin derived by chemical synthesis[J]. Science, 2013, 342(6164): 1357-1360. |
30 | MAKI Y, OKAMOTO R, IZUMI M, et al. Chemical synthesis of an erythropoietin glycoform having a triantennary N-glycan: significant change of biological activity of glycoprotein by addition of a small molecular weight trisaccharide[J]. Journal of the American Chemical Society, 2020, 142(49): 20671-20679. |
31 | PIONTEK C, RING P, HARJES O, et al. Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 1[J]. Angewandte Chemie International Edition, 2009, 48(11): 1936-1940. |
32 | PIONTEK C, VARÓN SILVA D, HEINLEIN C, et al. Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 2[J]. Angewandte Chemie International Edition, 2009, 48(11): 1941-1945. |
33 | ZHAO J, LIU J Z, LIU X N, et al. Revealing functional significance of interleukin-2 glycoproteoforms enabled by expressed serine ligation[J]. Chinese Journal of Chemistry, 2022, 40(7): 787-793. |
34 | MAMAHIT Y P, MAKI Y, OKAMOTO R, et al. Semisynthesis of homogeneous misfolded glycoprotein interleukin-8[J]. Carbohydrate Research, 2023, 531: 108847. |
35 | LI H X, ZHANG J, AN C J, et al. Probing N-glycan functions in human interleukin-17A based on chemically synthesized homogeneous glycoforms[J]. Journal of the American Chemical Society, 2021, 143(7): 2846-2856. |
36 | SHI W W, SHI C W, WANG T Y, et al. Total chemical synthesis of correctly folded disulfide-rich proteins using a removable O-linked β-N-acetylglucosamine strategy[J]. Journal of the American Chemical Society, 2022, 144(1): 349-357. |
37 | ZHAO J, LIU J Z, LIU X L, et al. Semi-synthesis of interleukin-1α via expressed threonine ligation and native chemical ligation-desulfurization[J]. Tetrahedron Letters, 2022, 104: 154024. |
38 | YE F R, ZHAO J, XU P, et al. Synthetic homogeneous glycoforms of the SARS-CoV-2 spike receptor-binding domain reveals different binding profiles of monoclonal antibodies[J]. Angewandte Chemie International Edition, 2021, 60(23): 12904-12910. |
39 | YE F R, LI C, LIU F L, et al. Semisynthesis of homogeneous spike RBD glycoforms from SARS-CoV-2 for profiling the correlations between glycan composition and function[J]. National Science Review, 2024, 11(2): nwae030. |
40 | CHONG Y K, CHANDRASHEKAR C, ZHAO D L, et al. Optimizing the semisynthesis towards glycosylated interferon-β-polypeptide by utilizing bacterial protein expression and chemical modification[J]. Organic & Biomolecular Chemistry, 2022, 20(9): 1907-1915. |
41 | WANG X Y, ASHHURST A S, DOWMAN L J, et al. Total synthesis of glycosylated human interferon-Γ[J]. Organic Letters, 2020, 22(17): 6863-6867. |
42 | BRIK A, YANG Y Y, FICHT S, et al. Sugar-assisted glycopeptide ligation[J]. Journal of the American Chemical Society, 2006, 128(17): 5626-5627. |
43 | ANISFELD S T, LANSBURY P T. A convergent approach to the chemical synthesis of asparagine-linked glycopeptides[J]. The Journal of Organic Chemistry, 1990, 55(21): 5560-5562. |
44 | AGOURIDAS V, MAHDI O EL, DIEMER V, et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations[J]. Chemical Reviews, 2019, 119(12): 7328-7443. |
45 | MCGRATH N A, RAINES R T. Chemoselectivity in chemical biology: acyl transfer reactions with sulfur and selenium[J]. Accounts of Chemical Research, 2011, 44(9): 752-761. |
46 | YAMAMOTO N, TAKAYANAGI A, YOSHINO A, et al. An approach for a synthesis of asparagine-linked sialylglycopeptides having intact and homogeneous complex-type undecadisialyloligosaccharides[J]. Chemistry, 2007, 13(2): 613-625. |
47 | EVERS D L, HUNG R L, THOMAS V H, et al. Preparative purification of a high-mannose type N-glycan from soy bean agglutinin by hydrazinolysis and tyrosinamide derivatization[J]. Analytical Biochemistry, 1998, 265(2): 313-316. |
48 | ULLMANN V, RÄDISCH M, BOOS I, et al. Convergent solid-phase synthesis of N-glycopeptides facilitated by pseudoprolines at consensus-sequence Ser/Thr residues[J]. Angewandte Chemie International Edition, 2012, 51(46): 11566-11570. |
49 | WANG P, AUSSEDAT B, VOHRA Y, et al. An advance in the chemical synthesis of homogeneous N-linked glycopolypeptides by convergent aspartylation[J]. Angewandte Chemie International Edition, 2012, 51(46): 11571-11575. |
50 | ZENG C, SUN B, CAO X F, et al. Chemical synthesis of homogeneous human E-cadherin N-linked glycopeptides: stereoselective convergent glycosylation and chemoselective solid-phase aspartylation[J]. Organic Letters, 2020, 22(21): 8349-8353. |
51 | ZHAO J, LIU X L, LIU J L, et al. Chemical synthesis creates single glycoforms of the ectodomain of herpes simplex virus-1 glycoprotein D[J]. Journal of the American Chemical Society, 2024, 146(4): 2615-2623. |
52 | DU J J, GAO X F, XIN L M, et al. Convergent synthesis of N-linked glycopeptides via aminolysis of ω-asp p-nitrophenyl thioesters in solution[J]. Organic Letters, 2016, 18(19): 4828-4831. |
53 | DU J J, ZHANG L, GAO X F, et al. Peptidyl ω-asp selenoesters enable efficient synthesis of N-linked glycopeptides[J]. Frontiers in Chemistry, 2020, 8: 396. |
54 | LI Y X, LIU J Z, ZHOU Q Q, et al. Preparation of peptide selenoesters from their corresponding acyl hydrazides[J]. Chinese Journal of Chemistry, 2021, 39(7): 1861-1866. |
55 | LU D, YIN H L, WANG S Y, et al. Chemical synthesis of the homogeneous granulocyte-macrophage colony-stimulating factor through Se-auxiliary-mediated ligation[J]. The Journal of Organic Chemistry, 2020, 85(3): 1652-1660. |
56 | TARESH A B, HUTTON C A. Site specific preparation of N-glycosylated peptides: thioamide-directed activation of aspartate[J]. Angewandte Chemie International Edition, 2022, 61(43): e202210367. |
57 | LIU X L, GAO Z J, ZHAO J, et al. Encouraging solution to the problem of synthesizing protein α-thioester[J]. Chinese Journal of Chemistry, 2024, 42(10): 1114-1120. |
58 | BONDALAPATI S, JBARA M, BRIK A. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins[J]. Nature Chemistry, 2016, 8(5): 407-418. |
59 | BURKE H M, MCSWEENEY L, SCANLAN E M. Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology[J]. Nature Communications, 2017, 8: 15655. |
60 | MOYAL T, HEMANTHA H P, SIMAN P, et al. Highly efficient one-pot ligation and desulfurization[J]. Chemical Science, 2013, 4(6): 2496. |
61 | TANG S, LIANG L J, SI Y Y, et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked ub isomer[J]. Angewandte Chemie International Edition, 2017, 56(43): 13333-13337. |
62 | REIMANN O, SMET-NOCCA C, HACKENBERGER C P R. Traceless purification and desulfurization of tau protein ligation products[J]. Angewandte Chemie International Edition, 2015, 54(1): 306-310. |
63 | YIN H L, ZHENG M J, CHEN H, et al. Stereoselective and divergent construction of β-thiolated/selenolated amino acids via photoredox-catalyzed asymmetric giese reaction[J]. Journal of the American Chemical Society, 2020, 142(33): 14201-14209. |
64 | SHANGGUAN H R, HUANG P, DAI Z Y, et al. Synthesis and application of β-thiolated amino acids[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3089. |
65 | ZHENG M J, YIN H, WANG S Y, et al. Stereoselective synthesis of β-thiolated aryl amino acids[J]. Synthesis, 2022, 54(20): e5. |
66 | WANG S Y, ZHOU Q Q, LI Y X, et al. Quinoline-based photolabile protection strategy facilitates efficient protein assembly[J]. Journal of the American Chemical Society, 2022, 144(3): 1232-1242. |
67 | WANG P, DANISHEFSKY S J. Promising general solution to the problem of ligating peptides and glycopeptides[J]. Journal of the American Chemical Society, 2010, 132(47): 17045-17051. |
68 | WANG P, LI X C, ZHU J L, et al. Encouraging progress in the ω-aspartylation of complex oligosaccharides as a general route to β-N-linked glycopolypeptides[J]. Journal of the American Chemical Society, 2011, 133(5): 1597-1602. |
69 | NOMURA K, MAKI Y, OKAMOTO R, et al. Glycoprotein semisynthesis by chemical insertion of glycosyl asparagine using a bifunctional thioacid-mediated strategy[J]. Journal of the American Chemical Society, 2021, 143(27): 10157-10167. |
70 | ZHAO J, YE F R, HUANG P, et al. Recent advances in chemical synthesis of O-linked glycopeptides and glycoproteins: an advanced synthetic tool for exploring the biological realm[J]. Current Opinion in Chemical Biology, 2023, 77: 102405. |
71 | MURAR C E, NINOMIYA M, SHIMURA S, et al. Chemical synthesis of interleukin-2 and disulfide stabilizing analogues[J]. Angewandte Chemie International Edition, 2020, 59(22): 8425-8429. |
72 | ASAHINA Y, KOMIYA S, OHAGI A, et al. Chemical synthesis of O-glycosylated human interleukin-2 by the reverse polarity protection strategy[J]. Angewandte Chemie International Edition, 2015, 54(28): 8226-8230. |
73 | DENG L F, WANG Y W, XU S Y, et al. Palladium catalysis enables cross-coupling-like SN2-glycosylation of phenols[J]. Science, 2023, 382(6673): 928-935. |
74 | MA W J, DENG Y Q, XU Z J, et al. Integrated chemoenzymatic approach to streamline the assembly of complex glycopeptides in the liquid phase[J]. Journal of the American Chemical Society, 2022, 144(20): 9057-9065. |
75 | LIU X Y, LIU J Z, WU Z C, et al. Photo-cleavable purification/protection handle assisted synthesis of giant modified proteins with tandem repeats[J]. Chemical Science, 2019, 10(37): 8694-8700. |
76 | LIU D L, WEI Q J, XIA W C, et al. O-glycosylation induces amyloid-β to form new fibril polymorphs vulnerable for degradation[J]. Journal of the American Chemical Society, 2021, 143(48): 20216-20223. |
77 | YANG X Y, QIAN K. Protein O-GlcNAcylation: emerging mechanisms and functions[J]. Nature Reviews Molecular Cell Biology, 2017, 18(7): 452-465. |
78 | LV P O, DU Y F, HE C D, et al. O-GlcNAcylation modulates liquid-liquid phase separation of SynGAP/PSD-95[J]. Nature Chemistry, 2022, 14(7): 831-840. |
79 | WAN Q, DANISHEFSKY S J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides[J]. Angewandte Chemie International Edition, 2007, 46(48): 9248-9252. |
80 | LEVINE P M, GALESIC A, BALANA A T, et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(5): 1511-1519. |
81 | BALANA A T, MUKHERJEE A, NAGPAL H, et al. O-GlcNAcylation of high mobility group box 1 (HMGB1) alters its DNA binding and DNA damage processing activities[J]. Journal of the American Chemical Society, 2021, 143(39): 16030-16040. |
82 | BALANA A T, LEVINE P M, CRAVEN T W, et al. O-GlcNAc modification of small heat shock proteins enhances their anti-amyloid chaperone activity[J]. Nature Chemistry, 2021, 13(5): 441-450. |
83 | WANG Y, XU A M, KNIGHT C, et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity[J]. Journal of Biological Chemistry, 2002, 277(22): 19521-19529. |
84 | WU H X, ZHANG Y W, LI Y X, et al. Chemical synthesis and biological evaluations of adiponectin collagenous domain glycoforms[J]. Journal of the American Chemical Society, 2021, 143(20): 7808-7818. |
85 | LAFITE P, DANIELLOU R. Rare and unusual glycosylation of peptides and proteins[J]. Natural Product Reports, 2012, 29(7): 729-738. |
86 | HOFSTEENGE J, MÜLLER D R, DE BEER T, et al. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us[J]. Biochemistry, 1994, 33(46): 13524-13530. |
87 | MINAKATA S, MANABE S, INAI Y, et al. Protein C-mannosylation and C-mannosyl tryptophan in chemical biology and medicine[J]. Molecules, 2021, 26(17): 5258. |
88 | WANG Q Q, FU Y, ZHU W J, et al. Total synthesis of C-α-mannosyl tryptophan via palladium-catalyzed C-H glycosylation[J]. CCS Chemistry, 2021, 3(6): 1729-1736. |
89 | MAO R Y, XI S Y, SHAH S, et al. Synthesis of C-mannosylated glycopeptides enabled by Ni-catalyzed photoreductive cross-coupling reactions[J]. Journal of the American Chemical Society, 2021, 143(32): 12699-12707. |
90 | LIU Y H, XIA Y N, GULZAR T, et al. Facile access to C-glycosyl amino acids and peptides via Ni-catalyzed reductive hydroglycosylation of alkynes[J]. Nature Communications, 2021, 12(1): 4924. |
91 | OMAN T J, BOETTCHER J M, WANG H, et al. Sublancin is not a lantibiotic but an S-linked glycopeptide[J]. Nature Chemical Biology, 2011, 7(2): 78-80. |
92 | WANG H, OMAN T J, ZHANG R, et al. The glycosyltransferase involved in thurandacin biosynthesis catalyzes both O- and S-glycosylation[J]. Journal of the American Chemical Society, 2014, 136(1): 84-87. |
93 | WAN L Q, ZHANG X, ZOU Y K, et al. Nonenzymatic stereoselective S-glycosylation of polypeptides and proteins[J]. Journal of the American Chemical Society, 2021, 143(31): 11919-11926. |
94 | LI G F, DAO Y K, MO J, et al. Protection-free site-directed peptide or protein S-glycosylation and its application in the glycosylation of glucagon-like peptide 1[J]. CCS Chemistry, 2022, 4(6): 1930-1937. |
95 | TRIMBLE R B, ATKINSON P H, TARENTINO A L, et al. Transfer of glycerol by endo-β-N-acetylglucosaminidase F to oligosaccharides during chitobiose core cleavage[J]. Journal of Biological Chemistry, 1986, 261(26): 12000-12005. |
96 | YAMAMOTO K. Endo-enzymes[M/OL]// TANIGUCHI N, ENDO T, HART G, et al. Glycoscience: biology and medicine. Tokyo: Springer, 2015: 391-399 [2023-12-01]. . |
97 | TAKEGAWA K, TABUCHI M, YAMAGUCHI S, et al. Synthesis of neoglycoproteins using oligosaccharide-transfer activity with endo-β-N-acetylglucosaminidase[J]. Journal of Biological Chemistry, 1995, 270(7): 3094-3099. |
98 | MIZUNO M, HANEDA K, IGUCHI R, et al. Synthesis of a glycopeptide containing oligosaccharides: chemoenzymatic synthesis of eel calcitonin analogues having natural N-linked oligosaccharides[J]. Journal of the American Chemical Society, 1999, 121(2): 284-290. |
99 | SINGH S, NI J H, WANG L X. Chemoenzymatic synthesis of high-mannose type HIV-1 gp120 glycopeptides[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(3): 327-330. |
100 | LI H G, SINGH S, ZENG Y, et al. Chemoenzymatic synthesis of CD52 glycoproteins carrying native N-glycans[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(4): 895-898. |
101 | MACKENZIE L F, WANG Q P, WARREN R A J, et al. Glycosynthases: mutant glycosidases for oligosaccharide synthesis[J]. Journal of the American Chemical Society, 1998, 120(22): 5583-5584. |
102 | HUANG W, LI C S, LI B, et al. Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans[J]. Journal of the American Chemical Society, 2009, 131(6): 2214-2223. |
103 | FUJITA M, SHODA S, HANEDA K, et al. A novel disaccharide substrate having 1,2-oxazoline moiety for detection of transglycosylating activity of endoglycosidases[J]. Biochimica et Biophysica Acta - General Subjects, 2001, 1528(1): 9-14. |
104 | PRIYANKA P, PARSONS T B, MILLER A, et al. Chemoenzymatic synthesis of a phosphorylated glycoprotein[J]. Angewandte Chemie International Edition, 2016, 55(16): 5058-5061. |
105 | SCHMALTZ R M, HANSON S R, WONG C H. Enzymes in the synthesis of glycoconjugates[J]. Chemical Reviews, 2011, 111(7): 4259-4307. |
106 | ARMSTRONG Z, WITHERS S G. Synthesis of glycans and glycopolymers through engineered enzymes[J]. Biopolymers, 2013, 99(10): 666-674. |
107 | LI C, WANG L X. Chemoenzymatic methods for the synthesis of glycoproteins[J]. Chemical Reviews, 2018, 118(17): 8359-8413. |
108 | AMIN M N, MCLELLAN J S, HUANG W, et al. Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies[J]. Nature Chemical Biology, 2013, 9(8): 521-526. |
109 | ORWENYO J, CAI H, GIDDENS J, et al. Systematic synthesis and binding study of HIV V3 glycopeptides reveal the fine epitopes of several broadly neutralizing antibodies[J]. ACS Chemical Biology, 2017, 12(6): 1566-1575. |
110 | YANG Q, WANG L X. Mammalian α-1,6-fucosyltransferase (FUT8) is the sole enzyme responsible for the N-acetylglucosaminyltransferase I-independent core fucosylation of high-mannose N-glycans[J]. Journal of Biological Chemistry, 2016, 291(21): 11064-11071. |
111 | YANG Q, AN Y M, ZHU S L, et al. Glycan remodeling of human erythropoietin (EPO) through combined mammalian cell engineering and chemoenzymatic transglycosylation[J]. ACS Chemical Biology, 2017, 12(6): 1665-1673. |
112 | SMITH E L, GIDDENS J P, IAVARONE A T, et al. Chemoenzymatic Fc glycosylation via engineered aldehyde tags[J]. Bioconjugate Chemistry, 2014, 25(4): 788-795. |
113 | PARSONS T B, STRUWE W B, GAULT J, et al. Optimal synthetic glycosylation of a therapeutic antibody[J]. Angewandte Chemie International Edition, 2016, 55(7): 2361-2367. |
114 | HUANG W, GIDDENS J, FAN S Q, et al. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions[J]. Journal of the American Chemical Society, 2012, 134(29): 12308-12318. |
115 | KUROGOCHI M, MORI M, OSUMI K, et al. Glycoengineered monoclonal antibodies with homogeneous glycan (M3, G0, G2, and A2) using a chemoenzymatic approach have different affinities for FcγRIIIa and variable antibody-dependent cellular cytotoxicity activities[J]. PLoS One, 2015, 10(7): e0132848. |
116 | ZHANG X, LIU H Y, HE J, et al. Site-specific chemoenzymatic conjugation of high-affinity M6P glycan ligands to antibodies for targeted protein degradation[J]. ACS Chemical Biology, 2022, 17(11): 3013-3023. |
117 | BANIK S M, PEDRAM K, WISNOVSKY S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins[J]. Nature, 2020, 584(7820): 291-297. |
118 | TANG F, YANG Y, TANG Y B, et al. One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates[J]. Organic & Biomolecular Chemistry, 2016, 14(40): 9501-9518. |
119 | SHI W, LI W Z, ZHANG J X, et al. One-step synthesis of site-specific antibody-drug conjugates by reprograming IgG glycoengineering with LacNAc-based substrates[J]. Acta Pharmaceutica Sinica B, 2022, 12(5): 2417-2428. |
120 | TANG C H, ZENG Y, ZHANG J X, et al. One-pot assembly of dual-site-specific antibody-drug conjugates via glycan remodeling and affinity-directed traceless conjugation[J]. Bioconjugate Chemistry, 2023, 34(4): 748-755. |
121 | ZOU X M, LIU Z, LIU L Y, et al. Enhanced transglycosylation activity of an Endo-F3 mutant by ligand-directed localization[J]. Organic & Biomolecular Chemistry, 2022, 20(15): 3086-3095. |
122 | TAYLOR M E, DRICKAMER K. Concepts of glycobiology[M/OL]// Introduction to Glycobiology. Oxford: Oxford University Press, 2011[2023-12-01]. . |
123 | LAIRSON L L, HENRISSAT B, DAVIES G J, et al. Glycosyltransferases: structures, functions, and mechanisms[J]. Annual Review of Biochemistry, 2008, 77: 521-555. |
124 | UNVERZAGT C, KUNZ H, PAULSON J C. High-efficiency synthesis of sialyloligosaccharides and sialoglycopeptides[J]. Journal of the American Chemical Society, 1990, 112(25): 9308-9309. |
125 | HUANG K, LI C, ZONG G H, et al. Site-selective sulfation of N-glycans by human GlcNAc-6-O-sulfotransferase 1 (CHST2) and chemoenzymatic synthesis of sulfated antibody glycoforms[J]. Bioorganic Chemistry, 2022, 128: 106070. |
126 | GAO J, LIN P H, NICK S T, et al. Exploration of human xylosyltransferase for chemoenzymatic synthesis of proteoglycan linkage region[J]. Organic & Biomolecular Chemistry, 2021, 19(15): 3374-3378. |
127 | CHAO Q, LI T L, JIA J X, et al. Spore-encapsulating glycosyltransferase catalysis tandem reactions: facile chemoenzymatic synthesis of complex human glycans[J]. ACS Catalysis, 2022, 12(5): 3181-3188. |
128 | RUIZ-CANADA C, KELLEHER D J, GILMORE R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms[J]. Cell, 2009, 136(2): 272-283. |
129 | LUKOSE V, WHITWORTH G, GUAN Z Q, et al. Chemoenzymatic assembly of bacterial glycoconjugates for site-specific orthogonal labeling[J]. Journal of the American Chemical Society, 2015, 137(39): 12446-12449. |
130 | GLOVER K J, WEERAPANA E, NUMAO S, et al. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni [J]. Chemistry & Biology, 2005, 12(12): 1311-1315. |
131 | VALDERRAMA-RINCON J D, FISHER A C, MERRITT J H, et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli [J]. Nature Chemical Biology, 2012, 8(5): 434-436. |
132 | SCHWARZ F, HUANG W, LI C S, et al. A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation[J]. Nature Chemical Biology, 2010, 6(4): 264-266. |
133 | KOWARIK M, NUMAO S, FELDMAN M F, et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase[J]. Science, 2006, 314(5802): 1148-1150. |
134 | KOWARIK M, YOUNG N M, NUMAO S, et al. Definition of the bacterial N-glycosylation site consensus sequence[J]. The EMBO Journal, 2006, 25(9): 1957-1966. |
135 | NITA-LAZAR M, WACKER M, SCHEGG B, et al. The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation[J]. Glycobiology, 2005, 15(4): 361-367. |
136 | OHUCHI T, IKEDA-ARAKI A, WATANABE-SAKAMOTO A, et al. Cloning and expression of a gene encoding N-glycosyltransferase (ngt) from Saccarothrix aerocolonigenes ATCC39243[J]. The Journal of Antibiotics, 2000, 53(4): 393-403. |
137 | GRASS S, BUSCHER A Z, SWORDS W E, et al. The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis[J]. Molecular Microbiology, 2003, 48(3): 737-751. |
138 | GROSS J, GRASS S, DAVIS A E, et al. The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification[J]. Journal of Biological Chemistry, 2008, 283(38): 26010-26015. |
139 | GRASS S, LICHTI C F, TOWNSEND R R, et al. The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin[J]. PLoS Pathogens, 2010, 6(5): e1000919. |
140 | CHOI K J, GRASS S, PAEK S, et al. The Actinobacillus pleuropneumoniae HMW1C-like glycosyltransferase mediates N-linked glycosylation of the Haemophilus influenzae HMW1 adhesin[J]. PLoS One, 2010, 5(12): e15888. |
141 | SCHWARZ F, FAN Y Y, SCHUBERT M, et al. Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence[J]. Journal of Biological Chemistry, 2011, 286(40): 35267-35274. |
142 | LOMINO J V, NAEGELI A, ORWENYO J, et al. A two-step enzymatic glycosylation of polypeptides with complex N-glycans[J]. Bioorganic & Medicinal Chemistry, 2013, 21(8): 2262-2270. |
143 | SØRENSEN A L, REIS C A, TARP M A, et al. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance[J]. Glycobiology, 2006, 16(2): 96-107. |
144 | WU Z G, JIANG K, ZHU H L, et al. Site-directed glycosylation of peptide/protein with homogeneous O-linked eukaryotic N-glycans[J]. Bioconjugate Chemistry, 2016, 27(9): 1972-1975. |
145 | PARODI A J. Protein glucosylation and its role in protein folding[J]. Annual Review of Biochemistry, 2000, 69: 69-93. |
146 | CHAFFEY P K, GUAN X Y, WANG X F, et al. Quantitative effects of O-linked glycans on protein folding[J]. Biochemistry, 2017, 56(34): 4539-4548. |
147 | KIUCHI T, IZUMI M, MUKOGAWA Y, et al. Monitoring of glycoprotein quality control system with a series of chemically synthesized homogeneous native and misfolded glycoproteins[J]. Journal of the American Chemical Society, 2018, 140(50): 17499-17507. |
148 | SHI W W, WANG T Y, YANG Z Y, et al. L-glycosidase-cleavable natural glycans facilitate the chemical synthesis of correctly folded disulfide-bonded D-proteins[J]. Angewandte Chemie International Edition, 2024, 63(9): e202313640. |
149 | CHENG C W, WU C Y, WANG S W, et al. Low-sugar universal mRNA vaccine against coronavirus variants with deletion of glycosites in the S2 or stem of SARS-CoV-2 spike messenger RNA (mRNA)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(49): e2314392120. |
150 | ZHANG Y N, PAYNTER J, ANTANASIJEVIC A, et al. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates[J]. Nature Communications, 2023, 14(1): 1985. |
151 | LIU C P, TSAI T I, CHENG T, et al. Glycoengineering of antibody (herceptin) through yeast expression and in vitro enzymatic glycosylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(4): 720-725. |
152 | WANG L X, TONG X, LI C, et al. Glycoengineering of antibodies for modulating functions[J]. Annual Review of Biochemistry, 2019, 88: 433-459. |
153 | JACKSON H J, RAFIQ S, BRENTJENS R J. Driving CAR T-cells forward[J]. Nature Reviews Clinical Oncology, 2016, 13(6): 370-383. |
154 | BECKWITH D M, CUDIC M. Tumor-associated O-glycans of MUC1: carriers of the glyco-code and targets for cancer vaccine design[J]. Seminars in Immunology, 2020, 47: 101389. |
[1] | Xiangqian XIE, Wen GUO, Huan WANG, Jin LI. Biosynthesis and chemical synthesis of ribosomally synthesized and post-translationally modified peptides containing aminovinyl cysteine [J]. Synthetic Biology Journal, 2024, 5(5): 981-996. |
[2] | Shouqi ZHANG, Tao WANG, Yao KONG, Jiasheng ZOU, Yuanning LIU, Zhengren XU. Chemoenzymatic synthesis of natural products: evolution of synthetic methodology and strategy [J]. Synthetic Biology Journal, 2024, 5(5): 913-940. |
[3] | Zhongyu CHENG, Fuzhuo LI. Recent advances in chemoenzymatic synthesis of natural products via site- selective P450 oxidation [J]. Synthetic Biology Journal, 2024, 5(5): 960-980. |
[4] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[5] | Faguang ZHANG, Ge QU, Zhoutong SUN, Jun′an MA. From chemical synthesis to biosynthesis: trends toward total synthesis of natural products [J]. Synthetic Biology Journal, 2021, 2(5): 674-696. |
[6] | Han YAN, Pengfeng XIAO, Quanjun LIU, Zuhong LU. In situ chemical synthesis of DNA microarrays [J]. Synthetic Biology Journal, 2021, 2(3): 354-370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||