Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (4): 470-480.DOI: 10.12211/2096-8280.2020-011
• Invited Review • Previous Articles Next Articles
ZHOU Nan1, XIA Tingying2, HUANG Jiandong1,2
Received:
2020-02-29
Revised:
2020-03-17
Online:
2020-10-09
Published:
2020-08-31
Contact:
HUANG Jiandong
周楠1, 夏婷颖2, 黄建东1,2
通讯作者:
黄建东
作者简介:
周楠(1987-),男,博士,助理研究员,研究方向为合成生物学。E-mail:nan.zhou@siat.ac.cn基金资助:
CLC Number:
ZHOU Nan, XIA Tingying, HUANG Jiandong. Applications and prospects of synthetic biology in exploring the basic principles of biological pattern formation[J]. Synthetic Biology Journal, 2020, 1(4): 470-480.
周楠, 夏婷颖, 黄建东. 合成生物学在探索生物图案形成基本原理中的应用与展望[J]. 合成生物学, 2020, 1(4): 470-480.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-011
1 | CANTON B, LABNO A, ENDY D. Refinement and standardization of synthetic biological parts and devices[J]. Nature Biotechnology, 2008, 26(7): 787-793. |
2 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews: Microbiology, 2014, 12(5): 381-390. |
3 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
4 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
5 | GUET C C, ELOWITZ M B, HSING W, et al. Combinatorial synthesis of genetic networks[J]. Science, 2002, 296(5572): 1466-1470. |
6 | ASIMOV I. A short history of chemistry[M]. New South Wales: Doubleday, 1965. |
7 | KOCH A, MEINHARDT H. Biological pattern formation: from basic mechanisms to complex structures[J]. Reviews of Modern Physics, 1994, 66(4): 1481. |
8 | LAWRENCE P A, MORATA G. Developmental biology. Lighting up Drosophila[J]. Nature, 1992, 356(6365): 107-108. |
9 | WATANABE M, KONDO S. Changing clothes easily: connexin41.8 regulates skin pattern variation[J]. Pigment Cell Melanoma Research, 2012, 25(3): 326-330. |
10 | MADERSPACHER F, NUSSLEIN-VOLHARD C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions[J]. Development, 2003, 130(15): 3447-3457. |
11 | KUMAR N M, GILULA N B. The gap junction communication channel[J]. Cell, 1996, 84(3): 381-388. |
12 | MALLARINO R, HENEGAR C, MIRASIERRA M, et al. Developmental mechanisms of stripe patterns in rodents[J]. Nature, 2016, 539(7630): 518-523. |
13 | WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47. |
14 | STRUHL G, STRUHL K, MACDONALD P M. The gradient morphogen bicoid is a concentration-dependent transcriptional activator[J]. Cell, 1989, 57(7): 1259-1273. |
15 | DRIEVER W, NUSSLEIN-VOLHARD C. A gradient of bicoid protein in Drosophila embryos [J]. Cell, 1988, 54(1): 83-93. |
16 | GURDON J B, HARGER P, MITCHELL A, et al. Activin signalling and response to a morphogen gradient[J]. Nature, 1994, 371(6497): 487-492. |
17 | HEEMSKERK J, DINARDO S. Drosophila hedgehog acts as a morphogen in cellular patterning[J]. Cell, 1994, 76(3): 449-460. |
18 | KIECKER C, NIEHRS C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus [J]. Development, 2001, 128(21): 4189-4201. |
19 | WARTLICK O, KICHEVA A, GONZALEZ-GAITAN M. Morphogen gradient formation[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(3): A001255. |
20 | DESSAUD E, YANG L L, HILL K, et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism[J]. Nature, 2007, 450(7170): 717-720. |
21 | VUILLEUMIER R, SPRINGHORN A, PATTERSON L, et al. Control of Dpp morphogen signalling by a secreted feedback regulator[J]. Nature Cell Biology, 2010, 12(6): 611-617. |
22 | REEVES G T, STATHOPOULOS A. Graded dorsal and differential gene regulation in the Drosophila embryo [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(4): A000836. |
23 | IBANES M, IZPISUA BELMONTE J C. Theoretical and experimental approaches to understand morphogen gradients[J]. Molecular Systems Biology, 2008, 4: 176. |
24 | WATANABE M, KONDO S. Is pigment patterning in fish skin determined by the Turing mechanism?[J]. Trends in Genetics, 2015, 31(2): 88-96. |
25 | YAMAGUCHI M, YOSHIMOTO E, KONDO S. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4790-4793. |
26 | TURING A M. The chemical basis of morphogenesis [J]. Bulletin of Mathematical Biology, 1952, 52(1/2): 153-197. |
27 | MEINHARDT H, GIERER A. Pattern formation by local self-activation and lateral inhibition[J]. Bioessays, 2000, 22(8): 753-760. |
28 | MEINHARDT H, GIERER A. Applications of a theory of biological pattern formation based on lateral inhibition[J]. Journal of Cell Science, 1974, 15(2): 321-346. |
29 | MAINI P K, MYERSCOUGH M R, WINTERS K H, et al. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation[J]. Bulletin of Mathematical Biology, 1991, 53(5): 701-719. |
30 | SWINDALE N V. A model for the formation of ocular dominance stripes[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1980, 208(1171): 243-264. |
31 | KONDO S, MIURA T. Reaction-diffusion model as a framework for understanding biological pattern formation[J]. Science, 2010, 329(5999): 1616-1620. |
32 | ECONOMOU A D, OHAZAMA A, PORNTAVEETUS T, et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate[J]. Nature Genetics, 2012, 44(3): 348. |
33 | BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134. |
34 | SOHKA T, HEINS R A, PHELAN R M, et al. An externally tunable bacterial band-pass filter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10135-10140. |
35 | KONG W, BLANCHARD A E, LIAO C, et al. Engineering robust and tunable spatial structures with synthetic gene circuits[J]. Nucleic Acids Research, 2017, 45(2): 1005-1014. |
36 | SCHAERLI Y, MUNTEANU A, GILI M, et al. A unified design space of synthetic stripe-forming networks[J]. Nature Communications, 2014, 5: 4905. |
37 | SEKINE R, SHIBATA T, EBISUYA M. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty[J]. Nature Communications, 2018, 9(1): 5456. |
38 | MULLER P, ROGERS K W, JORDAN B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[J]. Science, 2012, 336(6082): 721-724. |
39 | KARIG D, MARTINI K M, LU T, et al. Stochastic Turing patterns in a synthetic bacterial population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6572-6577. |
40 | PAYNE S, LI B, CAO Y, et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria[J]. Molecular Systems Biology, 2013, 9: 697. |
41 | CAO Y, RYSER M D, PAYNE S, et al. Collective space-sensing coordinates pattern scaling in engineered bacteria[J]. Cell, 2016, 165(3): 620-630. |
42 | LIU C, FU X, HUANG J D. Synthetic biology: a new approach to study biological pattern formation[J]. Quantitative Biology, 2013, 1(4): 246-252. |
43 | LIU C, FU X, LIU L, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334(6053): 238-241. |
44 | GILMOUR D, REMBOLD M, LEPTIN M. From morphogen to morphogenesis and back[J]. Nature, 2017, 541(7637): 311-320. |
45 | ABERCROMBIE M. Contact inhibition and malignancy[J]. Nature, 1979, 281(5729): 259-262. |
46 | POLIAKOV A, COTRINA M, WILKINSON D G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly[J]. Developmental Cell, 2004, 7(4): 465-480. |
47 | STEINBERG M S. Differential adhesion in morphogenesis: a modern view[J]. Current Opinion in Genetics & Development, 2007, 17(4): 281-286. |
48 | CACHAT E, LIU W, MARTIN K C, et al. 2-and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation[J]. Scientific Reports, 2016, 6: 20664. |
49 | TODA S, BLAUCH L R, TANG S K Y, et al. Programming self-organizing multicellular structures with synthetic cell-cell signaling[J]. Science, 2018, 361(6398): 156-162. |
50 | YAMANAKA H, KONDO S. In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1867-1872. |
51 | THEVENEAU E, STEVENTON B, SCARPA E, et al. Chase-and-run between adjacent cell populations promotes directional collective migration[J]. Nature Cell Biology. 2013, 15(7): 763-772. |
52 | XIONG L, CAO Y, COOPER R, et al. Flower-like patterns in multi-species bacterial colonies[J]. eLife, 2020, 9. |
53 | CURATOLO A I, ZHOU N, ZHAO Y,et al. Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation[J]. Nature Physics, 2020. DOI: 10.1038/s41567-020-0964-z . |
54 | 邓子新. 合成生物学趁最好时代,建物致知,建物致用[J]. 生命科学, 2019, 31(4): 323-324 |
DENG Z X. Synthetic biology takes advantage of the golden age, building to know, building to use[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 323-324. | |
55 | 赵国屏. 合成生物学: 开启生命科学 “会聚” 研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149 |
ZHAO G P. Synthetic biology: unsealing the convergence era of life science research[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149. | |
56 | DAVIES J. Using synthetic biology to explore principles of development[J]. Development, 2017, 144(7): 1146-1158. |
57 | CAO Y, FENG Y, RYSER M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria[J]. Nature Biotechnology, 2017, 35(11): 1087. |
[1] | GAO Ge, BIAN Qi, WANG Baojun. Synthetic genetic circuit engineering: principles, advances and prospects [J]. Synthetic Biology Journal, 2025, 6(1): 45-64. |
[2] | LI Jiyuan, WU Guosheng. Two hypothesises for the origins of organisms from the synthetic biology perspective [J]. Synthetic Biology Journal, 2025, 6(1): 190-202. |
[3] | JIAO Hongtao, QI Meng, SHAO Bin, JIANG Jinsong. Legal issues for the storage of DNA data [J]. Synthetic Biology Journal, 2025, 6(1): 177-189. |
[4] | TANG Xinghua, LU Qianneng, HU Yilin. Philosophical reflections on synthetic biology in the Anthropocene [J]. Synthetic Biology Journal, 2025, 6(1): 203-212. |
[5] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. |
[6] | SHI Ting, SONG Zhan, SONG Shiyi, ZHANG Yi-Heng P. Job. In vitro BioTransformation (ivBT): a new frontier of industrial biomanufacturing [J]. Synthetic Biology Journal, 2024, 5(6): 1437-1460. |
[7] | CHAI Meng, WANG Fengqing, WEI Dongzhi. Synthesis of organic acids from lignocellulose by biotransformation [J]. Synthetic Biology Journal, 2024, 5(6): 1242-1263. |
[8] | SHAO Mingwei, SUN Simian, YANG Shimao, CHEN Guoqiang. Bioproduction based on extremophiles [J]. Synthetic Biology Journal, 2024, 5(6): 1419-1436. |
[9] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. |
[10] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. |
[11] | CHEN Ziling, XIANG Yangfei. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[12] | CAI Bingyu, TAN Xiangtian, LI Wei. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[13] | XIE Huang, ZHENG Yilei, SU Yiting, RUAN Jingyi, LI Yongquan. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[14] | ZHA Wenlong, BU Lan, ZI Jiachen. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[15] | HUI Zhen, TANG Xiaoyu. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||