Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (4): 470-480.DOI: 10.12211/2096-8280.2020-011
• Invited Review • Previous Articles Next Articles
Nan ZHOU1, Tingying XIA2, Jiandong HUANG1,2
Received:
2020-02-29
Revised:
2020-03-17
Online:
2020-10-09
Published:
2020-08-31
Contact:
Jiandong HUANG
周楠1, 夏婷颖2, 黄建东1,2
通讯作者:
黄建东
作者简介:
周楠(1987-),男,博士,助理研究员,研究方向为合成生物学。E-mail:基金资助:
CLC Number:
Nan ZHOU, Tingying XIA, Jiandong HUANG. Applications and prospects of synthetic biology in exploring the basic principles of biological pattern formation[J]. Synthetic Biology Journal, 2020, 1(4): 470-480.
周楠, 夏婷颖, 黄建东. 合成生物学在探索生物图案形成基本原理中的应用与展望[J]. 合成生物学, 2020, 1(4): 470-480.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-011
1 | CANTON B, LABNO A, ENDY D. Refinement and standardization of synthetic biological parts and devices[J]. Nature Biotechnology, 2008, 26(7): 787-793. |
2 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews: Microbiology, 2014, 12(5): 381-390. |
3 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767): 339-342. |
4 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
5 | GUET C C, ELOWITZ M B, HSING W, et al. Combinatorial synthesis of genetic networks[J]. Science, 2002, 296(5572): 1466-1470. |
6 | ASIMOV I. A short history of chemistry[M]. New South Wales: Doubleday, 1965. |
7 | KOCH A,MEINHARDT H. Biological pattern formation: from basic mechanisms to complex structures[J]. Reviews of Modern Physics, 1994, 66(4): 1481. |
8 | LAWRENCE P A, MORATA G. Developmental biology. Lighting up Drosophila[J]. Nature, 1992, 356(6365): 107-108. |
9 | WATANABE M, KONDO S. Changing clothes easily: connexin41.8 regulates skin pattern variation[J]. Pigment Cell Melanoma Research, 2012, 25(3): 326-330. |
10 | MADERSPACHER F, NUSSLEIN-VOLHARD C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions[J]. Development, 2003, 130(15): 3447-3457. |
11 | KUMAR N M,GILULA N B. The gap junction communication channel[J]. Cell, 1996, 84(3): 381-388. |
12 | MALLARINO R, HENEGAR C, MIRASIERRA M, et al. Developmental mechanisms of stripe patterns in rodents[J]. Nature, 2016, 539(7630): 518-523. |
13 | WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47. |
14 | STRUHL G, STRUHL K, MACDONALD P M. The gradient morphogen bicoid is a concentration-dependent transcriptional activator[J]. Cell, 1989, 57(7): 1259-1273. |
15 | DRIEVER W, NUSSLEIN-VOLHARD C. A gradient of bicoid protein in Drosophila embryos[J]. Cell, 1988, 54(1): 83-93. |
16 | GURDON J B, HARGER P, MITCHELL A, et al. Activin signalling and response to a morphogen gradient[J]. Nature, 1994, 371(6497): 487-492. |
17 | HEEMSKERK J, DINARDO S. Drosophila hedgehog acts as a morphogen in cellular patterning[J]. Cell, 1994, 76(3): 449-460. |
18 | KIECKER C, NIEHRS C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus[J]. Development, 2001, 128(21): 4189-4201. |
19 | WARTLICK O, KICHEVA A, GONZALEZ-GAITAN M. Morphogen gradient formation[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(3): A001255. |
20 | DESSAUD E, YANG L L, HILL K, et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism[J]. Nature, 2007, 450(7170): 717-720. |
21 | VUILLEUMIER R, SPRINGHORN A, PATTERSON L, et al. Control of Dpp morphogen signalling by a secreted feedback regulator[J]. Nature Cell Biology, 2010, 12(6): 611-617. |
22 | REEVES G T, STATHOPOULOS A. Graded dorsal and differential gene regulation in the Drosophila embryo[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(4): A000836. |
23 | IBANES M , IZPISUA BELMONTE J C. Theoretical and experimental approaches to understand morphogen gradients[J]. Molecular Systems Biology, 2008, 4: 176. |
24 | WATANABE M ,KONDO S. Is pigment patterning in fish skin determined by the Turing mechanism?[J]. Trends in Genetics, 2015, 31(2): 88-96. |
25 | YAMAGUCHI M, YOSHIMOTO E, KONDO S. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4790-4793. |
26 | TURING A M. The chemical basis of morphogenesis [J]. Bulletin of Mathematical Biology, 1952, 52(1/2): 153-197. |
27 | MEINHARDT H, GIERER A. Pattern formation by local self-activation and lateral inhibition[J]. Bioessays, 2000, 22(8): 753-760. |
28 | MEINHARDT H, GIERER A. Applications of a theory of biological pattern formation based on lateral inhibition[J]. Journal of Cell Science, 1974, 15(2): 321-346. |
29 | MAINI P K, MYERSCOUGH M R, WINTERS K H, et al. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation[J]. Bulletin of Mathematical Biology, 1991, 53(5): 701-719. |
30 | SWINDALE N V. A model for the formation of ocular dominance stripes[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1980, 208(1171): 243-264. |
31 | KONDO S, MIURA T. Reaction-diffusion model as a framework for understanding biological pattern formation[J]. Science, 2010, 329(5999): 1616-1620. |
32 | ECONOMOU A D, OHAZAMA A, PORNTAVEETUS T, et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate[J]. Nature Genetics, 2012, 44(3): 348. |
33 | BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134. |
34 | SOHKA T, HEINS R A, PHELAN R M, et al. An externally tunable bacterial band-pass filter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10135-10140. |
35 | KONG W, BLANCHARD A E, LIAO C, et al. Engineering robust and tunable spatial structures with synthetic gene circuits[J]. Nucleic Acids Research, 2017, 45(2): 1005-1014. |
36 | SCHAERLI Y, MUNTEANU A, GILI M, et al. A unified design space of synthetic stripe-forming networks[J]. Nature Communications, 2014, 5: 4905. |
37 | SEKINE R, SHIBATA T, EBISUYA M. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty[J]. Nature Communications, 2018, 9(1): 5456. |
38 | MULLER P, ROGERS K W, JORDAN B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[J]. Science, 2012, 336(6082): 721-724. |
39 | KARIG D, MARTINI K M, LU T, et al. Stochastic Turing patterns in a synthetic bacterial population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6572-6577. |
40 | PAYNE S, LI B, CAO Y, et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria[J]. Molecular Systems Biology, 2013, 9: 697. |
41 | CAO Y, RYSER M D, PAYNE S, et al. Collective space-sensing coordinates pattern scaling in engineered bacteria[J]. Cell, 2016, 165(3): 620-630. |
42 | LIU C, FU X, HUANG J D. Synthetic biology: a new approach to study biological pattern formation[J]. Quantitative Biology, 2013, 1(4): 246-252. |
43 | LIU C, FU X, LIU L, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334(6053): 238-241. |
44 | GILMOUR D, REMBOLD M, LEPTIN M. From morphogen to morphogenesis and back[J]. Nature, 2017, 541(7637): 311-320. |
45 | ABERCROMBIE M. Contact inhibition and malignancy[J]. Nature, 1979, 281(5729): 259-262. |
46 | POLIAKOV A, COTRINA M, WILKINSON D G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly[J]. Developmental Cell, 2004, 7(4): 465-480. |
47 | STEINBERG M S. Differential adhesion in morphogenesis: a modern view[J]. Current Opinion in Genetics & Development, 2007, 17(4): 281-286. |
48 | CACHAT E, LIU W, MARTIN K C, et al. 2-and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation[J]. Scientific Reports, 2016, 6: 20664. |
49 | TODA S, BLAUCH L R, TANG S K Y, et al. Programming self-organizing multicellular structures with synthetic cell-cell signaling[J]. Science, 2018, 361(6398): 156-162. |
50 | YAMANAKA H, KONDO S. In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1867-1872. |
51 | THEVENEAU E, STEVENTON B, SCARPA E, et al. Chase-and-run between adjacent cell populations promotes directional collective migration[J]. Nature Cell Biology. 2013, 15(7): 763-772. |
52 | XIONG L, CAO Y, COOPER R, et al. Flower-like patterns in multi-species bacterial colonies[J]. eLife, 2020, 9. |
53 |
CURATOLO A I,ZHOU N,ZHAO Y,et al. Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation[J]. Nature Physics, 2020. DOI: 10.1038/s41567-020-0964-z.
DOI |
54 | 邓子新. 合成生物学趁最好时代,建物致知,建物致用[J]. 生命科学, 2019, 31(4): 323-324 |
DENG Z X. Synthetic biology takes advantage of the golden age, building to know, building to use[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 323-324. | |
55 | 赵国屏. 合成生物学: 开启生命科学 “会聚” 研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149 |
ZHAO G P. Synthetic biology: unsealing the convergence era of life science research[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149. | |
56 | DAVIES J. Using synthetic biology to explore principles of development[J]. Development, 2017, 144(7): 1146-1158. |
57 | CAO Y, FENG Y, RYSER M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria[J]. Nature Biotechnology, 2017, 35(11): 1087. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[8] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[9] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[10] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[11] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[12] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[13] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
[14] | Hailong LV, Jian WANG, Hao LV, Jin WANG, Yong XU, Dayong GU. Synthetic biology for next-generation genetic diagnostics [J]. Synthetic Biology Journal, 2023, 4(2): 318-332. |
[15] | Zhaoling SHEN, Yanling WU, Tianlei YING. Synthetic biology and viral vaccine development [J]. Synthetic Biology Journal, 2023, 4(2): 333-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||