Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 966-984.DOI: 10.12211/2096-8280.2022-012
• Invited Review • Previous Articles Next Articles
Zhengxin DONG1,3,4,5, Tao SUN1,2,4, Lei CHEN1,3,4,5, Weiwen ZHANG1,2,3,4,5
Received:
2022-02-11
Revised:
2022-04-01
Online:
2022-11-16
Published:
2022-10-31
Contact:
Tao SUN, Weiwen ZHANG
董正鑫1,3,4,5, 孙韬1,2,4, 陈磊1,3,4,5, 张卫文1,2,3,4,5
通讯作者:
孙韬,张卫文
作者简介:
基金资助:
CLC Number:
Zhengxin DONG, Tao SUN, Lei CHEN, Weiwen ZHANG. Applications of regulatory engineering in photosynthetic cyanobacteria[J]. Synthetic Biology Journal, 2022, 3(5): 966-984.
董正鑫, 孙韬, 陈磊, 张卫文. 调控工程在光合蓝细菌中的应用[J]. 合成生物学, 2022, 3(5): 966-984.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-012
菌株 | 调控系统单元 | 所属调控系统 | 功能 |
---|---|---|---|
PCC 6803 | Hik31-Rre34 | TCS | 维持Cu2+稳态[ |
PCC 6803 | Sll0649 | TCS | 维持Cu2+、Cd2+、Fe2+、Mn2+、Zn2+稳态[ |
Nostocflagelliforme CCNUN1 | OrrA | TCS | 调控MAA合成,抵抗UV-B和干旱[ |
PCC 6803 | Slr1037、Sll0039 | TCS | 丁醇耐受[ |
PCC 6803 | Hik33、Hik34、Hik16、Hik41 | TCS | NaCl耐受[ |
PCC 6803 | Hik2-Rre1 Hik34-Rre1 | TCS | NaCl耐受[ |
PCC 6803 | Hik36-Hik43-Rre6 | TCS | NaCl耐受,生物膜生成[ |
PCC 7942 | Synpcc7942_1125、Synpcc7942_1404 | TCS | NaCl耐受[ |
PCC 7102 | OrrA | TCS | NaCl耐受、干旱[ |
PCC 6803 | Rre37 | TCS | 氮缺乏、三羧酸循环、丙酮酸代谢、琥珀酸合成[ |
PCC 7102 | SigB2 | σ因子 | NaCl耐受[ |
PCC 6803 | SigE | σ因子 | 琥珀酸合成[ |
PCC 6803 | SigB | σ因子 | 盐耐受、热耐受、丁醇耐受、氧化耐受[ |
PCC 6803 | SigD | σ因子 | 氧化耐受[ |
PCC 6803 | SigE | σ因子 | 糖原降解、光系统蛋白丰度、琥珀酸合成、聚羟基丁酸酯 合成[ |
PCC 7120 | SigE | σ因子 | 氮固定[ |
PCC 6803 | CoaR | sRNA | 丁醇耐受[ |
PCC 6803 | IsrR | sRNA | 铁离子缺乏、氧化耐受[ |
PCC 6803 | IsaR1 | sRNA | 铁离子缺乏、盐耐受[ |
PCC 6803 | PsbA2R、PsbA3R | sRNA | 光适应[ |
PCC 6803 | PsrR1 | sRNA | 光适应[ |
PCC 6803 | RblR | sRNA | 光适应、碳固定[ |
PCC 6803 | Yfr1 | sRNA | 碳固定、氧化耐受、盐耐受、活性氧耐受[ |
PCC 6803 | Nc117 | sRNA | 醇类耐受[ |
Tab. 1 Functions of regulatory system units in cyanobacteria
菌株 | 调控系统单元 | 所属调控系统 | 功能 |
---|---|---|---|
PCC 6803 | Hik31-Rre34 | TCS | 维持Cu2+稳态[ |
PCC 6803 | Sll0649 | TCS | 维持Cu2+、Cd2+、Fe2+、Mn2+、Zn2+稳态[ |
Nostocflagelliforme CCNUN1 | OrrA | TCS | 调控MAA合成,抵抗UV-B和干旱[ |
PCC 6803 | Slr1037、Sll0039 | TCS | 丁醇耐受[ |
PCC 6803 | Hik33、Hik34、Hik16、Hik41 | TCS | NaCl耐受[ |
PCC 6803 | Hik2-Rre1 Hik34-Rre1 | TCS | NaCl耐受[ |
PCC 6803 | Hik36-Hik43-Rre6 | TCS | NaCl耐受,生物膜生成[ |
PCC 7942 | Synpcc7942_1125、Synpcc7942_1404 | TCS | NaCl耐受[ |
PCC 7102 | OrrA | TCS | NaCl耐受、干旱[ |
PCC 6803 | Rre37 | TCS | 氮缺乏、三羧酸循环、丙酮酸代谢、琥珀酸合成[ |
PCC 7102 | SigB2 | σ因子 | NaCl耐受[ |
PCC 6803 | SigE | σ因子 | 琥珀酸合成[ |
PCC 6803 | SigB | σ因子 | 盐耐受、热耐受、丁醇耐受、氧化耐受[ |
PCC 6803 | SigD | σ因子 | 氧化耐受[ |
PCC 6803 | SigE | σ因子 | 糖原降解、光系统蛋白丰度、琥珀酸合成、聚羟基丁酸酯 合成[ |
PCC 7120 | SigE | σ因子 | 氮固定[ |
PCC 6803 | CoaR | sRNA | 丁醇耐受[ |
PCC 6803 | IsrR | sRNA | 铁离子缺乏、氧化耐受[ |
PCC 6803 | IsaR1 | sRNA | 铁离子缺乏、盐耐受[ |
PCC 6803 | PsbA2R、PsbA3R | sRNA | 光适应[ |
PCC 6803 | PsrR1 | sRNA | 光适应[ |
PCC 6803 | RblR | sRNA | 光适应、碳固定[ |
PCC 6803 | Yfr1 | sRNA | 碳固定、氧化耐受、盐耐受、活性氧耐受[ |
PCC 6803 | Nc117 | sRNA | 醇类耐受[ |
1 | BRUCKNER B, HUBACEK K, SHAN Y L, et al. Impacts of poverty alleviation on national and global carbon emissions[J]. Nature Sustainability, 2022, 5(4): 311-320. |
2 | SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949. |
3 | 李树斌, 孙韬, 陈磊, 等. 聚球藻UTEX 2973中光碳驱动的高密度燃料合成[J]. 生物工程学报, 2020, 36(10): 2126-2140. |
LI S B, SUN T, CHEN L, et al. Light and carbon dioxide-driven synthesis of high-density fuel in Synechococcus elongatus UTEX 2973[J]. Chinese Journal of Biotechnology, 2020, 36(10): 2126-2140. | |
4 | KHAN F, SHAHID A, ZHU H, et al. Prospects of algae-based green synthesis of nanoparticles for environmental applications[J]. Chemosphere, 2022, 293: 133571. |
5 | KATO Y, INABE K, HIDESE R, et al. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: a review[J]. Bioresource Technology, 2022, 344: 126196. |
6 | JAISWAL D, SAHASRABUDDHE D, WANGIKAR P P. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research[J]. Current Opinion in Biotechnology, 2022, 73: 314-322. |
7 | LIU X F, MIAO R, LINDBERG P, et al. Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria[J]. Energy & Environmental Science, 2019, 12(9): 2765-2777. |
8 | KNOOT C J, PAKRASI H B. Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002[J]. Scientific Reports, 2019, 9(1): 1360. |
9 | ZHANG L, CHEN L, DIAO J J, et al. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2 [J]. Biotechnology for Biofuels, 2020, 13: 82. |
10 | KOCH M, BRUCKMOSER J, SCHOLL J, et al. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC[J]. Microbial Cell Factories, 2020, 19(1): 231. |
11 | VAN ALPHEN P, ABEDINI NAJAFABADI H, BRANCO DOS SANTOS F, et al. Increasing the photoautotrophic growth rate of Synechocystis sp. PCC 6803 by identifying the limitations of its cultivation[J]. Biotechnology Journal, 2018, 13(8): e1700764. |
12 | YU J J, LIBERTON M, CLIFTEN P F, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2 [J]. Scientific Reports, 2015, 5: 8132. |
13 | GIBSON B, WILSON D J, FEIL E, et al. The distribution of bacterial doubling times in the wild[J]. Proceedings Biological Sciences, 2018, 285(1880): 20180789. |
14 | SALARI R, SALARI R. Investigation of the best Saccharomyces cerevisiae growth condition[J]. Electronic Physician, 2017, 9(1): 3592-3597. |
15 | XIE Y R, CHEN L, SUN T, et al. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories[J]. Chinese Journal of Chemical Engineering, 2021, 30: 82-91. |
16 | CUI J Y, SUN T, LI S B, et al. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing mrp antiporters[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 500. |
17 | LIU S Q, QURESHI N, HUGHES S R. Progress and perspectives on improving butanol tolerance[J]. World Journal of Microbiology & Biotechnology, 2017, 33(3): 51. |
18 | XIE Y R, CHEN L, SUN T, et al. Transporters related to stress responses and their potential application in Synechocystis sp. PCC 6803[M]// ZHANGWW, SONGXY. Synthetic biology of cyanobacteria[M]// Advances in experimental medicine and biology (Volume 1080). Singapore: Springer Singapore. 2018: 27-53. |
19 | CHEN T T, WANG X N, ZHUANG L, et al. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis[J]. Microbial Cell Factories, 2021, 20(1): 154. |
20 | JIA H Y, SUN X Y, SUN H, et al. Intelligent microbial heat-regulating engine (IMHeRE) for improved thermo-robustness and efficiency of bioconversion[J]. ACS Synthetic Biology, 2016, 5(4): 312-320. |
21 | BAO S H, JIANG H, ZHU L Y, et al. A dynamic and multilocus metabolic regulation strategy using quorum-sensing-controlled bacterial small RNA[J]. Cell Reports, 2021, 36(3): 109413. |
22 | CUI J Y, SUN T, CHEN L, et al. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization[J]. Biotechnology Advances, 2020, 43: 107578. |
23 | LI X Q, SHEN C R, LIAO J C. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942[J]. Photosynthesis Research, 2014, 120(3): 301-310. |
24 | WU X X, LI J W, XING S F, et al. Establishment of a resource recycling strategy by optimizing isobutanol production in engineered cyanobacteria using high salinity stress[J]. Biotechnology for Biofuels, 2021, 14(1): 174. |
25 | KLÄHN S, MIKKAT S, RIEDIGER M, et al. Integrative analysis of the salt stress response in cyanobacteria[J]. Biology Direct, 2021, 16(1): 26. |
26 | GAYSINA L A, SARAF A, SINGH P. Chapter 1-Cyanobacteria in Diverse Habitats [M]// MISHRA A K, TIWARI D N, RAI A N. Cyanobacteria. Academic Press, 2019: 1-28. |
27 | RACHEDI R, FOGLINO M, LATIFI A. Stress signaling in cyanobacteria: a mechanistic overview[J]. Life, 2020, 10(12): E312. |
28 | MIRONOV K S, SINETOVA M A, SHUMSKAYA M, et al. Universal molecular triggers of stress responses in cyanobacterium Synechocystis [J]. Life, 2019, 9(3): 67. |
29 | HU J L, WANG Q. Regulatory sRNAs in cyanobacteria[J]. Frontiers in Microbiology, 2018, 9: 2399. |
30 | KIM I M, SZURMANT H. A bacterial Goldilocks mechanism[J]. eLife, 2020, 9: e54244. |
31 | MIRA-RODADO V. New insights into multistep-phosphorelay (MSP)/two-component system (TCS) regulation: are plants and bacteria that different? [J]. Plants, 2019, 8(12): 590. |
32 | KRAKOWIAK J, ZHENG X, PATEL N, et al. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response[J]. eLife, 2018, 7: e31668. |
33 | LI G T, MORIGEN, YAO Y. TorR/TorS Two-component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli [J]. Gene, 2022, 821: 146295. |
34 | PENG F, CHEN J, LIU X X, et al. The PhoPR two-component system responds to oxygen deficiency and regulates the pathways for energy supply in Corynebacterium glutamicum [J]. World Journal of Microbiology & Biotechnology, 2021, 37(9): 160. |
35 | KANEKO T, SATO S, KOTANI H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803 (Ⅱ): Sequence determination of the entire genome and assignment of potential protein-coding regions[J]. DNA Research, 1996, 3(3): 185-209. |
36 | SUGITA C, OGATA K, SHIKATA M, et al. Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization[J]. Photosynthesis Research, 2007, 93(1/2/3): 55-67. |
37 | GAO X Y, SUN T, WU L N, et al. Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp. PCC 6803 to 1-butanol[J]. Bioresource Technology, 2017, 245: 1476-1483. |
38 | CHEN L, WU L N, WANG J X, et al. Butanol tolerance regulated by a two-component response regulator Slr1037 in photosynthetic Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2014, 7: 89. |
39 | REN Q, SHI M L, CHEN L, et al. Integrated proteomic and metabolomic characterization of a novel two-component response regulator Slr1909 involved in acid tolerance in Synechocystis sp. PCC 6803[J]. Journal of Proteomics, 2014, 109: 76-89. |
40 | SHI M L, CHEN L, ZHANG W W. Regulatory diversity and functional analysis of two-component systems in cyanobacterium Synechocystis sp. PCC 6803 by GC-MS based metabolomics[J]. Frontiers in Microbiology, 2020, 11: 403. |
41 | PEI G S, NIU X F, ZHOU Y Q, et al. Crosstalk of two-component signal transduction systems in regulating central carbohydrate and energy metabolism during autotrophic and photomixotrophic growth of Synechocystis sp. PCC 6803[J]. Integrative Biology, 2017, 9(5): 485-496. |
42 | SHEN C H. Gene expression: transcription of the genetic code[M]// SHEN C H. Diagnostic molecular biology. Amsterdam: Elsevier, 2019: 59-86. |
43 | RIAZ-BRADLEY A. Transcription in cyanobacteria: a distinctive machinery and putative mechanisms[J]. Biochemical Society Transactions, 2019, 47(2): 679-689. |
44 | SRIVASTAVA A, SUMMERS M L, SOBOTKA R. Cyanobacterial sigma factors: current and future applications for biotechnological advances[J]. Biotechnology Advances, 2020, 40: 107517. |
45 | SUN D, LIU C, ZHU J R, et al. Connecting metabolic pathways: sigma factors in streptomyces spp[J]. Frontiers in Microbiology, 2017, 8: 2546. |
46 | PAGET M S. Bacterial sigma factors and anti-sigma factors: structure, function and distribution[J]. Biomolecules, 2015, 5(3): 1245-1265. |
47 | MAZUMDER A, KAPANIDIS A N. Recent advances in understanding σ70-dependent transcription initiation mechanisms[J]. Journal of Molecular Biology, 2019, 431(20): 3947-3959. |
48 | DAVIS M C, KESTHELY C A, FRANKLIN E A, et al. The essential activities of the bacterial sigma factor[J]. Canadian Journal of Microbiology, 2017, 63(2): 89-99. |
49 | KOSKINEN S, HAKKILA K, GUNNELIUS L, et al. In vivo recruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria[J]. Molecular Microbiology, 2016, 99(1): 43-54. |
50 | TURUNEN O, KOSKINEN S, KURKELA J, et al. Roles of close homologues SigB and SigD in heat and high light acclimation of the cyanobacterium Synechocystis sp. PCC 6803[J]. Life, 2022, 12(2): 162. |
51 | HAKKILA K, VALEV D, ANTAL T, et al. Group 2 σ factors are central regulators of oxidative stress acclimation in cyanobacteria[J]. Plant and Cell Physiology, 2018, 60(2): 436-447. |
52 | FLORES C, SANTOS M, PEREIRA S B, et al. The alternative sigma factor SigF is a key player in the control of secretion mechanisms in Synechocystis sp. PCC 6803[J]. Environmental Microbiology, 2019, 21(1): 343-359. |
53 | KIRSCH F, KLÄHN S, HAGEMANN M. Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential[J]. Frontiers in Microbiology, 2019, 10: 2139. |
54 | FLEMING K E, O'SHEA E K. An RpaA-dependent sigma factor cascade sets the timing of circadian transcriptional rhythms in Synechococcus elongatus [J]. Cell Reports, 2018, 25(11): 2937-2945.e3. |
55 | HASEGAWA H, TSURUMAKI T, KOBAYASHI I, et al. Identification and analysis of a principal sigma factor interacting protein SinA, essential for growth at high temperatures in a cyanobacterium Synechococcus elongatus PCC 7942[J]. The Journal of General and Applied Microbiology, 2020, 66(2): 66-72. |
56 | ZAMPETAKI A, ALBRECHT A, STEINHOFEL K. Long non-coding RNA structure and function: is there a link? [J]. Frontiers in Physiology, 2018, 9: 1201. |
57 | O'BRIEN J, HAYDER H, ZAYED Y, et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Frontiers in Endocrinology, 2018, 9: 402. |
58 | HOLMQVIST E, VOGEL J. RNA-binding proteins in bacteria[J]. Nature Reviews Microbiology, 2018, 16(10): 601-615. |
59 | GEORG J, VOSS B, SCHOLZ I, et al. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation[J]. Molecular Systems Biology, 2009, 5: 305. |
60 | SUN T, PEI G S, WANG J X, et al. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing[J]. Biotechnology for Biofuels, 2017, 10: 42. |
61 | HU J L, LI T P, XU W, et al. Small antisense RNA RblR positively regulates RuBisCo in Synechocystis sp. PCC 6803[J]. Frontiers in Microbiology, 2017, 8: 231. |
62 | BI Y Q, PEI G S, SUN T, et al. Regulation mechanism mediated by trans-encoded sRNA Nc117 in short chain alcohols tolerance in Synechocystis sp. PCC 6803[J]. Frontiers in Microbiology, 2018, 9: 863. |
63 | TAN X M, HOU S W, SONG K, et al. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973[J]. Biotechnology for Biofuels, 2018, 11: 218. |
64 | PEI G S, SUN T, CHEN S, et al. Systematic and functional identification of small non-coding RNAs associated with exogenous biofuel stress in cyanobacterium Synechocystis sp. PCC 6803[J]. Biotechnology for Biofuels, 2017, 10: 57. |
65 | BILLIS K, BILLINI M, TRIPP H J, et al. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of stress acclimation[J]. PLoS One, 2014, 9(10): e109738. |
66 | KOPF M, HESS W R. Regulatory RNAs in photosynthetic cyanobacteria[J]. FEMS Microbiology Reviews, 2015, 39(3): 301-315. |
67 | SUN T, CHEN L, ZHANG W W. Quantitative proteomics reveals potential crosstalk between a small RNA CoaR and a two-component regulator Slr1037 in Synechocystis sp. PCC6803[J]. Journal of Proteome Research, 2017, 16(8): 2954-2963. |
68 | WŁODARCZYK A, SELÃO T T, NORLING B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production[J]. Communications Biology, 2020, 3: 215. |
69 | JAISWAL D, SENGUPTA A, SOHONI S, et al. Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India[J]. Scientific Reports, 2018, 8: 16632. |
70 | KANNO M, CARROLL A L, ATSUMI S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria[J]. Nature Communications, 2017, 8: 14724. |
71 | KE T, LIU J, ZHAO S, et al. Using global transcription machinery engineering (GTME) and site-saturation mutagenesis technique to improve ethanol yield of Saccharomyces cerevisiae [J]. Applied Biochemistry and Microbiology, 2020, 56(5): 563-568. |
72 | YAMADA R, WAKITA K, OGINO H. Global metabolic engineering of glycolytic pathway via multicopy integration in Saccharomyces cerevisiae [J]. ACS Synthetic Biology, 2017, 6(4): 659-666. |
73 | YAMADA R, WAKITA K, MITSUI R, et al. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway[J]. Biotechnology and Bioengineering, 2017, 114(9): 2075-2084. |
74 | GINER-LAMIA J, LÓPEZ-MAURY L, REYES J C, et al. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803[J]. Plant Physiology, 2012, 159(4): 1806-1818. |
75 | GINER-LAMIA J, LÓPEZ-MAURY L, FLORENCIO F J. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803[J]. MicrobiologyOpen, 2015, 4(1): 167-185. |
76 | CHEN L, ZHU Y, SONG Z D, et al. An orphan response regulator Sll0649 involved in cadmium tolerance and metal homeostasis in photosynthetic Synechocystis sp. PCC 6803[J]. Journal of Proteomics, 2014, 103: 87-102. |
77 | GERALDES V, PINTO E. Mycosporine-like amino acids (MAAs): biology, chemistry and identification features[J]. Pharmaceuticals, 2021, 14(1): 63. |
78 | SHANG J L, ZHANG Z C, YIN X Y, et al. UV-B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria[J]. Environmental Microbiology, 2018, 20(1): 200-213. |
79 | RAJ S, KUNIYIL A M, SREENIKETHANAM A, et al. Microalgae as a source of mycosporine-like amino acids (MAAs): advances and future prospects[J]. International Journal of Environmental Research and Public Health, 2021, 18(23): 12402. |
80 | NIU X F, ZHU Y, PEI G S, et al. Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach[J]. Applied Microbiology and Biotechnology, 2015, 99(4): 1845-1857. |
81 | MARIN K, SUZUKI I, YAMAGUCHI K, et al. Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(15): 9061-9066. |
82 | VIDAL R, LÓPEZ-MAURY L, GUERRERO M G, et al. Characterization of an alcohol dehydrogenase from the cyanobacterium Synechocystis sp. strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system[J]. Journal of Bacteriology, 2009, 191(13): 4383-4391. |
83 | LIANG C W, ZHANG X W, CHI X Y, et al. Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803[J]. PLoS One, 2011, 6(5): e18718. |
84 | VIDAL R. Identification of the correct form of the mis-annotated response regulator Rre1 from the cyanobacterium Synechocystis sp. PCC 6803[J]. FEMS Microbiology Letters, 2015, 362(7): fnv030. |
85 | IBRAHIM I M, PUTHIYAVEETIL S, ALLEN J F. A two-component regulatory system in transcriptional control of photosystem stoichiometry: redox-dependent and sodium ion-dependent phosphoryl transfer from cyanobacterial histidine kinase Hik2 to response regulators Rre1 and RppA[J]. Frontiers in Plant Science, 2016, 7: 137. |
86 | KERA K, YOSHIZAWA Y, SHIGEHARA T, et al. Hik36-Hik43 and Rre6 act as a two-component regulatory system to control cell aggregation in Synechocystis sp. PCC6803[J]. Scientific Reports, 2020, 10: 19405. |
87 | QIAO C C, ZHANG M Y, LUO Q, et al. Identification of two two-component signal transduction mutants with enhanced sucrose biosynthesis in Synechococcus elongatus PCC 7942[J]. Journal of Basic Microbiology, 2019, 59(5): 465-476. |
88 | EHIRA S, KIMURA S, MIYAZAKI S, et al. Sucrose synthesis in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 is controlled by the two-component response regulator OrrA[J]. Applied and Environmental Microbiology, 2014, 80(18): 5672-5679. |
89 | KIMURA S, SATO M, FAN X Y, et al. The two-component response regulator OrrA confers dehydration tolerance by regulating anaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120[EB/OL]. bioRxiv, 2021. DOI: 10.1101/2021.08.03.454875 . |
90 | IIJIMA H, WATANABE A, TAKANOBU J, et al. rre37 Overexpression alters gene expression related to the tricarboxylic acid cycle and pyruvate metabolism in Synechocystis sp. PCC 6803[J]. The Scientific World Journal, 2014, 2014: 921976. |
91 | TAKEYA M, IIJIMA H, SUKIGARA H, et al. Cluster-level relationships of genes involved in carbon metabolism in Synechocystis sp. PCC 6803: development of a novel succinate-producing strain[J]. Plant and Cell Physiology, 2017, 59(1): 72-81. |
92 | TYYSTJÄRVI T, HUOKKO T, RANTAMÄKI S, et al. Impact of different group 2 sigma factors on light use efficiency and high salt stress in the cyanobacterium Synechocystis sp. PCC 6803[J]. PLoS One, 2013, 8(4): e63020. |
93 | KACZMARZYK D, ANFELT J, SÄRNEGRIM A, et al. Overexpression of sigma factor SigB improves temperature and butanol tolerance of Synechocystis sp. PCC6803[J]. Journal of Biotechnology, 2014, 182/183: 54-60. |
94 | TOKUMARU Y, UEBAYASHI K, TOYOSHIMA M, et al. Comparative targeted proteomics of the central metabolism and photosystems in SigE mutant strains of Synechocystis sp. PCC 6803[J]. Molecules, 2018, 23(5): 1051. |
95 | OSANAI T, NUMATA K, OIKAWA A, et al. Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803[J]. DNA Research, 2013, 20(6): 525-535. |
96 | GRUBER T M, BRYANT D A. Characterization of the alternative σ-factors SigD and SigE in Synechococcus sp. strain PCC 7002. SigE is implicated in transcription of post-exponential-phase-specific genes[J]. Archives of Microbiology, 1998, 169(3): 211-219. |
97 | MELLA-HERRERA R A, NEUNUEBEL M R, KUMAR K, et al. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120[J]. Journal of Bacteriology, 2011, 193(8): 1823-1832. |
98 | LI S B, SUN T, CHEN L, et al. Designing and constructing artificial small RNAs for gene regulation and carbon flux redirection in photosynthetic cyanobacteria[J]. Methods in Molecular Biology, 2021, 2290: 229-252. |
99 | SINGH A K, SHERMAN L A. Reflections on the function of IsiA, a cyanobacterial stress-inducible, Chl-binding protein[J]. Photosynthesis Research, 2007, 93(1/2/3): 17-25. |
100 | DÜHRING U, AXMANN I M, HESS W R, et al. An internal antisense RNA regulates expression of the photosynthesis gene isiA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18): 7054-7058. |
101 | GEORG J, KOSTOVA G, VUORIJOKI L, et al. Acclimation of oxygenic photosynthesis to iron starvation is controlled by the sRNA IsaR1[J]. Current Biology, 2017, 27(10): 1425-1436.e7. |
102 | RÜBSAM H, KIRSCH F, REIMANN V, et al. The iron-stress activated RNA 1 (IsaR1) coordinates osmotic acclimation and iron starvation responses in the cyanobacterium Synechocystis sp. PCC 6803[J]. Environmental Microbiology, 2018, 20(8): 2757-2768. |
103 | SAKURAI I, STAZIC D, EISENHUT M, et al. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in Synechocystis sp. PCC 6803[J]. Plant Physiology, 2012, 160(2): 1000-1010. |
104 | GEORG J, DIENST D, SCHÜRGERS N, et al. The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria[J]. The Plant Cell, 2014, 26(9): 3661-3679. |
105 | NAKAMURA T, NAITO K, YOKOTA N, et al. A cyanobacterial non-coding RNA, Yfr1, is required for growth under multiple stress conditions[J]. Plant and Cell Physiology, 2007, 48(9): 1309-1318. |
106 | LIN W R, TAN S I, HSIANG C C, et al. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery[J]. Bioresource Technology, 2019, 291: 121932. |
107 | KU J T, LAN E I. Design principles for engineering metabolic pathways in cyanobacteria[M]// Cyanobacteria biotechnology. Springer, 2021: 211-235. |
108 | LIN P C, PAKRASI H B. Engineering cyanobacteria for production of terpenoids[J]. Planta, 2019, 249(1): 145-154. |
109 | XU K, QIN L, BAI W X, et al. Multilevel defense system (MDS) relieves multiple stresses for economically boosting ethanol production of industrial Saccharomyces cerevisiae [J]. ACS Energy Letters, 2020, 5(2): 572-582. |
110 | KATAYAMA N, IIJIMA H, OSANAI T. Production of bioplastic compounds by genetically manipulated and metabolic engineered cyanobacteria// ZHANG W W, SONG X Y. Synthetic biology of cyanobacteria[M]// Advances in experimental medicine and biology (Volume 1080). Singapore: Springer Singapore. 2018: 155-169. |
111 | SUN T, LI S B, SONG X Y, et al. Toolboxes for cyanobacteria: recent advances and future direction[J]. Biotechnology Advances, 2018, 36(4): 1293-1307. |
112 | CHEN L, WU L N, ZHU Y, et al. An orphan two-component response regulator Slr1588 involves salt tolerance by directly regulating synthesis of compatible solutes in photosynthetic Synechocystis sp. PCC 6803[J]. Molecular BioSystems, 2014, 10(7): 1765-1774. |
113 | LIU P, ZHANG B, YAO Z H, et al. Multiplex design of the metabolic network for production of L-homoserine in Escherichia coli [J]. Applied and Environmental Microbiology, 2020, 86(20): e01477-e01420. |
114 | LAPINAITE A, KNOTT G J, PALUMBO C M, et al. DNA capture by a CRISPR-Cas9-guided adenine base editor[J]. Science, 2020, 369(6503): 566-571. |
115 | MOK B Y, DE MORAES M H, ZENG J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing[J]. Nature, 2020, 583(7817): 631-637. |
116 | WATANABE S. Cyanobacterial multi-copy chromosomes and their replication[J]. Bioscience, Biotechnology, and Biochemistry, 2020, 84(7): 1309-1321. |
117 | OHBAYASHI R, WATANABE S, KANESAKI Y, et al. DNA replication depends on photosynthetic electron transport in cyanobacteria[J]. FEMS Microbiology Letters, 2013, 344(2): 138-144. |
118 | OHBAYASHI R, YAMAMOTO J Y, WATANABE S, et al. Variety of DNA replication activity among cyanobacteria correlates with distinct respiration activity in the dark[J]. Plant and Cell Physiology, 2016, 58(2): 279-286. |
119 | OHBAYASHI R, WATANABE S, EHIRA S, et al. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution[J]. The ISME Journal, 2016, 10(5): 1113-1121. |
120 | KOBAYASHI S, ATSUMI S, IKEBUKURO K, et al. Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria[J]. Microbial Cell Factories, 2022, 21(1): 7. |
121 | KUKIL K, LINDBERG P. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids[J]. Microbial Cell Factories, 2022, 21(1): 8. |
122 | 许可, 王靖楠, 李春. 智能抗逆微生物细胞工厂与绿色生物制造[J]. 合成生物学, 2020, 1(4): 427-439. |
XU K, WANG J N, LI C. Intelligent microbial cell factory with tolerance for green biological manufacturing[J]. Synthetic Biology Journal, 2020, 1(4): 427-439. | |
123 | DU Q, LIU Y L, SONG Y Y, et al. Creation of a low-alcohol-production yeast by a mutated SPT15 transcription regulator triggers transcriptional and metabolic changes during wine fermentation[J]. Frontiers in Microbiology, 2020, 11: 597828. |
124 | ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805): 1565-1568. |
125 | YANG K K, WU Z, ARNOLD F H. Machine-learning-guided directed evolution for protein engineering[J]. Nature Methods, 2019, 16(8): 687-694. |
126 | LI C Y, ZHANG R H, WANG J, et al. Protein engineering for improving and diversifying natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 729-744. |
127 | YU KING HING N, ARYAL U K, MORGAN J A. Probing light-dependent regulation of the Calvin cycle using a multi-omics approach[J]. Frontiers in Plant Science, 2021, 12: 733122. |
128 | SANTOS-MERINO M, TORRADO A, DAVIS G A, et al. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2021523118. |
[1] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[2] | Zhen ZHU, Jing TIAN, Jing JIANG, Wangyin WANG, Xupeng CAO. Progress in microalgae chloroplast organelle factory development [J]. Synthetic Biology Journal, 2022, 3(6): 1218-1234. |
[3] | Jianzhao YANG, Xinguang ZHU. Plant synthetic biology for carbon peak and carbon neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 847-869. |
[4] | Menglin SHI, Lin ZHOU, Qing WANG, Lei ZHAO. Advances in the study on the modification of carbon dioxide metabolic pathways in plants [J]. Synthetic Biology Journal, 2022, 3(5): 985-1005. |
[5] | Fei TAO, Tao SUN, Yu WANG, Ting WEI, Jun NI, Ping XU. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 932-952. |
[6] | Quanyu ZHAO. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae [J]. Synthetic Biology Journal, 2022, 3(5): 901-914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||