Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 985-1005.DOI: 10.12211/2096-8280.2022-002
• Invited Review • Previous Articles Next Articles
Menglin SHI1,2, Lin ZHOU1,3, Qing WANG1,3, Lei ZHAO1,2,3
Received:
2022-01-12
Revised:
2022-02-17
Online:
2022-11-16
Published:
2022-10-31
Contact:
Lei ZHAO
史梦琳1,2, 周琳1,3, 王庆1,3, 赵磊1,2,3
通讯作者:
赵磊
作者简介:
基金资助:
CLC Number:
Menglin SHI, Lin ZHOU, Qing WANG, Lei ZHAO. Advances in the study on the modification of carbon dioxide metabolic pathways in plants[J]. Synthetic Biology Journal, 2022, 3(5): 985-1005.
史梦琳, 周琳, 王庆, 赵磊. 植物二氧化碳代谢途径改造研究进展[J]. 合成生物学, 2022, 3(5): 985-1005.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-002
Fig. 5 Schematic diagram of potential targets for carbon metabolism modification in plants(★Photosynthesis modification; ★Photorespiration modification; ★Respiration modification) 1—Modification of natural photosynthetic elements; 2—Exogenous protein are introduced to optimize photosynthetic efficiency; 3—Rubisco optimization design to improve its carboxylation capacity; 4—Increase CO2 supply capacity; 5—Reconstruction of natural photorespiration pathway or construction of alternative pathway for new photorespiration; 6, 7—Increase photorespiration flux or reuse of metabolic intermediates; 8—Modification of respiratory pathway (AOX adjustment)
涉及部分 | 改造对象或方式 | 改造效果 |
---|---|---|
光合作用 | 光系统天线 | 降低光损耗、提高光能利用率和生物量 |
光系统对波动光的响应能力 | 有望提高光系统对波动光的响应能力,减少光抑制 | |
天然光合系统吸光范围 | 有望将植物吸光范围扩展到远红区域,进而增强光合效率 | |
CO2扩散能力 | 可改善叶片内部CO2扩散特性,是提高光合效率的有效途径;其扩散能力与温度、细胞壁厚度和组成等均相关。由于叶片CO2扩散速率测定较为困难,致该部分研究缓慢 | |
Rubisco催化特性 | Rubisco催化特性改造尚未取得实质性进展;通过筛选不同物种特异性Rubisco或将Rubisco与碳浓缩机制改造相结合,有望改善植物固碳能力 | |
Rubisco附近的CO2浓度 | 通过将CCM系统、蛋白核或将C4光合系统引入C3作物等,可增加CO2供给。但需要考虑光合过程中生化反应的变化及叶片结构的改变,C3向C4植物转化研究仍待加强 | |
光呼吸 | 天然光呼吸途径 | 改造较为复杂,需考虑较多因素;增加光呼吸通量可使植物更好地应对高光呼吸胁迫,提高生物量,但具体改造靶点和策略仍待探索 |
新型光呼吸替代途径 | 导入新型光呼吸替代途径,可将毒性副产物化为其他生物质,同时将CO2重新释放到叶绿体中,在提高CO2浓度的同时减少植物固碳损失;基于零CO2释放的新型替代通路,可避免光呼吸中的碳损失,在增加植物固碳方面有较大潜力 | |
光呼吸代谢通量模型计算 | 将计算技术与基因组工程、合成生物学技术等技术结合,进行代谢通量模型分析,可简化和评估光呼吸通路改造设计,优化实验设计 | |
呼吸作用 | 交替氧化酶AOX | 呼吸作用对植物基础代谢尤为重要,对其进行改造的操作空间较小;不同体系和生长条件下,AOX表达量变化对固碳和生长影响不同,对其进行有效改造的策略仍待探索中 |
Tab.1 Modification strategies for plant carbon sequestration and their effects
涉及部分 | 改造对象或方式 | 改造效果 |
---|---|---|
光合作用 | 光系统天线 | 降低光损耗、提高光能利用率和生物量 |
光系统对波动光的响应能力 | 有望提高光系统对波动光的响应能力,减少光抑制 | |
天然光合系统吸光范围 | 有望将植物吸光范围扩展到远红区域,进而增强光合效率 | |
CO2扩散能力 | 可改善叶片内部CO2扩散特性,是提高光合效率的有效途径;其扩散能力与温度、细胞壁厚度和组成等均相关。由于叶片CO2扩散速率测定较为困难,致该部分研究缓慢 | |
Rubisco催化特性 | Rubisco催化特性改造尚未取得实质性进展;通过筛选不同物种特异性Rubisco或将Rubisco与碳浓缩机制改造相结合,有望改善植物固碳能力 | |
Rubisco附近的CO2浓度 | 通过将CCM系统、蛋白核或将C4光合系统引入C3作物等,可增加CO2供给。但需要考虑光合过程中生化反应的变化及叶片结构的改变,C3向C4植物转化研究仍待加强 | |
光呼吸 | 天然光呼吸途径 | 改造较为复杂,需考虑较多因素;增加光呼吸通量可使植物更好地应对高光呼吸胁迫,提高生物量,但具体改造靶点和策略仍待探索 |
新型光呼吸替代途径 | 导入新型光呼吸替代途径,可将毒性副产物化为其他生物质,同时将CO2重新释放到叶绿体中,在提高CO2浓度的同时减少植物固碳损失;基于零CO2释放的新型替代通路,可避免光呼吸中的碳损失,在增加植物固碳方面有较大潜力 | |
光呼吸代谢通量模型计算 | 将计算技术与基因组工程、合成生物学技术等技术结合,进行代谢通量模型分析,可简化和评估光呼吸通路改造设计,优化实验设计 | |
呼吸作用 | 交替氧化酶AOX | 呼吸作用对植物基础代谢尤为重要,对其进行改造的操作空间较小;不同体系和生长条件下,AOX表达量变化对固碳和生长影响不同,对其进行有效改造的策略仍待探索中 |
1 | KEENAN T F, WILLIAMS C A. The terrestrial carbon sink[J]. Annual Review of Environment and Resources, 2018, 43: 219-243. |
2 | DUSENGE M E, DUARTE A G, WAY D A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration[J]. The New Phytologist, 2019, 221(1): 32-49. |
3 | BAUWE H, KOLUKISAOGLU Ü. Genetic manipulation of glycine decarboxylation[J]. Journal of Experimental Botany, 2003, 54(387): 1523-1535. |
4 | PETERHANSEL C, HORST I, NIESSEN M, et al. Photorespiration[J]. Arabidopsis Book, 2010, 8: e0130. |
5 | TIMM S, HAGEMANN M. Photorespiration—how is it regulated and how does it regulate overall plant metabolism? [J]. Journal of Experimental Botany, 2020, 71(14): 3955-3965. |
6 | LONG S P, MARSHALL-COLON A, ZHU X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 2015, 161(1): 56-66. |
7 | MELIS A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280. |
8 | ORT D R, ZHU X G, et al. Optimizing antenna size to maximize photosynthetic efficiency[J]. Plant Physiology, 2010, 155(1): 79-85. |
9 | ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8529-8536. |
10 | MITRA M, KIRST H, DEWEZ D, et al. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012, 367(1608): 3430-3443. |
11 | KIRST H, GARCÍA-CERDÁN J G, ZURBRIGGEN A, et al. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene[J]. Plant Physiology, 2011, 158(2): 930-945. |
12 | ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
13 | MURCHIE E H, NIYOGI K K. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiology, 2010, 155(1): 86-92. |
14 | NILKENS M, KRESS E, LAMBREV P, et al. Identification of a slowly inducible Zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2010, 1797(4): 466-475. |
15 | NOCTOR G, REES D, YOUNG A, et al. The relationship between Zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1991, 1057(3): 320-330. |
16 | LI X P, BJÖRKMAN O, SHIH C, et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting[J]. Nature, 2000, 403(6768): 391-395. |
17 | CROUCHMAN S, RUBAN A, HORTON P. PsbS enhances nonphotochemical fluorescence quenching in the absence of Zeaxanthin[J]. FEBS Letters, 2006, 580(8): 2053-2058. |
18 | LI X P, MULLER-MOULE P, GILMORE A M, et al. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(23): 15222-15227. |
19 | GŁOWACKA K, KROMDIJK J, KUCERA K, et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop[J]. Nature Communications, 2018, 9: 868. |
20 | NIYOGI K K, GROSSMAN A R, BJÖRKMAN O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. The Plant Cell, 1998, 10(7): 1121-1134. |
21 | JAHNS P, LATOWSKI D, STRZALKA K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2009, 1787(1): 3-14. |
22 | LI L, NELSON C J, TRÖSCH J, et al. Protein degradation rate in Arabidopsis thaliana leaf growth and development[J]. The Plant Cell, 2017, 29(2): 207-228. |
23 | LI L, ARO E M, MILLAR A H. Mechanisms of photodamage and protein turnover in photoinhibition[J]. Trends in Plant Science, 2018, 23(8): 667-676. |
24 | KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection[J]. Science, 2016, 354(6314): 857-861. |
25 | BLANKENSHIP R E, CHEN M. Spectral expansion and antenna reduction can enhance photosynthesis for energy production[J]. Current Opinion in Chemical Biology, 2013, 17(3): 457-461. |
26 | LI Y Q, CHEN M. Novel chlorophylls and new directions in photosynthesis research[J]. Functional Plant Biology: FPB, 2015, 42(6): 493-501. |
27 | EVANS J R, VON CAEMMERER S. Carbon dioxide diffusion inside leaves[J]. Plant Physiology, 1996, 110(2): 339-346. |
28 | FLEXAS J, NIINEMETS U, GALLÉ A, et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency[J]. Photosynthesis Research, 2013, 117(1/2/3): 45-59. |
29 | VON CAEMMERER S, EVANS J R. Temperature responses of mesophyll conductance differ greatly between species[J]. Plant, Cell & Environment, 2015, 38(4): 629-637. |
30 | GROSZMANN M, OSBORN H L, EVANS J R. Carbon dioxide and water transport through plant aquaporins[J]. Plant, Cell & Environment, 2017, 40(6): 938-961. |
31 | UBIERNA N, GANDIN A, BOYD R A, et al. Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in vitro Vpmax [J]. The New Phytologist, 2017, 214(1): 66-80. |
32 | EVANS J R, KALDENHOFF R, GENTY B, et al. Resistances along the CO2 diffusion pathway inside leaves[J]. Journal of Experimental Botany, 2009, 60(8): 2235-2248. |
33 | ELLSWORTH P V, ELLSWORTH P Z, KOTEYEVA N K, et al. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance[J]. The New Phytologist, 2018, 219(1): 66-76. |
34 | SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7(5): 171-174. |
35 | MUELLER-CAJAR O, WHITNEY S M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research[J]. Photosynthesis Research, 2008, 98(1/2/3): 667-675. |
36 | WHITNEY S M, SHARWOOD R E. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts[J]. Journal of Experimental Botany, 2008, 59(7): 1909-1921. |
37 | TCHERKEZ G G B, FARQUHAR G D, ANDREWS T J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(19): 7246-7251. |
38 | SAVIR Y, NOOR E, MILO R, et al. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3475-3480. |
39 | YOUNG J N, HEUREUX A M C, SHARWOOD R E, et al. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms[J]. Journal of Experimental Botany, 2016, 67(11): 3445-3456. |
40 | ORR D J, ALCÂNTARA A, KAPRALOV M V, et al. Surveying Rubisco diversity and temperature response to improve crop photosynthetic efficiency[J]. Plant Physiology, 2016, 172(2): 707-717. |
41 | PRINS A, ORR D J, ANDRALOJC P J, et al. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis[J]. Journal of Experimental Botany, 2016, 67(6): 1827-1838. |
42 | LIN M T, OCCHIALINI A, ANDRALOJC P J, et al. A faster Rubisco with potential to increase photosynthesis in crops[J]. Nature, 2014, 513(7519): 547-550. |
43 | LIN M T, HANSON M R. Red algal Rubisco fails to accumulate in transplastomic tobacco expressing Griffithsia monilis rbcL and rbcS genes[J]. Plant Direct, 2018, 2(2): e00045. |
44 | AIGNER H, WILSON R H, BRACHER A, et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2[J]. Science, 2017, 358(6368): 1272-1278. |
45 | VALEGÅRD K, HASSE D, ANDERSSON I, et al. Structure of rubisco from Arabidopsis thaliana in complex with 2-carboxyarabinitol-1, 5-bisphosphate[J]. Acta Crystallographica Section D, Structural Biology, 2018, 74(Pt 1): 1-9. |
46 | VALEGÅRD K, ANDRALOJC P J, HASLAM R P, et al. Structural and functional analyses of Rubisco from arctic diatom species reveal unusual posttranslational modifications[J]. Journal of Biological Chemistry, 2018, 293(34): 13033-13043. |
47 | SASCHENBRECKER S, BRACHER A, RAO K V, et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco[J]. Cell, 2007, 129(6): 1189-1200. |
48 | FEIZ L, WILLIAMS-CARRIER R, WOSTRIKOFF K, et al. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation Factor1 is required for holoenzyme assembly in maize[J]. The Plant Cell, 2012, 24(8): 3435-3446. |
49 | WHITNEY S M, BIRCH R, KELSO C, et al. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3564-3569. |
50 | RAE B D, LONG B M, FÖRSTER B, et al. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants[J]. Journal of Experimental Botany, 2017, 68(14): 3717-3737. |
51 | MORITA E, ABE T, TSUZUKI M, et al. Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta)[J]. Planta, 1998, 204(3): 269-276. |
52 | KINNEY J N, AXEN S D, KERFELD C A. Comparative analysis of carboxysome shell proteins[J]. Photosynthesis Research, 2011, 109(1/2/3): 21-32. |
53 | NIEDERHUBER M J, LAMBERT T J, YAPP C, et al. Superresolution microscopy of the β-carboxysome reveals a homogeneous matrix[J]. Molecular Biology of the Cell, 2017, 28(20): 2734-2745. |
54 | SHARWOOD R E. Engineering chloroplasts to improve Rubisco catalysis: prospects for translating improvements into food and fiber crops[J]. The New Phytologist, 2017, 213(2): 494-510. |
55 | SOMMER M, CAI F, MELNICKI M, et al. β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints[J]. Journal of Experimental Botany, 2017, 68(14): 3841-3855. |
56 | RAE B D, LONG B M, WHITEHEAD L F, et al. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation[J]. Journal of Molecular Microbiology and Biotechnology, 2013, 23(4/5): 300-307. |
57 | SHARWOOD R E. A step forward to building an algal pyrenoid in higher plants[J]. The New Phytologist, 2017, 214(2): 496-499. |
58 | HANSON M R, LIN M T, CARMO-SILVA A E, et al. Towards engineering carboxysomes into C3 plants[J]. The Plant Journal: for Cell and Molecular Biology, 2016, 87(1): 38-50. |
59 | OCCHIALINI A, LIN M T, ANDRALOJC P J, et al. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2 [J]. The Plant Journal, 2016, 85(1): 148-160. |
60 | WANG H, YAN X, AIGNER H, et al. Rubisco condensate formation by CcmM in β-carboxysome biogenesis[J]. Nature, 2019, 566(7742): 131-135. |
61 | LONG B M, HEE W Y, SHARWOOD R E, et al. Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts[J]. Nature Communications, 2018, 9: 3570. |
62 | MEYER M T, GENKOV T, SKEPPER J N, et al. Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas [J]. PNAS, 2012, 109(47): 19474-19479. |
63 | MACKINDER L C M, MEYER M T, METTLER-ALTMANN T, et al. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 5958-5963. |
64 | ATKINSON N, LEITÃO N, ORR D J, et al. Rubisco small subunits from the unicellular green alga Chlamydomonas complement Rubisco-deficient mutants of Arabidopsis [J]. The New Phytologist, 2017, 214(2): 655-667. |
65 | MACKINDER L C M, CHEN C, LEIB R D, et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism[J]. Cell, 2017, 171(1): 133-147.e14. |
66 | SAGE R F, SAGE T L, KOCACINAR F. Photorespiration and the evolution of C4 photosynthesis[J]. Annual Review of Plant Biology, 2012, 63: 19-47. |
67 | SCHLÜTER U, WEBER A P M. The road to C4 photosynthesis: evolution of a complex trait via intermediary states[J]. Plant and Cell Physiology, 2016, 57(5): 881-889. |
68 | FURBANK R T. Walking the C4 pathway: past, present, and future[J]. Journal of Experimental Botany, 2016, 67(14): 4057-4066. |
69 | MATSUOKA M, FURBANK R T, FUKAYAMA H, et al. Molecular engineering of C4 photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 297-314. |
70 | SCHULER M L, MANTEGAZZA O, WEBER A P. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age[J]. The Plant Journal, 2016, 87(1): 51-65. |
71 | VON CAEMMERER S, QUICK W P, FURBANK R T. The development of C₄ rice: current progress and future challenges[J]. Science, 2012, 336(6089): 1671-1672. |
72 | LAKSHMI N M, BINOD P, SINDHU R, et al. Microbial engineering for the production of isobutanol: current status and future directions[J]. Bioengineered, 2021, 12(2): 12308-12321. |
73 | VANHERCKE T, BELIDE S, TAYLOR M C, et al. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor [J]. Plant Biotechnology Journal, 2019, 17(1): 220-232. |
74 | LI P H, BRUTNELL T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses[J]. Journal of Experimental Botany, 2011, 62(9): 3031-3037. |
75 | BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
76 | SHIH P M, ZARZYCKI J, NIYOGI K K, et al. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium[J]. Journal of Biological Chemistry, 2014, 289(14): 9493-9500. |
77 | PETTIGREW W T, HESKETH J D, PETERS D B, et al. Characterization of canopy photosynthesis of chlorophyll-deficient soybean isolines[J]. Crop Science, 1989, 29(4): 1025-1029. |
78 | KIRST H, GABILLY S T, NIYOGI K K, et al. Photosynthetic antenna engineering to improve crop yields[J]. Planta, 2017, 245(5): 1009-1020. |
79 | JIN H L, LI M S, DUAN S J, et al. Optimization of light-harvesting pigment improves photosynthetic efficiency[J]. Plant Physiology, 2016, 172(3): 1720-1731. |
80 | DECKER J P. A rapid, postillumination deceleration of respiration in green leaves[J]. Plant Physiology, 1955, 30(1): 82-84. |
81 | ZELITCH I. Increased rate of net photosynthetic carbon dioxide uptake caused by the inhibition of glycolate oxidase[J]. Plant Physiology, 1966, 41(10): 1623-1631. |
82 | ZELITCH I. The effect of glycidate, an inhibitor of glycolate synthesis, on photorespiration and net photosynthesis[J]. Archives of Biochemistry and Biophysics, 1974, 163(1): 367-377. |
83 | TOLBERT N E. Microbodies-peroxisomes and glyoxysomes[J]. Annual Review of Plant Physiology, 1971, 22: 45-74. |
84 | GRIFFITHS H. Designs on Rubisco[J]. Nature, 2006, 441(7096): 940-941. |
85 | EHLERINGER J R, SAGE R F, FLANAGAN L B, et al. Climate change and the evolution of C4 photosynthesis[J]. Trends in Ecology & Evolution, 1991, 6(3): 95-99. |
86 | DELLERO Y, JOSSIER M, SCHMITZ J, et al. Photorespiratory glycolate-glyoxylate metabolism[J]. Journal of Experimental Botany, 2016, 67(10): 3041-3052. |
87 | ZABALETA E, MARTIN M V, BRAUN H P. A basal carbon concentrating mechanism in plants? [J]. Plant Science, 2012, 187: 97-104. |
88 | ANDERSON L E. Chloroplast and cytoplasmic enzymes (II): Pea leaf triose phosphate isomerases[J]. Biochimica et Biophysica Acta (BBA) - Enzymology, 1971, 235(1): 237-244. |
89 | KELLY G J, LATZKO E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate[J]. FEBS Letters, 1976, 68(1): 55-58. |
90 | ENGQVIST M K M, SCHMITZ J, GERTZMANN A, et al. GLYCOLATE OXIDASE3, a glycolate oxidase homolog of yeast l-lactate cytochrome c oxidoreductase, supports l-lactate oxidation in roots of Arabidopsis [J]. Plant Physiology, 2015, 169(2): 1042-1061. |
91 | CAMPBELL W J, OGREN W L. Glyoxylate inhibition of ribulosebisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts[J]. Photosynthesis Research, 1990, 23(3): 257-268. |
92 | COOK C M, MULLIGAN R M, TOLBERT N E. Inhibition and stimulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by glyoxylate[J]. Archives of Biochemistry and Biophysics, 1985, 240(1): 392-401. |
93 | CHASTAIN C J, OGREN W L. Photorespiration-induced reduction of ribulose bisphosphate carboxylase activation level[J]. Plant Physiology, 1985, 77(4): 851-856. |
94 | WALKER B J, VANLOOCKE A, BERNACCHI C J, et al. The costs of photorespiration to food production now and in the future[J]. Annual Review of Plant Biology, 2016, 67: 107-129. |
95 | RAINES C A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle[J]. Plant, Cell & Environment, 2006, 29(3): 331-339. |
96 | PETERHANSEL C, BLUME C, OFFERMANN S. Photorespiratory bypasses: how can they work? [J]. Journal of Experimental Botany, 2012, 64(3): 709-715. |
97 | MAURINO V G, WEBER A P M. Engineering photosynthesis in plants and synthetic microorganisms[J]. Journal of Experimental Botany, 2012, 64(3): 743-751. |
98 | SOMERVILLE C R, OGREN W L. A phosphoglycolate phosphatase-deficient mutant of Arabidopsis [J]. Nature, 1979, 280(5725): 833-836. |
99 | HALL N P, KENDALL A C, LEA P J, et al. Characteristics of a photorespiratory mutant of barley (Hordeum vulgare L.) deficient in phosphogly collate phosphatase[J]. Photosynthesis Research, 1987, 11(1): 89-96. |
100 | MURRAY A J S, BLACKWELL R D, LEA P J. Metabolism of hydroxypyruvate in a mutant of barley lacking NADH-dependent hydroxypyruvate reductase, an important photorespiratory enzyme activity[J]. Plant Physiology, 1989, 91(1): 395-400. |
101 | BOLDT R, EDNER C, KOLUKISAOGLU U, et al. D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family[J]. The Plant Cell, 2005, 17(8): 2413-2420. |
102 | SCHWARTE S, BAUWE H. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis [J]. Plant Physiology, 2007, 144(3): 1580-1586. |
103 | TIMM S, NUNES-NESI A, PÄRNIK T, et al. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis [J]. The Plant Cell, 2008, 20(10): 2848-2859. |
104 | TIMM S, FLORIAN A, ARRIVAULT S, et al. Glycine decarboxylase controls photosynthesis and plant growth[J]. FEBS Letters, 2012, 586(20): 3692-3697. |
105 | PICK T R, BRÄUTIGAM A, SCHULZ M A, et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3185-3190. |
106 | SOUTH P F, WALKER B J, CAVANAGH A P, et al. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana [J]. The Plant Cell, 2017, 29(4): 808-823. |
107 | ALIYEV J A. Photosynthesis, photorespiration and productivity of wheat and soybean genotypes[J]. Physiologia Plantarum, 2012, 145(3): 369-383. |
108 | ZELITCH I, DAY P R. The effect on net photosynthesis of pedigree selection for low and high rates of photorespiration in tobacco[J]. Plant Physiology, 1973, 52(1): 33-37. |
109 | ZELITCH I. Selection and characterization of tobacco plants with novel O2-resistant photosynthesis[J]. Plant Physiology, 1989, 90(4): 1457-1464. |
110 | ZELITCH I. Control of plant productivity by regulation of photorespiration[J]. BioScience, 1992, 42(7): 510-516. |
111 | SAGE T L, SAGE R F. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice[J]. Plant and Cell Physiology, 2009, 50(4): 756-772. |
112 | BUSCH F A, SAGE T L, COUSINS A B, et al. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2 [J]. Plant, Cell & Environment, 2013, 36(1): 200-212. |
113 | TIMM S, WITTMIß M, GAMLIEN S, et al. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana [J]. The Plant Cell, 2015, 27(7): 1968-1984. |
114 | SIMKIN A J, LOPEZ-CALCAGNO P E, DAVEY P A, et al. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis [J]. Plant Biotechnology Journal, 2017, 15(7): 805-816. |
115 | LÓPEZ-CALCAGNO P E, FISK S, BROWN K L, et al. Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants[J]. Plant Biotechnology Journal, 2019, 17(1): 141-151. |
116 | TIMM S, FLORIAN A, FERNIE A R, et al. The regulatory interplay between photorespiration and photosynthesis[J]. Journal of Experimental Botany, 2016, 67(10): 2923-2929. |
117 | BAUWE H, HAGEMANN M, FERNIE A R. Photorespiration: players, partners and origin[J]. Trends in Plant Science, 2010, 15(6): 330-336. |
118 | SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice[J]. Molecular Plant, 2019, 12(2): 199-214. |
119 | WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice[J]. Molecular Plant, 2020, 13(12): 1802-1815. |
120 | SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science, 2019, 363(6422): eaat9077. |
121 | KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nature Biotechnology, 2007, 25(5): 593-599. |
122 | NÖLKE G, HOUDELET M, KREUZALER F, et al. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield[J]. Plant Biotechnology Journal, 2014, 12(6): 734-742. |
123 | DALAL J, LOPEZ H, VASANI N B, et al. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa [J]. Biotechnology for Biofuels, 2015, 8: 175. |
124 | DE F C CARVALHO J, MADGWICK P J, POWERS S J, et al. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration[J]. BMC Biotechnology, 2011, 11: 111. |
125 | MAIER A, FAHNENSTICH H, VON CAEMMERER S, et al. Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement[J]. Frontiers in Plant Science, 2012, 3: 38. |
126 | XIN C P, THOLEN D, DEVLOO V, et al. The benefits of photorespiratory bypasses: how can they work? [J]. Plant Physiology, 2014, 167(2): 574-585. |
127 | PETERHANSEL C, KRAUSE K, BRAUN H P, et al. Engineering photorespiration: current state and future possibilities[J]. Plant Biology (Stuttgart, Germany), 2013, 15(4): 754-758. |
128 | ABOELMY M H, PETERHANSEL C. Enzymatic characterization of Chlamydomonas reinhardtii glycolate dehydrogenase and its nearest proteobacterial homologue[J]. Plant Physiology and Biochemistry, 2014, 79: 25-30. |
129 | SCHMITZ J, SRIKANTH N V, HÜDIG M, et al. The ancestors of diatoms evolved a unique mitochondrial dehydrogenase to oxidize photorespiratory glycolate[J]. Photosynthesis Research, 2017, 132(2): 183-196. |
130 | TRUDEAU D L, EDLICH-MUTH C, ZARZYCKI J, et al. Design and in vitro realization of carbon-conserving photorespiration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(49): E11455-E11464. |
131 | SCHEFFEN M, MARCHAL D G, BENEYTON T, et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation[J]. Nature Catalysis, 2021, 4(2): 105-115. |
132 | BAR-EVEN A. Daring metabolic designs for enhanced plant carbon fixation[J]. Plant Science, 2018, 273: 71-83. |
133 | ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes[J]. PLoS One, 2009, 4(5): e5553. |
134 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
135 | SOMERVILLE C R, OGREN W L. Mutants of the cruciferous plant Arabidopsis thaliana lacking glycine decarboxylase activity[J]. The Biochemical Journal, 1982, 202(2): 373-380. |
136 | RACHMILEVITCH S, COUSINS A B, BLOOM A J. Nitrate assimilation in plant shoots depends on photorespiration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(31): 11506-11510. |
137 | TIMM S, MIELEWCZIK M, FLORIAN A, et al. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis [J]. PLoS One, 2012, 7(8): e42809. |
138 | FLÜGEL F, TIMM S, ARRIVAULT S, et al. The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis and starch accumulation in Arabidopsis [J]. The Plant Cell, 2017, 29(10): 2537-2551. |
139 | FERNIE A R, BAUWE H, EISENHUT M, et al. Perspectives on plant photorespiratory metabolism[J]. Plant Biology, 2013, 15(4): 748-753. |
140 | TIMM S, BAUWE H. The variety of photorespiratory phenotypes-employing the current status for future research directions on photorespiration[J]. Plant Biology, 2013, 15(4): 737-747. |
141 | BUSCH F A, SAGE R F, FARQUHAR G D. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway[J]. Nature Plants, 2018, 4(1): 46-54. |
142 | HAGEMANN M, KERN R, MAURINO V G, et al. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms[J]. Journal of Experimental Botany, 2016, 67(10): 2963-2976. |
143 | WHEELER R M, MACKOWIAK C L, SAGER J C, et al. Proximate composition of CELSS crops grown in NASA's biomass production chamber[J]. Advances in Space Research, 1996, 18(4/5): 43-47. |
144 | LONG S P, ZHU X G, NAIDU S L, et al. Can improvement in photosynthesis increase crop yields? [J]. Plant, Cell & Environment, 2006, 29(3): 315-330. |
145 | MCGRATH J M, LONG S P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis[J]. Plant Physiology, 2014, 164(4): 2247-2261. |
146 | NÖLKE G, BARSOUM M, HOUDELET M, et al. The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass[J]. Biotechnology Journal, 2019, 14(3): e1800170. |
147 | TCHERKEZ G, GAUTHIER P, BUCKLEY T N, et al. Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance[J]. The New Phytologist, 2017, 216(4): 986-1001. |
148 | FEILER H S, NEWTON K J. Altered mitochondrial gene expression in the nonchromosomal stripe 2 mutant of maize[J]. The EMBO Journal, 1987, 6(6): 1535-1539. |
149 | ROUSSELL D L, THOMPSON D L, PALLARDY S G, et al. Chloroplast structure and function is altered in the NCS2 maize mitochondrial mutant[J]. Plant Physiology, 1991, 96(1): 232-238. |
150 | BARTOLI C G, PASTORI G M, FOYER C H. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes Ⅲ and Ⅳ[J]. Plant Physiology, 2000, 123(1): 335-344. |
151 | SARADADEVI K, RAGHAVENDRA A S. Dark respiration protects photosynthesis against photoinhibition in mesophyll protoplasts of pea (Pisum sativum)[J]. Plant Physiology, 1992, 99(3): 1232-1237. |
152 | HANNING I, HELDT H W. On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves (partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products)[J]. Plant Physiology, 1993, 103(4): 1147-1154. |
153 | SMITH C A, MELINO V J, SWEETMAN C, et al. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana [J]. Physiologia Plantarum, 2009, 137(4): 459-472. |
154 | ATKIN O K, MACHEREL D. The crucial role of plant mitochondria in orchestrating drought tolerance[J]. Annals of Botany, 2008, 103(4): 581-597. |
155 | LEE B H, LEE H, XIONG L M, et al. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression[J]. The Plant Cell, 2002, 14(6): 1235-1251. |
156 | DUTILLEUL C, GARMIER M, NOCTOR G, et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation[J]. The Plant Cell, 2003, 15(5): 1212-1226. |
157 | LEAKEY A D B, XU F X, GILLESPIE K M, et al. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3597-3602. |
158 | CONSIDINE M J, HOLTZAPFFEL R C, DAY D A, et al. Molecular distinction between alternative oxidase from monocots and dicots[J]. Plant Physiology, 2002, 129(3): 949-953. |
159 | NOCTOR G, FOYER C H. Homeostasis of adenylate status during photosynthesis in a fluctuating environment[J]. Journal of Experimental Botany, 2000, 51(): 347-356. |
160 | KRAMER D M, EVANS J R. The importance of energy balance in improving photosynthetic productivity[J]. Plant Physiology, 2010, 155(1): 70-78. |
161 | HUANG P, BRUTNELL T P. A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis[J]. Current Opinion in Plant Biology, 2016, 31: 91-99. |
162 | GIRAUD E, HO L H M, CLIFTON R, et al. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress[J]. Plant Physiology, 2008, 147(2): 595-610. |
163 | CVETKOVSKA M, VANLERBERGHE G C. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide[J]. The New Phytologist, 2012, 195(1): 32-39. |
164 | IGAMBERDIEV A U, BYKOVA N V, SHAH J K, et al. Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms[J]. Physiologia Plantarum, 2010, 138(4): 393-404. |
165 | AMIRSADEGHI S, ROBSON C A, MCDONALD A E, et al. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules[J]. Plant and Cell Physiology, 2006, 47(11): 1509-1519. |
166 | PASQUALINI S, PAOLOCCI F, BORGOGNI A, et al. The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants[J]. Plant, Cell & Environment, 2007, 30(12): 1545-1556. |
167 | WATANABE C K, HACHIYA T, TERASHIMA I, et al. The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defence systems in Arabidopsis thaliana leaves[J]. Plant, Cell & Environment, 2008, 31(8): 1190-1202. |
168 | WANG J, RAJAKULENDRAN N, AMIRSADEGHI S, et al. Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature[J]. Physiologia Plantarum, 2011, 142(4): 339-351. |
169 | VISHWAKARMA A, BASHYAM L, SENTHILKUMARAN B, et al. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry, 2014, 81: 44-53. |
170 | DAHAL K, VANLERBERGHE G C. Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought[J]. The New Phytologist, 2017, 213(2): 560-571. |
171 | HUANG S B, VAN AKEN O, SCHWARZLÄNDER M, et al. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants[J]. Plant Physiology, 2016, 171(3): 1551-1559. |
172 | NG S, DE CLERCQ I, VAN AKEN O, et al. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress[J]. Molecular Plant, 2014, 7(7): 1075-1093. |
173 | CVETKOVSKA M, VANLERBERGHE G C. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species[J]. Plant, Cell & Environment, 2013, 36(3): 721-732. |
174 | FIORANI F, UMBACH A L, SIEDOW J N. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants[J]. Plant Physiology, 2005, 139(4): 1795-1805. |
175 | Murakami Y, Toriyama K. Enhanced high temperature tolerance in transgenic rice seedlings with elevated levels of alternative oxidase, osaox1a[J]. Plant Biotechnology, 2008, 25:361-364. |
MURAKAMI Y, TORIYAMA K. Enhanced high temperature tolerance in transgenic rice seedlings with elevated levels of alternative oxidase, OsAOX1a[J]. Plant Biotechnology, 2008, 25(4): 361-364. | |
176 | Yoshida K, Watanabe C K, Terashima I, et al. Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana [J]. Plant, Cell & Environment, 2011, 34:1890-9. |
YOSHIDA K, WATANABE C K, TERASHIMA I, et al. Physiological impact of mitochondrial alternative oxidase on photosynthesis and growth in Arabidopsis thaliana [J]. Plant, Cell & Environment, 2011, 34(11): 1890-1899. | |
177 | LI C R, LIANG D D, XU R F, et al. Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L[J]. Genetics and Molecular Research: GMR, 2013, 12(4): 5424-5432. |
178 | DAHAL K, VANLERBERGHE G C. Improved chloroplast energy balance during water deficit enhances plant growth: more crop per drop[J]. Journal of Experimental Botany, 2017, 69(5): 1183-1197. |
179 | YANG H L, DENG L B, LIU H F, et al. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed[J]. G3 Genes|Genomes|Genetics, 2019, 9(10): 3501-3511. |
180 | MATHY G, CARDOL P, DINANT M, et al. Proteomic and functional characterization of a Chlamydomonas reinhardtii mutant lacking the mitochondrial alternative oxidase 1[J]. Journal of Proteome Research, 2010, 9(6): 2825-2838. |
181 | SKIRYCZ A, DE BODT S, OBATA T, et al. Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress[J]. Plant Physiology, 2009, 152(1): 226-244. |
182 | SWEETMAN C, WATERMAN C D, RAINBIRD B M, et al. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress[J]. Plant Physiology, 2019, 181(2): 774-788. |
183 | PHAM H M, KEBEDE H, RITCHIE G, et al. Alternative oxidase (AOX) over-expression improves cell expansion and elongation in cotton seedling exposed to cool temperatures[J]. Theoretical and Applied Genetics, 2018, 131(11): 2287-2298. |
184 | WANG J, VANLERBERGHE G C. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress[J]. Physiologia Plantarum, 2013, 149(4): 461-473. |
185 | FENG H Q, GUAN D D, SUN K, et al. Expression and signal regulation of the alternative oxidase genes under abiotic stresses[J]. Acta Biochimica et Biophysica Sinica, 2013, 45(12): 985-994. |
186 | VANLERBERGHE G C. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants[J]. International Journal of Molecular Sciences, 2013, 14(4): 6805-6847. |
187 | DEL-SAZ N F, RIBAS-CARBO M, MCDONALD A E, et al. An in vivo perspective of the role(s) of the alternative oxidase pathway[J]. Trends in Plant Science, 2018, 23(3): 206-219. |
188 | LOUGHLIN P, LIN Y K, CHEN M. Chlorophyll d and Acaryochloris marina: current status[J]. Photosynthesis Research, 2013, 116(2/3): 277-293. |
189 | HO M Y, SHEN G Z, CANNIFFE D P, et al. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II[J]. Science, 2016, 353(6302): aaf9178. |
190 | ENGLER C, YOULES M, GRUETZNER R, et al. A golden gate modular cloning toolbox for plants[J]. ACS Synthetic Biology, 2014, 3(11): 839-843. |
191 | LIU W S, STEWART C N JR. Plant synthetic biology[J]. Trends in Plant Science, 2015, 20(5): 309-317. |
192 | PATRON N J, ORZAEZ D, MARILLONNET S, et al. Standards for plant synthetic biology: a common syntax for exchange of DNA parts[J]. The New Phytologist, 2015, 208(1): 13-19. |
193 | FUENTES P, ZHOU F, ERBAN A, et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop[J]. eLife, 2016, 5: e13664. |
194 | SHIH P M, VUU K, MANSOORI N, et al. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology[J]. Nature Communications, 2016, 7: 13215. |
195 | MATZKE M A, MATZKE A J M. Homology-dependent gene silencing in transgenic plants: what does it really tell us? [J]. Trends in Genetics, 1995, 11(1): 1-3. |
196 | MEYER P, SAEDLER H. Homology-dependent gene silencing in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47:23-48. |
197 | MATZKE M A, AUFSATZ W, KANNO T, et al. Homology-dependent gene silencing and host defense in plants[J]. Advances in Genetics, 2002, 46: 235-275. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Chunhui GAO, Ning YANG, Chuang WANG, Shiji HOU, Jianbing YAN, Jinshui ZHENG, Jin LI, Chenliao WU, Peng CAI. Application prospects of synthetic bacterial communities with emergent functions in crop breeding [J]. Synthetic Biology Journal, 2024, 5(1): 144-153. |
[10] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[11] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[12] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[13] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[14] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[15] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||