Please wait a minute...
IMAGE/TABLE DETAILS
Applications of protein engineering in pharmaceutical industry
WEN Yanhua, LIU Hedong, CAO Chunlai, WU Ruibo
Synthetic Biology Journal    2025, 6 (1): 65-86.   DOI: 10.12211/2096-8280.2024-061
Abstract   (929 HTML103 PDF(pc) (2141KB)(793)  

Protein engineering performs specific designs and modifications on proteins through directed evolution, semi-rational or rational design, computer-assisted design, and so on. The engineered proteins, with improved properties, have significant applications in food, medicine, fuel, and material industries. For the chemical and pharmaceutical industry, engineered enzymes can serve as efficient biocatalysts for the synthesis of active pharmaceutical ingredients (API) and their intermediates, aligning with the concepts and principles of green chemistry and manufacturing. For the biopharmaceutical industry, the engineering of peptide or protein modifying enzymes can boost the efficiency in preparing drug candidates, while engineered diagnostic enzymes can make detection more accurate and sensitive. Moreover, protein engineering can improve the bioactivities of biological drugs such as therapeutic enzymes and antibodies, increase stability, and mitigate immunogenic response for their safety and efficacy. Here, we review the tremendous progress in protein engineering, elucidate its importance in the research and development of chemically derived drugs and biologics, and provide examples of its applications. These examples encompass the discovery of enzymes or antibodies, the process of protein engineering, and the subsequent economic advantages. We aim to showcase the practical implementation of protein engineering in the pharmaceutical industry and facilitate technology transfer, thereby fostering seamless integration between research, development, and industrial production. Furthermore, we discuss challenges such as cost-effectiveness and market changes in the synthesis of API, and multi-target optimization, long cycle and high risk in the discovery and development of biopharmaceuticals. Finally, we look forward to the prospects of protein engineering in pharmaceutical industry. In the future, automated pipelines consisting artificial intelligence and self-driving laboratories will accelerate the design-build-test-learn cycle, leading to rapid progress in molecular design and discovery.


来源蛋白质工程策略应用效益
转氨酶ATA-117Arthrobacter sp.底物游走、随机突变、ProSAR、理性设计西格列汀酮→西格列汀[54]

收率↑,产量↑

生产成本↓,废料↓

转氨酶S6Chromobacterium violaceum底物游走、迭代饱和突变、随机突变CGRP受体拮抗剂rimegepant中间体的合成[61]活性↑,转化率↑
酰基转移酶LovDAspergillus terreusProSAR、半理性设计莫那可林J→辛伐他汀[68, 73]

活性↑,稳定性↑

反应步骤↓,有毒试剂↓, 酰基供体用量↓

酮还原酶Candida magnoliaeDNA shuffling阿托伐他汀中间体 羟基腈的合成[76]活性↑,稳定性↑,E因子↑, 体积生产率↑
葡萄糖脱氢酶

Bacillus subtilis

Bacillus megaterium

卤代醇脱卤酶Agrobacterium sp.
酰胺酶Pa-AmiPantoea sp.理性设计、通道改造2-氯烟酰胺→2-氯烟酸[85, 89, 91]底物载量↑,转化率↑, 时空收率↑
单胺氧化酶MAONAspergillus niger随机突变、半理性设计抗病毒药波塞普韦中间体的合成[92]

活性↑,稳定性↑,收率↑

原材料↓,用水量↓

Table 1 Applications of protein engineering in the synthesis of active pharmaceutical ingredients
Extracts from the Article
综上,在E因子和原子经济性概念以及绿色化学12项原则的指导下,生物催化的价值已被制药公司广泛认可,工程化酶在化学原料药及高附加值产品合成中取得的各项成果振奋人心[101]。在酶改造的同时关注工艺优化,可以获得与生产工艺相匹配的优良生物催化剂,增加化学原料及其中间体的产量,减少废弃物,减少有机溶剂使用,降低了药物生产成本,既减轻了患者的用药负担,又提高了制药企业的经济效益(表1)。除了前文提到的CodeEvolver?平台之外,近年来国内企业建立的BioEngine?和ZymeEditorTM等蛋白质改造平台在行业内占有举足轻重的地位。这些平台将高通量筛选、理性设计与人工智能有机结合,实现了高效和系统的蛋白质工程,为小分子药物绿色生物制造的快速发展提供了保障。
活性↑,稳定性↑,收率↑ ...
Structure-guided semi-rational design of an imine reductase for enantio-complementary synthesis of pyrrolidinamine
1
2023
... 亚胺还原酶(imine reductase,IRED)是一类NAD(P)H依赖的氧化还原酶,可催化前手性亚胺的不对称还原合成手性胺[93].IRED具有催化效率高、区域及立体选择性强等优异的特性.孙周通团队[94]和瞿旭东团队[95]已对亚胺还原酶的机制、多酶级联反应、化学酶法合成及其工业应用作了详尽综述. ...
Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications
1
2024
... 亚胺还原酶(imine reductase,IRED)是一类NAD(P)H依赖的氧化还原酶,可催化前手性亚胺的不对称还原合成手性胺[93].IRED具有催化效率高、区域及立体选择性强等优异的特性.孙周通团队[94]和瞿旭东团队[95]已对亚胺还原酶的机制、多酶级联反应、化学酶法合成及其工业应用作了详尽综述. ...
亚胺还原酶在手性胺合成中的应用
1
2022
... 亚胺还原酶(imine reductase,IRED)是一类NAD(P)H依赖的氧化还原酶,可催化前手性亚胺的不对称还原合成手性胺[93].IRED具有催化效率高、区域及立体选择性强等优异的特性.孙周通团队[94]和瞿旭东团队[95]已对亚胺还原酶的机制、多酶级联反应、化学酶法合成及其工业应用作了详尽综述. ...
Application of imine reductase in the synthesis of chiral amines
1
2022
... 亚胺还原酶(imine reductase,IRED)是一类NAD(P)H依赖的氧化还原酶,可催化前手性亚胺的不对称还原合成手性胺[93].IRED具有催化效率高、区域及立体选择性强等优异的特性.孙周通团队[94]和瞿旭东团队[95]已对亚胺还原酶的机制、多酶级联反应、化学酶法合成及其工业应用作了详尽综述. ...
甾体化合物绿色生物制造: 从生物转化到微生物从头合成
1
2021
... 魏东芝团队[96]对甾体化合物的绿色生物制造进行了详尽的综述,其中包括甾体羟化酶和甾体脱氢酶的挖掘及改造等. ...
Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms
1
2021
... 魏东芝团队[96]对甾体化合物的绿色生物制造进行了详尽的综述,其中包括甾体羟化酶和甾体脱氢酶的挖掘及改造等. ...
多酶催化体系在医药化学品合成中的应用
1
2021
... 随着越来越多的生物催化剂被整合进化学转化过程,多酶级联反应[97]得到了较多的关注和研究.基于逆合成分析和多酶工具箱,以及体外辅酶循环和ATP再生系统,构建协同高效的多酶催化体系可以避免中间产物的纯化,实现复杂的药物的合成.比如,Merck基于多酶级联优化了抗病毒药物LAGEVRIO?(molnupiravir)的生产工艺,开发的第二代合成路线直接使用尿嘧啶和核糖作为构建块,提高了合成效率,减少了废物的产生并将总产量提高了1.6倍[98-100]. ...
Application of multi-enzyme catalytic system in the synthesis of pharmaceutical chemicals
1
2021
... 随着越来越多的生物催化剂被整合进化学转化过程,多酶级联反应[97]得到了较多的关注和研究.基于逆合成分析和多酶工具箱,以及体外辅酶循环和ATP再生系统,构建协同高效的多酶催化体系可以避免中间产物的纯化,实现复杂的药物的合成.比如,Merck基于多酶级联优化了抗病毒药物LAGEVRIO?(molnupiravir)的生产工艺,开发的第二代合成路线直接使用尿嘧啶和核糖作为构建块,提高了合成效率,减少了废物的产生并将总产量提高了1.6倍[98-100]. ...
Green chemistry challenge: 2022 greener synthetic pathways award
1
... 随着越来越多的生物催化剂被整合进化学转化过程,多酶级联反应[97]得到了较多的关注和研究.基于逆合成分析和多酶工具箱,以及体外辅酶循环和ATP再生系统,构建协同高效的多酶催化体系可以避免中间产物的纯化,实现复杂的药物的合成.比如,Merck基于多酶级联优化了抗病毒药物LAGEVRIO?(molnupiravir)的生产工艺,开发的第二代合成路线直接使用尿嘧啶和核糖作为构建块,提高了合成效率,减少了废物的产生并将总产量提高了1.6倍[98-100]. ...
Enzyme-mediated synthesis of molnupiravir: paving the way for the application of biocatalysis in pharmaceutical industry
0
2022
Streamlined chemo-enzymatic synthesis of molnupiravir via lipase catalyst
1
2024
... 随着越来越多的生物催化剂被整合进化学转化过程,多酶级联反应[97]得到了较多的关注和研究.基于逆合成分析和多酶工具箱,以及体外辅酶循环和ATP再生系统,构建协同高效的多酶催化体系可以避免中间产物的纯化,实现复杂的药物的合成.比如,Merck基于多酶级联优化了抗病毒药物LAGEVRIO?(molnupiravir)的生产工艺,开发的第二代合成路线直接使用尿嘧啶和核糖作为构建块,提高了合成效率,减少了废物的产生并将总产量提高了1.6倍[98-100]. ...
Engineered enzymes for the synthesis of pharmaceuticals and other high-value products
1
2024
... 综上,在E因子和原子经济性概念以及绿色化学12项原则的指导下,生物催化的价值已被制药公司广泛认可,工程化酶在化学原料药及高附加值产品合成中取得的各项成果振奋人心[101].在酶改造的同时关注工艺优化,可以获得与生产工艺相匹配的优良生物催化剂,增加化学原料及其中间体的产量,减少废弃物,减少有机溶剂使用,降低了药物生产成本,既减轻了患者的用药负担,又提高了制药企业的经济效益(表1).除了前文提到的CodeEvolver?平台之外,近年来国内企业建立的BioEngine?和ZymeEditorTM等蛋白质改造平台在行业内占有举足轻重的地位.这些平台将高通量筛选、理性设计与人工智能有机结合,实现了高效和系统的蛋白质工程,为小分子药物绿色生物制造的快速发展提供了保障. ...
Therapeutic peptides: current applications and future directions
1
2022
... 近年来,生物药(biopharmaceuticals)如重组蛋白和多肽[102-104]、抗体[105-106]、生物偶联物、疫苗、治疗性酶和核酸药物[107]等,因较高的临床及商业价值得到蓬勃发展,这标志着一直以来由小分子主导的药物研发进入了一个新时代. ...
Peptide-based drug discovery: current status and recent advances
0
2023
Peptides as therapeutic agents: challenges and opportunities in the green transition era
1
2023
... 近年来,生物药(biopharmaceuticals)如重组蛋白和多肽[102-104]、抗体[105-106]、生物偶联物、疫苗、治疗性酶和核酸药物[107]等,因较高的临床及商业价值得到蓬勃发展,这标志着一直以来由小分子主导的药物研发进入了一个新时代. ...
FDA approves 100th monoclonal antibody product
2
2021
... 近年来,生物药(biopharmaceuticals)如重组蛋白和多肽[102-104]、抗体[105-106]、生物偶联物、疫苗、治疗性酶和核酸药物[107]等,因较高的临床及商业价值得到蓬勃发展,这标志着一直以来由小分子主导的药物研发进入了一个新时代. ...

Other Images/Table from this Article