合成生物学 ›› 2022, Vol. 3 ›› Issue (4): 690-708.DOI: 10.12211/2096-8280.2021-076

• 特约评述 • 上一篇    下一篇

可基因编码点击化学在材料合成生物学中的应用

易琪昆1, 孙晨博1, 杨中光1, 王日1, 寇松姿2, 李朝霞3, 孙飞1,2   

  1. 1.香港科技大学化学及生物工程学系,中国 香港  000000
    2.深圳湾实验室粤港澳生物医学创新中心,广东  深圳  518000
    3.盐城工学院海洋与生物工程学院,江苏  盐城  224000
  • 收稿日期:2021-07-23 修回日期:2022-02-21 出版日期:2022-08-31 发布日期:2022-09-08
  • 通讯作者: 孙飞
  • 作者简介:易琪昆(1995—),博士研究生。研究方向为工程活体材料、材料合成生物学、化学生物学。E-mail:qyi@connect.ust.hk
    孙飞(1987—),博士,副教授。研究方向为蛋白质工程、材料合成生物学、化学生物学。E-mail:kefsun@ust.hk
  • 基金资助:
    国家重点研发计划(2020YFA0908100);广东省自然科学基金(2019A1515011691)

Genetically encoded click chemistry, an enabling tool for materials synthetic biology

Qikun YI1, Chenbo SUN1, Zhongguang YANG1, Ri WANG1, Songzi KOU2, Zhaoxia LI3, Fei SUN1,2   

  1. 1.Department of Chemical and Biological Engineering,Hong Kong University of Science and Technology,Hong Kong SAR 000000,China
    2.Shenzhen Bay Laboratory,Shenzhen 518000,Guangdong,China
    3.College of Marine and Biological Engineering,Yancheng Institute of Technology,Yancheng 224000,Jiangsu,China
  • Received:2021-07-23 Revised:2022-02-21 Online:2022-08-31 Published:2022-09-08
  • Contact: Fei SUN

摘要:

对材料的结构与功能实现精准控制是材料学领域的根本挑战之一。很多生物大分子之间具有多种特异性的反应,利用这些特异性反应将生物大分子乃至活体细胞直接组装成更高级的结构提供了一种可能的解决方案。为了实现这种特异有效的组装,借鉴于传统的点击化学,可基因编码点击化学应运而生。这套新的蛋白质化学源于自然界微生物中的异肽键化学,通过基因编辑的方式控制功能化蛋白质分子的自组装反应,同时具有点击化学的高效等优点,经过多种优化之后在合成生物学中被广泛运用。其发展和应用有力促进了蛋白质工程、材料学与合成生物学的交叉融合。本文简要介绍了可基因编码点击化学在近年的应用,包括以多种非线性蛋白质分子为代表的蛋白质拓扑工程产物、多种具有不同功能的全蛋白质水凝胶材料、重组疫苗及工程活体材料等,并总结了其发展潜力。

关键词: 可基因编码点击化学, 水凝胶, 疫苗, 蛋白质拓扑工程, 活体材料

Abstract:

Precise control over the structure and function of a material constitutes a fundamental challenge facing materials science. Due to the diverse specific interactions among biomolecules, direct assembly of biomolecules or even living cells into higher-order structures may provide a solution to this. In recent years, genetically encoded click chemistries (GECCs)-a collection of new protein chemistries that are inspired by the spontaneous isopeptide bond formation within naturally occurring microbial proteins-have gained traction among materials scientists. They are able to covalently assemble functional protein molecules directly into advanced architectures, with efficiency and selectivity rivaling traditional click reactions, while conferring genetic programmability on the resulting materials. These tools have facilitated the integration of protein engineering, materials science, and synthetic biology, and thus have opened enormous opportunities for the cross-disciplinary research. Here, we provide a concise review and discussion over the recent developments and applications of these protein chemistries, and the trends thereof. We compare the GECCs of different generations in reactivities, examine the synthesis of various uncommon protein molecule enabled by protein topology engineering, glance over the entirely protein-based hydrogels with dynamically tunable properties or underwater adhesiveness assembled via GECCs, glimpse into the design of subunit vaccines, especially those against COVID-19, and further explore the modulation of genetically engineered living materials by GECCs, featuring self-production, micropatterning, and self-assembly. Despite the tangible potential held by these molecular tools, unceasing protein engineering efforts remain necessary to further optimize and expand the arsenal of GECCs. As their chemical reactivities are fully encoded within the information (i.e., the amino acid sequence), GECCs may also serve as a source of inspiration to develop new chemistries for other synthetic information polymers in a broader term. Together, this emerging GECC toolbox has greatly empowered materials synthetic biology and will continue to provide solutions and inspirations for new biotechnologies.

Key words: genetically encoded click chemistry, hydrogel, vaccine, protein topology engineering, living material

中图分类号: